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Abstract: Hydrophosphinylation of N,N-dibenzyl-�-amino alde-
hydes with ethyl allylphosphinate in the presence of (S)-ALB af-
forded anti-�-amino-�-hydroxy(allyl)phosphinates in high
diastereoselectivity. The hydrophosphinylation product was trans-
formed to a potentially useful transition state mimic for hydrolysis
of dipeptides.
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Compounds containing phosphinic acid functional group
are currently an area of considerable importance due to
their interesting biological properties.1 The �-amino-�-
hydroxyphosphinic acids 1 serve as the key intermediates
for the synthesis of potent inhibitor of human renin and
HIV protease (Figure 1).2,3 The protease inhibitory activi-
ty is reported to be dependent upon the stereochemistry of
the asymmetric centers of the �-amino alcohol moiety.
We recently found that the AlLibis(binaphthoxide)
(ALB)4-catalyzed hydrophosphinylation of N,N-dibenz-
yl-�-amino aldehydes with ethyl phosphinate
[H2P(O)OEt] proceeds in a highly diastereoselective man-
ner.5 Both syn- and anti-�-amino-�-hydroxy-H-phosphi-
nates (1/X = H) were prepared selectively as N,N-dibenzyl
protecting form by tuning the chirality of the catalyst.
These hydrophosphinylation products seemed to be useful
intermediates for the synthesis of versatile �-amino-�-hy-
droxyphosphinyl derivatives (1/X = alkyl) by elongation
from the phosphorus atom. However, the alkylation of the
phosphinate functionality with aldehydes, acrylates and
allyl halides in the presence of TMSCl and Et3N

6 resulted
in poor yields of the desired products due to the steric con-
gestion around the phosphorus atom arising from the
bulky dibenzyl protecting group on the nitrogen atom.5a,b

Figure 1

In view of obtaining �-amino-�-hydroxyphosphinyl de-
rivatives (1/X = alkyl) in searching for potent biologically
active compounds, we envisaged the methodology based
upon using alkylated ethyl phosphinate as a nucleophile
for the hydrophosphinylation. The �-amino-�-hy-
droxy(allyl)phosphinates would be useful synthetic inter-
mediates toward a variety of their derivatives through
conversion of the double bond to the other functional
group. Here, we disclose a highly diastereoselective syn-
thesis of anti-�-amino-�-hydroxy(allyl)phosphinates
through hydrophosphinylation of N,N-dibenzyl-�-amino
aldehydes with ethyl allylphosphinate.7 In addition, we
describe anti-�-amino-�-hydroxy(allyl)phosphinate was
a useful intermediate for the stereoselective synthesis of
�-amino-�-hydroxy(methoxycarbonylmethyl)phosphinic
acid, which would be applicable as a building block for
peptidic transition state analogue inhibitors of protease
(Scheme 1).8

Scheme 1

Treatment of N,N-dibenzyl-�-amino aldehydes 2a–c9

with ethyl allylphosphinate in the presence of (R)-ALB
(20 mol%), generated from (R)-binaphthol and LiAlH4,
at 0 °C for 12 h afforded a mixture of syn-3a–c and anti-
3a–c in 48–74% yield (Table 1).10 While the diastereose-
lectivity for these reactions were varied slightly depend-
ing upon the substituents of 2a–c, poor diastereo-
selectivity were observed (entries 1, 3 and 5). When reac-
tions were conducted with (S)-ALB in place of (R)-ALB
under the same conditions, preferable formation of anti-
adducts (anti-3a–c) were observed (entries 2, 4 and 6).
The ratios of syn-3a–c and anti-3a–c were generally high
and determined to be up to 5:95. The results clearly
showed that the pair of 2a–c with (S)-ALB was matched
for inducing high diastereoselectivity.11 This trend was
consistent with the previous results of ALB-catalyzed hy-
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drophosphinylation of N,N-dibenzyl-�-amino aldehydes
with ethyl ethylphosphinate.5b

The hydrophosphinylation products syn-3a,b and anti-
3a,b, separable by column chromatography on silica gel,
were obtained as a mixture of diastereomers arising from
the chirality of the phosphorus atom. Treatment of anti-3b
with TMSBr followed by methanolysis afforded phos-
phinic acid 4 as a single product in 93% yield
(Scheme 2).12 In this compound, the asymmetric character
of the phosphorus atom is lost by the rapid exchange of
the acidic proton between the phosphoryl (P=O) and the
acidic (P–OH) sites.13

Scheme 2

The stereochemistry of syn-3a,b and anti-3a,b were con-
firmed after converting to the corresponding oxazolidin-
2-ones 5a,b and 6a,b, respectively (Scheme 3). Hydro-
genolysis of syn-3a,b followed by sequential N,O-carbo-
nylation with N,N-carbonyldiimidazole (CDI) in the
presence of N-methylmorpholine (NMO) and deesterifi-
cation with TMSBr and methanolysis gave the corre-
sponding oxazolidin-2-ones 5a,b. In an analogous
manner, 6a,b were obtained starting from anti-3a,b. The
vicinal stereochemistry of 5a,b and 6a,b were deduced by
comparison of their 1H NMR (400 MHz, CD3OD) spectra
(Table 2). The proton H-5 for 5a resonated at � 4.46

(J4,5 = 5.2 Hz), but that for 6a resonated at � 4.91 (J4,5 =
8.8 Hz). The similar trend in the chemical shifts and the
vicinal coupling constants were also observed with 5b and
6b. The chemical shifts of H-5 and the vicinal coupling
constants of oxazolidin-2-ones have been used to assign
the relative stereochemistry, normally trans-isomers ap-
pearing at higher field than those of cis-isomers and cou-
pling constants J4,5 of cis-isomers being bigger than those
of trans-isomers.14 On the basis of the empirical rules,
5a,b and 6a,b were assigned to be trans and cis, respec-
tively.15 

Scheme 3

The (S)-ALB-catalyzed hydrophosphinylation product
anti-3c, inseparable from the minor product syn-3c, was
obtained as a mixture of the diastereomers arising from
the chirality of the phosphorus atom (anti-3c-A, anti-3c-
B). The diastereomerically pure anti-3c-A (mp: 108–110
°C) was isolated from the mixture upon recrystallization
from hexane and ethyl acetate. The relative configuration
of anti-3c-A was determined unequivocally by X-ray
crystallographic analysis (Figure 2).16,17

Figure 2 ORTEP drawing of anti-3c-A

Table 1 Hydrophosphinylation of 2a–c with Ethyl Allylphosphi-
nate Catalyzed by ALB

Entrya Substrate ALB syn:antib Yield (%)c

1 2a (R)-ALB 50:50 74

2 2a (S)-ALB 7:93 63

3 2b (R)-ALB 58:42 71

4 2b (S)-ALB 5:95 51

5 2c (R)-ALB 24:76 48

6 2c (S)-ALB 6:94 52

a All reactions were carried out in THF at 0 °C for 12 h.
b Determined by 31P NMR analysis of crude products.
c Combined yields of syn- and anti-isomers.
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With anti-3b having the defined stereochemistry at the
asymmetric center of the amino alcohol moiety in hand,
we next examined the oxidative transformation of the vi-
nyl group to the carbomethoxy functional group, which
constitute the synthesis of �-amino-�-hydroxy(methoxy-
carbonylmethyl)phosphinic acid, a building block for
peptidic transition state analogue inhibitors of protease
(Scheme 4). Treatment of anti-3b with TESCl and imida-
zole afforded 7 in 87% yield. Oxidative cleavage of the
olefin moiety using with OsO4 -NaIO4 gave the dihydrox-
ylation product and the aldehyde 8 in 21% yield and 8%
yield, respectively. The poor yield of the oxidation prod-
uct seems likely to be associated with unfavorable coordi-
nation of OsO4 with the tertary amine inhibitting access of
the oxidant to the olefin under the conditions. Then, we
employed AD-mix-� reagent as an oxidant; the cinchona
alkaloid ligand might be expected to prevent the unfavor-
able interaction between 7 and the OsO4.

18 Dihydroxyla-
tion of 7 with AD-mix-� reagent under the conditions of
Sharpless gave the corresponding dihydroxylation prod-
uct, without purification, which was treated with NaIO4 to
give aldehyde 8 in 72% yield (2 steps). Conversion of 8 to
the methyl ester 10 was achieved via 9 in a moderate over-
all yield by the reduction-oxidation sequence which in-
cluded exchange of the N,N-dibenzyl protecting group to
the Cbz group as shown in Scheme 4.19 Treatment of 10
with TMSBr followed by methanolysis afforded �-amino-
�-hydroxy(methoxycarbonylmethyl)phosphinic acid 11
in 90% yield.20

Scheme 4 a) TESCl, imidazole, DMF (87%); b) AD-mix-�,
t-BuOH-H2O (1:1); c) NaIO4, H2O–MeOH–CHCl3 (72%, 2 steps);
d) LiBH4, Et2O (76%); e) H2, Pd(OH)2–C, EtOH; f) CBz-Cl,
NaHCO3, Et2O–H2O (72%, 2 steps); g) Jones reagent, acetone;
h) HCl, MeOH (31%, 2 steps); i) TMSBr, CH2Cl2; j) MeOH (90%,
2 steps)

In conclusion, we have developed ALB-catalyzed hydro-
phosphinylation of N,N-dibenzyl-�-amino aldehydes with
ethyl allylphosphinate to afford anti-�-amino-�-hy-
droxy(allyl)phosphinates, which were useful intermedi-
ates allowing for a conversion into a building block for

phosphinyl peptides. Further application of the present
hydrophosphinylation methodology to the synthesis of
biologically active compounds is under investigation.
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Hz), 1.18 (3 H, t, J = 7.0 Hz); 31P NMR (162 MHz, CDCl3) 
� 49.18, 49.05; IR (KBr) 3259, 1033 cm–1; EIMS m/z 464 
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Found: C, 72.30; H, 7.35.
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