
Check for updates

Organic & Biomolecular Chemistry

Accepted Manuscript

This is an Accepted Manuscript, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about Accepted Manuscripts in the <u>author guidelines</u>.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the ethical guidelines, outlined in our <u>author and reviewer resource centre</u>, still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this Accepted Manuscript or any consequences arising from the use of any information it contains.

Journal Name

ARTICLE

Received 00th January 20xx,

Accepted 00th January 20xx
DOI: 10.1039/x0xx000000x

www.rsc.org/

Published on 12 May 2017. Downloaded by Cornell University Library on 13/05/2017 03:56:02.

Divergent Synthesis of Biflavonoids Yields Novel Inhibitors of the Aggregation of Amyloid β (1-42)

Tze Han Sum, ^a Tze Jing Sum, ^a Súil Collins, ^{a,b} Warren R. J. D. Galloway, ^a David G. Twigg, ^a Florian Hollfelder ^b and David R. Spring*^a

Biflavonoids are associated with a variety of biologically useful properties. However, synthetic biflavonoids are poorly explored within drug discovery. There is considerable structural diversity possible within this compound class and large regions of potentially biologically relevant biflavonoid chemical space remain untapped or underexplored. Herein, we report the development of a modular and divergent strategy towards biflavonoid derivatives which enabled the step-economical preparation of a structurally diverse collection of novel unnatural biflavonoids. Preliminary studies established that the strategy could also be successfully extended to the preparation of very rare triflavonoids, which are also expected to be useful tools for biological intervention. Prompted by previous inhibitory studies with flavonoid libraries, amyloid anti-aggregation screening was performed, which led to the identification of several structurally novel inhibitors of the aggregation of the amyloid β peptide ($\Delta \beta_{42}$). Aggregated $\Delta \beta_{42}$ is a pathological hallmark of Alzheimer's disease and the use of small molecules to inhibit the aggregation process has been identified as a potentially valuable therapeutic strategy for disease treatment. Methylated biaurones were associated with highest levels of potency (the most active compound had an IC₅₀ value of 16 μ M), establishing this scaffold as a starting point for inhibitor development.

Introduction

Biflavonoids are a family of polyphenolic compounds characterised by the presence of two flavonoid units conjoined through an alkyl or alkoxy-based linker. Natural biflavonoids, found in many fruits, vegetables and plants, are associated with a variety of biologically useful properties 1, 2 (such as anti-cancer3, anti-inflammatory4, antimicrobial⁵, anti-viral⁶, anti-clotting⁷, anti-bacterial⁸. anti-fungal⁹ and anti-oxidant 10 activities) and in many cases the bioactivity of a biflavonoid is greater than that of the constituent monomer(s)^{9, 11} (Figure 1). Synthetic biflavonoids have also been found to exhibit interesting biological activities, similar to their aforementioned natural analogues. 1, 9, 11-13 However, despite these attractive features, synthetic bioflavonoids represent a poorly explored compound family within drug discovery. 1 The variation possible in flavonoid units, coupled with a large number of possible permutations in the position and nature of the inter-flavonoid linkage, means that there is considerable structural diversity possible within the biflavanoid compound class¹. Whilst there exist a number of different approaches for the production of biflavonoids, these typically generate compound collections that are based around a limited range of structures. 1 Indeed, there remain large regions of potentially biologically relevant biflavonoid chemical space that is underexplored. 1,14 Thus, there is a need for new and robust strategies for the generation of collections of unnatural biflavonoids with higher levels of structural diversity so that the biological potential of this compounds class can be more fully explored and exploited. Herein, we report the development of a divergent strategy towards biflavonoid derivatives. Application of this strategy enabled the step-economical preparation of a structurally diverse collection of novel biflavonoids, with variation in the nature of both the flavonoid units (substituted aurone and flavone) and linker moiety, from readily-accessible starting materials. In addition, the strategy was also successfully extended to the preparation of very rare triflavonoid analogues, which are also expected to have interesting biological properties. Screening of the library compounds in anti-aggregation assays with amyloid $\boldsymbol{\beta}$ peptide 1-42 (A β_{42}), a pathological hallmark of Alzheimer's disease (AD), led to the identification of several structurally novel aggregation inhibitors. 15 The use of small molecules to prevent this aggregation process is considered a potential strategy for the development of new therapies for AD. 16,17 Of the compounds examined, methylated biaurones were associated with the highest levels of potency; the most active of these had an IC50 value comparable to epigallocatechin gallate (EGCG), an AD treatment candidate which has reached phase III clinical trials. 18,19 The methylated biaurone scaffold could therefore represent a potentially valuable starting point for further studies into the development of new inhibitors or probe molecules to target $A\beta_{42}$ aggregation.

^a Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK. Email: spring@ch.cam.ac.uk

^b Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge, CB2 1GA UK.

Electronic Supplementary Information (ESI) available: ThT assay data and 1 H and 13 C NMR spectra of biflavonoids and triflavonoids. See DOI: 10.1039/x0xx00000x

ARTICLE Journal Name

Fig. 1. Examples of naturally occurring biflavonoids. Amongst the biflavones (compounds of the general form 8, see Scheme 1) amentoflavone (2) exhibits both anti-fungal and anti-inflammatory activities, ²⁰ robustaflavone (3) is a potent inhibitor of the Hepatitis B virus²¹ while lanaroflavone (1) displays anti-malarial properties²². The biaurone (a compound of the general form **9**, see Scheme 1) aulacomniumbiaureusidin (4) was isolated from Aulacomnium palustre.2

Results and discussions

Published on 12 May 2017. Downloaded by Cornell University Library on 13/05/2017 03:56:02.

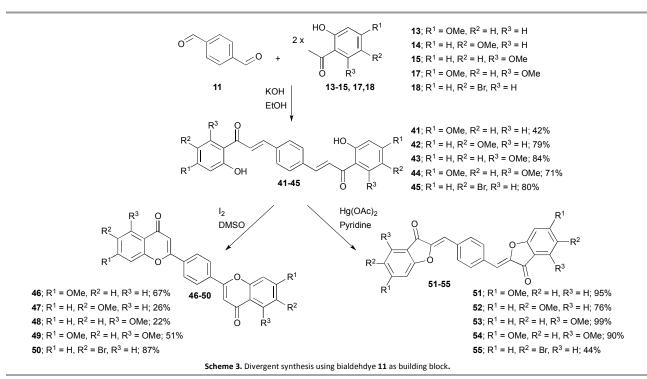
Outline of the divergent synthetic strategy

Inspired by our previous studies on flavonoid synthesis, 24,25 we envisaged a divergent strategy for the synthesis of biflavones 8 and biaurones 9 that centered on the use of a bichalcone scaffold 7 as the key branching point (Scheme 1). It was anticipated that application of different oxidative cyclisation methods would provide access to both target dimeric frameworks; iodine-mediated

oxidation of 7²⁶ would furnish the biflavones 8, whereas mercury(II) acetate-mediated oxidative cyclization²⁷ would yield biaurones 9. It was presumed that bichalcones 7 could be readily accessed via the Claisen-Schmidt aldol condensation²⁸ between bialdehydes 6 and the corresponding acetophenones 5.

Divergent synthesis of diverse biflavones and biaurones

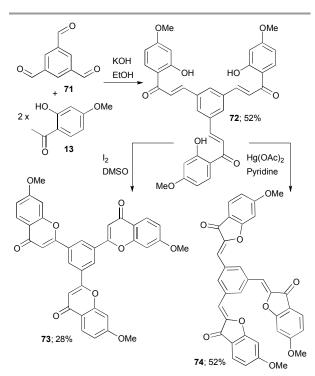
In this study, three commercially available bialdehyde building blocks were selected for use: isophthalaldehyde (10), terephthaldehyde (11) and 4,4'-biphenyldicarboxaldehyde (12). These were combined with a range of acetophenone derivatives to yield bichalcones, which could then be readily converted into the desired biflavones and biaurones by oxidative cyclisation (Schemes 2-4). Yields at each stage were generally moderate-to-good. Overall, this route enabled concise, modular and step-efficient access to a library of 34 unnatural substituted biflavonoids (17 biflavones and 17 biaurones, 29 of which are previously unreported) based around a diverse range of structures from a small set of readily available building blocks. Crucially, variation in the substitution pattern around the flavonoid units and the position and nature of the aryl linkage unit between them was achieved. The library compounds contain potential biomolecular-interacting elements (for example, hydrogen-bonding groups) and several compounds contain an aryl-bromide group, which could provide a synthetic handle for further elaboration or diversification.


Preliminary studies into the synthesis of triflavonoids

We were interested in the possibility that our divergent approach could be extended to the preparation of triflavonoids. Thus, it was envisaged that the use of tri-aldehyde building blocks would enable access to trichalcones, which could then be divergently converted to triflavones or triaurones by application of iodine- or mercury(II) acetate-based oxidative conditions respectively. As proof-ofprinciple, we targeted the generation of triflavone 73 and triaurone 74. These could both be readily accessed from tricarbaldehyde 71 and acetophenone 13 (Scheme 5). This establishes the general feasibility of our approach for the synthesis of triflavonoids, a structurally rare and biologically interesting compound class.

Organic & Biomolecular Chemistry Accepted Manuscript

Journal Name


Scheme 2. Divergent synthesis using bialdehdye 10 as building block.

Journal Name

ARTICLE

Scheme 4. Divergent synthesis using bialdehdye 12 as building block.

Scheme 5. Divergent synthesis of triflavone 73 and triaurone 74.

Inhibition of Aβ₄₂ aggregation

The inhibitory activity of the compound library against the aggregation of amyloid beta (1-42) ($A\beta_{42}$), a principal neuropathic agent in Alzheimer's disease (AD), 15 was investigated. Although inhibition of Aβ₄₂ aggregation has long been acknowledged as a promising strategy for the development of AD therapeutics¹⁶, drug candidates have frequently failed in clinical trials, 29,30 so the need for further candidates remains. A variety of chalcone and flavonoid derivatives, 31-33 as well as several naturally occurring biflavonoids, 11 have shown amyloid anti-aggregation activity, thereby prompting investigation of the inhibitory effects of biflavonoid library.

A Thioflavin T (ThT) assay was used to assess the antiaggregation activity of the library compounds (Figure 2A). An enhancement in fluorescence intensity of this dye is observed upon binding to amyloid fibrils, giving a characteristic time course of amyloid aggregation (Fig. 2A) in association with fibril formation. Changes in the aggregation kinetics and final fluorescence intensity value, upon addition of small molecules, are indicative of inhibitory or modulatory effects on the aggregation process. Of the 34 compounds examined, 24 were either inactive, insoluble or overly fluorescent under the assay conditions, see ESI for details). For 10 compounds aggregation time courses could be recorded (Fig. 2A) and the methylated biaurones were observed to show the greatest inhibitory activities. For reference three chalcone

Published on 12 May 2017. Downloaded by Cornell University Library on 13/05/2017 03:56:02.

Journal Name

derivatives known to exert an inhibitory effect, EGCG, 34,35 myricetin 36,37 and morin, 38 were assayed simultaneously,

and their percentage inhibition values shown in Figure 2B.

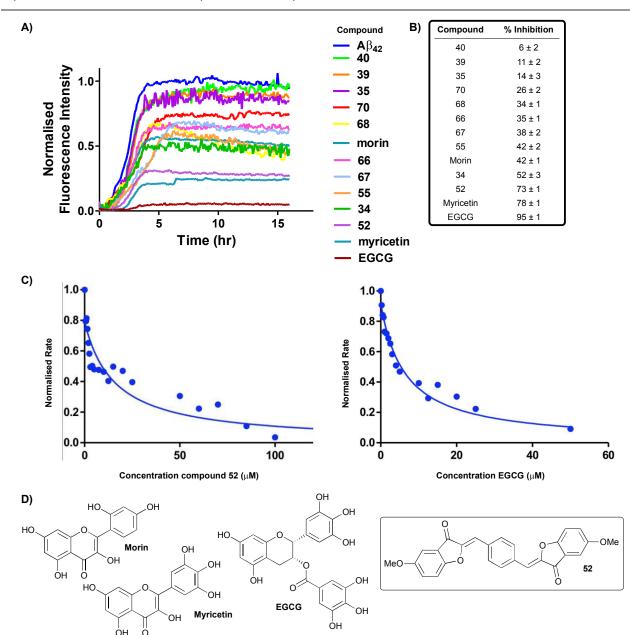


Figure 2. A) $Aβ_{42}$ aggregation profiles in the ThT assay with the addition of biflavonoids. $Aβ_{42}$ curve (blue) represent the time course of $Aβ_{42}$ aggregation (initial concentration of 10 μ M $Aβ_{42}$ peptide). Inhibited aggregation is observed with the addition of active small molecules (concentration of 50 μ M). See Experimental Section for full details. Data represent the average results of three independent biological repeats. B) Percentage inhibition of $Aβ_{42}$ aggregation achieved by a selection of the biaurones (50 μ M concentration), morin , myricetin and EGCG relative to that of $Aβ_{42}$ alone (10 μ M), calculated from the saturation phase of the $Aβ_{42}$ aggregation profiles shown in panel A). 100% represents complete aggregation inhibition and 0% shows no inhibition. C) Variation in aggregation rate with compound concentration for compound 52 and EGCG. IC₅₀ values calculated by taking the slope of the ThT aggregation curve (as in panel A) to represent the aggregation rate. The aggregation rate with a range of inhibitor concentrations (0.5 to 100 μ M) was plotted using Graphpad®. D) Structures of the reference chalcones used in the ThT assay and 52, the most active compound identified in this study.

Compound **52** was found to be the most potent, with an inhibitory activity comparable to that of myricetin and greater than that of morin (Figure 2B, structures shown in Figure 2D). An IC₅₀ value of 15.8 \pm 3.7 μM was calculated based on the concentration dependence of inhibition for

52. The apparent affinity of biaurone **52** was comparable to that measured for the phase III clinical trial drug EGCG (IC₅₀ $6.4 \pm 0.7 \,\mu\text{M}$) (Figure 2C).

All of the biaurone derivatives examined have the same general structure, being composed two aurone ring systems

DOI: 10.1039/C7OB00804J Journal Name

Conclusions

connected through a linker moiety. Reinke and Gestwicki have previously reported a structure-activity relationship (SAR) study on amyloid-beta aggregation inhibition by a structurally related series of compounds that contain two interconnected phenyl ring systems. 39 They postulated that there are two docking sites on the $\ensuremath{\mathsf{A}\beta}$ surface that can accommodate the aromatic end groups of such ligands and it was found that compound activity was affected by the substitution pattern of the aromatic ring systems and the length and flexibility of the linker region. Our screening data for the biaurones is broadly consistent with these observations. For more detailed structure-activity information the number of compounds tested is too small. However, based on the limited evidence available, a parasubstituted phenyl linker is consistently associated with higher levels of inhibitory activity than a meta-substituted phenyl linker, with the di-phenyl linker in-between these extremes (compare e.g. 35 vs 52 and 67 and 55 vs 70). It is not readily apparent why all biflavones were largely inactive in the ThT assay. Several biaurones were better inhibitors then their biflavone equivalents (that is, biflavones incorporating the same linker moiety and the same substituents around the aromatic end groups; compare e.g. 52 vs 47, 55 vs 50 and 34 vs 27). This observation may imply that flavone groups are relatively poorly accommodated by any docking sites on the on the $A\beta$ surface. Starting from the trends observed here on $A\beta_{42}$ aggregation inhibition in the biaurone series, systematic exploration of the effects identified by Reinke and Gestwicki³⁹ (namely linker length, flexibility and orientation) may lead to more potent compounds. It would also be interesting to investigate the effects of heteroaromatic linkers upon inhibitory activity and physicochemical properties.

Blood brain barrier (BBB) permeation is an important consideration in Alzheimer's drug research. 40 Thus far the degree of BBB permeation achieved by 52, the most potent compound identified in this study, has not been experimentally determined, due to known difficulties in pertaining accurate data. 41 However, comparison of it's physiochemical properties with the those associated with optimal brain exposure (molecular weight ≤ 360; topological polar surface area between 40 and 90 Å²; lipophilicity calculated partition coefficient ≤3; number of hydrogen bond donors ≤ 0.5)⁴² suggests that the compound fits a selection of the criteria (molecular weight = 366; topological polar surface area = 52.6; lipophilicity calculated partition coefficient = 4.9-5.6; number of hydrogen bond donors = 0),43 with scope for improvement in future lead optimisation studies. It is worth noting that such parameters focus on the ability of small molecule to passively diffuse into the brain, whereas as other factors such as active of facilitated transport may be at play. 44 In employing these guidelines BBB permeability can therefore be underestimated, and experimental techniques would be required to further probe this issue."

Herein, we have reported the successful development of a modular and divergent strategy towards structurally diverse biflavonoid derivatives from readily-accessible bialdehyde and acetophenone building-blocks. Our strategy therefore enables the probing of underexplored regions of biflavonoid chemical space, which could facilitate greater exploration and exploitation of the biological potential of this compound class. A total of 34 substituted biflavonoids (17 biflavones and 17 biaurones) based around a diverse range of structures was generated in this study, of which 29 are previously unreported. Conceivably, the synthetic strategy could be applied on a larger scale using a greater range of building-blocks. Preliminary studies also demonstrated that this approach could be successfully extended to the preparation of very rare triflavonoid analogues that are also expected to be of biological interest. Amyloid anti-aggregation screening was performed, which led to the identification of several structurally novel inhibitors of the aggregation of $A\beta_{42}$, which has long been acknowledged as a promising strategy for the development of Alzheimer's disease therapeutics. 16 This work adds to the repertoire of inhibitors: all active compounds were biaurones, while biflavones were all found to lack inhibitory properties. Methylated biaurones were associated with highest levels of potency, highlighting the potential value of this scaffold as a starting point for the development of next-generation inhibitors or probe molecules that target $A\beta_{42}$ aggregation. Notably, one library compound, was found to have an IC₅₀ value which is comparable to EGCG, an Alzheimer's and Parkinson's disease treatment candidate that reached phase II and III clinical trials.

Experimental section

Chemical synthesis

General information and materials

All reagents and solvents were purchased from commercial sources and used without further purification unless otherwise stated. All the experiments were carried out under a nitrogen atmosphere unless otherwise stated. Melting points were measured using a Büchi B545 melting point apparatus and are uncorrected. Thin layer chromatography (TLC) was performed on precoated Merck silica gel GF₂₅₄ plates. IR spectra were recorded on a Perkin-Elmer Spectrum One (FT-IR) spectrophotometer. Flash column chromatography was performed on silica gel (230-400 mesh). ¹H NMR and ¹³C NMR were recorded on a Bruker Avance 500 MHz instrument in CDCl₃ and DMSO-d₆. HRMS was recorded on a Micromass Q-TOF mass spectrometer or a Waters LCT Premier Time of Flight mass spectrometer.

Journal Name ARTICLE

General Procedure A: Synthesis of bichalcones or trichalcone (GP-A)

To a stirred solution of KOH (12.0 equiv) in absolute EtOH (100 mL) cooled to 0 °C in an ice-bath was added dropwise a solution of the corresponding bialdehyde or trialdehyde (1.0 equiv) and acetophenone (2.0 equiv or 3.0 equiv). The reaction mixture was stirred at 0 °C for 1 h and then at room temperature for 72 h under nitrogen or until TLC analysis indicated complete consumption of starting material. The resulting mixture was then poured into ice-water (200 mL) and acidified to pH 3-4 with 3 M HCl. The aqueous solution was extracted with $CHCl_3$ (3 × 100 mL) and the combined organic layer was washed with satd NaHCO₃ (2 × 100 mL), brine (2 × 100 mL), dried over anhydrous MgSO₄, filtered and the solvent removed under reduced pressure. The crude residue was purified by flash column chromatography over silica or successive recrystallization from hot MeOH or CHCl₃ to afford the corresponding bichalcones or trichalcone.

General Procedure B: Synthesis of biflavones or triflavone (GP-B)

To a stirred solution of the corresponding bichalcone or trichalcone (1.0 equiv) in DMSO (10 mL) was added iodine (0.1 equiv). The reaction mixture was stirred at 120 °C for 24 h under a nitrogen atmosphere. The resulting mixture was allowed to cool to room temperature and then poured into ice-water (50 mL). The aqueous solution was extracted with CHCl $_3$ (3 × 50 mL) and the combined organic layer was washed with H $_2$ O (2 × 50 mL), brine (2 × 50 mL), dried over anhydrous MgSO $_4$, filtered and the solvent removed under reduced pressure. The crude residue was purified by flash column chromatography over silica to afford the corresponding biflavones or triflavone.

General Procedure C: Synthesis of biaurones or triaurone (GP-C)

To a stirred solution of the corresponding bichalcone or trichalcone (1.0 equiv) in pyridine (10 mL) was added mercury(II) acetate (2.0 equiv or 3.0 equiv). The reaction mixture was stirred at 110 °C for 1 h under a nitrogen atmosphere. The resulting mixture was allowed to cool to room temperature and then poured into ice-water (50 mL) and acidified to pH 3-4 with 3 M HCl. The aqueous solution was extracted with CHCl₃ (3 × 50 mL) and the combined organic layer was washed with $\rm H_2O$ (2 × 50 mL), brine (2 × 50 mL), dried over anhydrous MgSO₄, filtered and the solvent removed under reduced pressure. The crude residue was purified by flash column chromatography over silica and/or recrystallization from CHCl₃ or MeOH to afford the corresponding biaurones or triaurone.

Synthesis of bichalcones and trichalcone (2E,2'E)-3,3'-(1,3-Phenylene)bis(1-(2-hydroxy-4-

methoxyphenyl)prop-2-en-1-one) (20) A mixture of acetophenone 13 (1.28 g, 7.70 mmol), bialdehyde 10 (500 mg, 3.73 mmol) and KOH (2.67 g, 44.7 mmol) in absolute EtOH (100 mL) was reacted according to GP-A. The crude residue was purified by recrystallization from MeOH to afford bichalcone 20 (639 mg, 40%) as a bright yellow powdery solid. m.p. 290-292

°C. TLC $R_f = 0.47$ (CH₂Cl₂). IR v_{max} (neat)/cm⁻¹: 3003w (C-H str), 2844w (C-H str), 1638m (C=O str), 1620m, 1571s (C=C str), 1507m, 1478w, 1467w, 1444m, 1362s, 1327w, 1302w, 1292w, 1231s, 1219s, 1210s, 1133s, 1019s. ¹H NMR (500 MHz, CDCl₃): δ 3.89 (6H, s, 2 × -OCH₃), 6.51-6.55 (4H, m, ArH), 7.52 (1H, t, J 8.0 Hz, ArH), 7.64 (2H, d, J 15.2 Hz, 2 × -CH=CHCO-), 7.72 (2H, d, J 7.6 Hz, ArH), 7.87 (2H, d, J 8.8 Hz, ArH), 7.89 (1H, br s, ArH), 7.92 (2H, d, J 15.6 Hz, 2 × -CH=CHCO-), 13.38 (2H, s, 2 × OH). ¹³C NMR (500 MHz, CDCl₃): δ 55.6, 101.1, 107.9, 114.0, 121.4, 128.5, 129.7, 130.1, 131.3, 135.7, 143.3, 166.4, 166.8, 191.5. LCMS (ES+) m/z = 431.2 ([M+H]⁺, t_r = 5.26 min). HRMS (ESI+) m/z = 431.1486 [M+H]⁺ found, $C_{26}H_{23}O_6$ required 431.1489.

(2E,2'E)-3,3'-(1,3-Phenylene)bis(1-(2-hydroxy-5-

methoxyphenyl)prop-2-en-1-one) (21) A acetophenone 14 (2.52 g, 15.2 mmol), bialdehyde 10 (1.03 g, 7.68 mmol) and KOH (5.37 g, 95.7 mmol) in absolute EtOH (100 mL) was reacted according to GP-A. The crude residue was purified by flash column chromatography (SiO₂, PE/EtOAc; 5:1) to afford bichalcone 21 (750 mg, 23%) as a bright orange fluffy solid. **m.p.** 138-140 °C. **TLC** $R_f = 0.48$ (PE/EtOAc; 2:1). **IR** v_{max} (neat)/cm⁻¹: 2913w (C-H str), 2834w (C-H str), 1644m (C=O str), 1570s (C=C str), 1485s, 1411w, 1350s, 1278m, 1266m, 1244m, 1222w, 1196s, 1175m, 1165s, 1035m, 1020s. ¹H NMR (500 MHz, CDCl₃): δ 3.84 (6H, s, 2 × -OCH₃), 6.96 (2H, d, J 9.2 Hz, ArH), 7.14 (2H, dd, J 9.2, 3.2 Hz, ArH), 7.34 (2H, d, J 2.8 Hz, ArH), 7.49 (1H, t, J 7.6 Hz, ArH), 7.59 (2H, d, J 15.6 Hz, 2 × -CH=CHCO-), 7.69 (2H, dd, J 7.6, 1.2 Hz, ArH), 7.82 (1H, br s, ArH), 7.88 (2H, d, J 15.2 Hz, 2 \times -CH=CHCO-), 12.32 (2H, s, 2 \times OH). ¹³C NMR (500 MHz, CDCl₃): δ 56.0, 112.7, 119.3, 119.4, 121.0, 124.1, 129.0, 129.6, 130.3, 135.3, 144.2, 151.7, 157.9, 192.9. **LCMS** (ES+) m/z = 431.2 $([M+H]^{+}, t_{r} = 2.19 \text{ min}). \text{ HRMS (ESI+) } m/z = 431.1486 [M+H]^{+}$ found, $C_{26}H_{23}O_6^+$ required 431.1489.

(2E,2'E)-3,3'-(1,3-Phenylene)bis(1-(2-hydroxy-6-

methoxyphenyl)prop-2-en-1-one) (22) A acetophenone 15 (2.79 g, 16.8 mmol), bialdehyde 10 (1.12 g, 8.35 mmol) and KOH (5.35 g, 95.3 mmol) in absolute EtOH (100 mL) was reacted according to GP-A. The crude residue was purified by recrystallization from MeOH to afford bichalcone 22 (2.93 g, 81%) as a bright yellow-orange powdery solid. m.p. 168-170 °C. **TLC** $R_f = 0.48$ (CH₂Cl₂). **IR** v_{max} (neat)/cm⁻¹: 2940w (C-H str), 2844w (C-H str), 1632s (C=O str), 1608m, 1559s (C=C str), 1476w, 1457s, 1432s, 1347m, 1321w, 1299w, 1276w, 1228s, 1199w, 1182w, 1168m, 1086s, 1034m. ¹H NMR (500 MHz, CDCl₃): δ 3.98 (6H, s, 2 × -OCH₃), 6.46 (2H, dd, J 8.5, 1.0 Hz, ArH), 6.64 (2H, dd, J 8.5, 1.0 Hz, ArH), 7.39 (2H, t, J 8.5 Hz, ArH), 7.48 (1H, t, J 7.5 Hz, ArH), 7.67 (2H, dd, J 7.5, 1.5 Hz, ArH), 7.79 (1H, br s, ArH), 7.82 (2H, d, J 15.5 Hz, 2 × -CH=CHCO-), 7.90 (2H, d, J 16.0 Hz, $2 \times -CH = CHCO - 1$, 13.08 (2H, s, $2 \times OH$). ¹³C NMR (500) MHz, CDCl₃): δ 56.0, 101.6, 111.0, 111.9, 128.4, 128.9, 129.5, 129.6, 136.1, 136.1, 141.9, 161.0, 164.9, 194.3. LCMS (ES+) m/z = 431.2 ([M+H]⁺, t_r = 1.84 min). **HRMS** (ESI+) m/z = 431.1471 $[M+H]^{+}$ found, $C_{26}H_{23}O_{6}^{+}$ required 431.1489.

(2E,2'E)-3,3'-(1,3-Phenylene)bis(1-(2-hydroxy-4,5-dimethoxyphenyl)prop-2-en-1-one) (23) A mixture of

This journal is © The Royal Society of Chemistry 20xx

Journal Name

ARTICLE

acetophenone 16 (1.46 g, 7.44 mmol), bialdehyde 10 (530 mg, 3.95 mmol) and KOH (2.85 g, 50.8 mmol) in absolute EtOH (100 mL) was reacted according to GP-A. The crude residue was purified by recrystallization from MeOH to afford bichalcone 23 (837 mg, 43%) as a bright orange powdery solid. m.p. 226-228 °C. **TLC** $R_f = 0.46$ (PE/EtOAc; 1:1). **IR** v_{max} (neat)/cm⁻¹: 2940w (C-H str), 2830w (C-H str), 1633s (C=O str), 1560s (C=C str), 1510s (C=C str), 1445m, 1436m, 1396s, 1354s, 1277s, 1247m, 1233m, 1203s, 1156s, 1043m, 1028s. 1 H NMR (500 MHz, CDCl₃): δ 3.95 (6H, s, $2 \times -OCH_3$), 3.96 (6H, s, $2 \times -OCH_3$), 6.53 (2H, s, ArH), 7.27 (2H, s, ArH, overlain by CDCl₃), 7.53 (1H, d, J 8.0 Hz, ArH), 7.57 (2H, d, J 15.2 Hz, 2 × -CH=CHCO-), 7.74 (2H, dd, J 7.6, 1.2 Hz, ArH), 7.88 (1H, br s, ArH), 7.94 (2H, d, J 15.6 Hz, 2 × -CH=CHCO-), 13.34 (2H, s, 2 × OH). ¹³C NMR (500 MHz, CDCl₃): δ 56.2, 57.0, 100.9, 110.8, 111.9, 121.4, 129.0, 129.6, 130.0, 135.7, 142.1, 143.4, 157.3, 162.0, 191.1. **LCMS** (ES+) $m/z = 491.3 ([M+H]^{+}, t_r =$ 2.06 min). **HRMS** (ESI+) $m/z = 491.1723 [M+H]^{+}$ found, $C_{28}H_{27}O_{8}^{+}$

(2E,2'E)-3,3'-(1,3-Phenylene)bis(1-(2-hydroxy-4,6-

required 491.1706.

Published on 12 May 2017. Downloaded by Cornell University Library on 13/05/2017 03:56:02.

dimethoxyphenyl)prop-2-en-1-one) (24) A mixture of acetophenone 17 (2.95 g, 15.0 mmol), bialdehyde 10 (1.07 g, 7.98 mmol) and KOH (5.37 g, 95.7 mmol) in absolute EtOH (100 mL) was reacted according to GP-A. The crude residue was purified by recrystallization from MeOH and CHCl₃ to afford bichalcone 24 (3.29 g, 99%) as a bright yellow powdery solid. **m.p.** 250-252 °C. **TLC** $R_f = 0.38$ (CH₂Cl₂). **IR** v_{max} (neat)/cm⁻¹: 2946w (C-H str), 2847w (C-H str), 1623s (C=O str), 1584s (C=C str), 1552s (C=C str), 1487w, 1452m, 1439m, 1414w, 1344s, 1319w, 1278s, 1218s, 1212s, 1162s, 1113s, 1036m. ¹H NMR (500 MHz, CDCl₃): δ 3.86 (6H, s, 2 × -OCH₃), 3.95 (6H, s, 2 × -OCH₃), 5.99 (2H, d, J 2.4 Hz, ArH), 6.13 (2H, d, J 2.0 Hz, ArH), 7.47 (1H, t, J 7.6 Hz, ArH), 7.64 (2H, d, J 8.4 Hz, ArH), 7.78 (1H, br s, ArH), 7.80 (2H, d, J 16.0 Hz, $2 \times -CH = CHCO -$), 7.94 (2H, d, J 15.6 Hz, $2 \times CH = CHCO -$) -CH=CHCO-), 14.23 (2H, s, 2 × OH). ¹³C NMR (500 MHz, CDCl₃): δ 55.6, 56.0, 91.4, 93.8, 106.3, 128.4, 128.7, 129.3, 129.4, 136.3, 141.4, 162.5, 166.4, 168.4, 192.5. **LCMS** (ES+) m/z = 491.3 $([M+H]^+, t_c = 1.91 \text{ min}). \text{ HRMS (ESI+) } m/z = 491.1696 [M+H]^+$ found, $C_{28}H_{27}O_8^+$ required 491.1700.

(2E,2'E)-3,3'-(1,3-Phenylene)bis(1-(5-bromo-2-

hydroxyphenyl)prop-2-en-1-one) (25) acetophenone 18 (3.26, 15.2 mmol), bialdehyde 10 (1.07 g, 7.98 mmol) and KOH (5.38 g, 95.9 mmol) in absolute EtOH (100 mL) was reacted according to GP-A. The crude residue was purified by recrystallization from MeOH to afford bichalcone 25 (3.16 g, 75%) as a bright yellow powdery solid. **m.p.** 248-250 °C. **TLC** R_f = 0.65 (CH₂Cl₂). **IR** v_{max} (neat)/cm⁻¹: 2950w (C-H str), 1740w, 1639s (C=O str), 1570s (C=C str), 1468s, 1436w, 1400w, 1356m, 1337m, 1310w, 1291w, 1279w, 1263m, 1232m, 1192s, 1168s, 1084w, 1021m. ¹H NMR (500 MHz, CDCl₃): δ 6.98 (2H, d, J 8.8 Hz, ArH), 7.56-7.62 (3H, m, ArH), 7.65 (2H, d, J 15.6 Hz, $2 \times -CH = CHCO - J$, 7.80 (2H, dd, J 8.0, 1.6 Hz, ArH), 7.94 (1H, br s, ArH), 8.00 (2H, d, J 15.6 Hz, 2 × -CH=CHCO-), 8.05 (2H, d, J 2.4 Hz, ArH), 12.67 (2H, s, 2 × OH). ¹³C NMR (500 MHz, CDCl₃): δ 110.5, 120.5, 120.7, 121.1, 129.3, 129.9, 130.8, 131.8, 135.3, 139.2, 145.2, 162.5, 192.5. **LCMS** (ES+) m/z = 528.9 ([M+H]⁺, $t_r = 2.20$ min). **HRMS** (ESI+) $m/z = 526.9486 \text{ [M+H]}^+ \text{ found, } C_{24}H_{17}O_4Br_2^+ \text{ required } 526.9494.$

(2E,2'E)-3,3'-(1,3-Phenylene)bis(1-(6-

hydroxybenzo[d][1,3]dioxol-5-yl)prop-2-en-1-one) mixture of acetophenone 19 (1.36 g, 7.55 mmol), bialdehyde 10 (530 mg, 3.95 mmol) and KOH (2.88 g, 51.3 mmol) in absolute EtOH (100 mL) was reacted according to GP-A. The crude residue was purified by flash column chromatography (SiO2, CH2Cl2) to afford bichalcone 26 (747 mg, 41%) as a bright orange powdery solid. **m.p.** 246-248 °C. **TLC** $R_f = 0.43$ (CH₂Cl₂). **IR** v_{max} (neat)/cm⁻¹: 2921w (C-H str), 1636s (C=O str), 1617s, 1578s (C=C str), 1502m (C=C str), 1477s, 1422s, 1343s, 1264s, 1221s, 1180m, 1168m, 1106s, 1035s. ^{1}H NMR (500 MHz, CDCl₃): δ 6.04 (4H, s, 2 × -OCH₂O-), 6.53 (2H, s, ArH), 7.29 (2H, s, ArH), 7.52 (1H, t, J 7.6 Hz, ArH), 7.54 (2H, d, J 15.6 Hz, $2 \times -CH = CHCO - 1$), 7.72 (2H, dd, J 7.6, 1.2 Hz, ArH), 7.87 (1H, br s, ArH), 7.92 (2H, d, J 15.6 Hz, 2 × -CH=CHCO-), 13.76 (2H, s, 2 × OH). ¹³C NMR (500 MHz, CDCl₃): δ 99.0, 102.0, 106.1, 112.5, 121.4, 128.7, 129.7, 130.1, 135.6, 140.7, 143.5, 154.8, 163.9, 191.0. **LCMS** (ES+) m/z = 459.1 $([M+H]^{+}, t_{r} = 1.82 \text{ min}). \text{ HRMS (ESI+) } m/z = 481.0877 [M+Na]^{+}$ found, C₂₆H₁₈O₈Na⁺ required 481.0894.

(2E,2'E)-3,3'-(1,4-Phenylene)bis(1-(2-hydroxy-4-

methoxyphenyl)prop-2-en-1-one) (41) acetophenone 13 (2.52 g, 15.2 mmol), bialdehyde 11 (1.05 g, 7.83 mmol) and KOH (5.40 g, 96.2 mmol) in absolute EtOH (100 mL) was reacted according to GP-A. The crude residue was purified by recrystallization from MeOH to afford bichalcone 41 (1.40 g, 42%) as a bright yellow powdery solid. m.p. 264-266 °C. **TLC** $R_f = 0.38$ (CH₂Cl₂). **IR** v_{max} (neat)/cm⁻¹: 2949w (C-H str), 2848w (C-H str), 1641s (C=O str), 1563s (C=C str), 1513s (C=C str), 1447w, 1421s, 1376s, 1351s, 1312s, 1289s, 1242s, 1223m, 1195m, 1152s, 1035s, 1019s. ¹H NMR (500 MHz, CDCl₃): δ 3.89 (6H, s, $2 \times -OCH_3$), 6.51-6.53 (4H, m, ArH), 7.64 (2H, d, J 15.6 Hz, 2 × -CH=CHCO-), 7.72 (4H, s, ArH), 7.85 (2H, d, J 8.8 Hz, ArH), 7.90 (2H, d, J 15.2 Hz, $2 \times \text{-CH=C}HCO$ -), 13.39 (2H, s, $2 \times \text{OH}$). ¹³C **NMR** (500 MHz, CDCl₃): δ 55.6, 101.1, 107.9, 114.1, 121.5, 129.1, 131.2, 136.9, 143.1, 166.4, 166.8, 191.5. **LCMS** (ES+) *m/z* = 431.2 $([M+H]^{+}, t_{r} = 1.87 \text{ min})$. These characterisation data are in accordance with that previously reported in the literature.

(2E,2'E)-3,3'-(1,4-Phenylene)bis(1-(2-hydroxy-5-

methoxyphenyl)prop-2-en-1-one) (42) A mixture of acetophenone 14 (2.54 g, 15.3 mmol), bialdehyde 11 (1.05 g, 7.83 mmol) and KOH (5.40 g, 96.2 mmol) in absolute EtOH (100 mL) was reacted according to GP-A. The crude residue was purified by recrystallization from MeOH to afford bichalcone 42 (2.66 g, 79%) as a dark orange powdery solid. m.p. 246-248 °C. TLC $R_f = 0.41$ (CH₂Cl₂). IR v_{max} (neat)/cm⁻¹: 2961w (C-H str), 2836w (C-H str), 1643m (C=O str), 1568s (C=C str), 1485s, 1416m, 1357m, 1303w, 1286w, 1266s, 1201m, 1175s, 1035m, 1020s. ¹H NMR (500 MHz, CDCl₃): δ 3.87 (6H, s, 2 × -OCH₃), 7.01 (2H, d, J 9.2 Hz, ArH), 7.18 (2H, dd, J 9.2, 3.2 Hz, ArH), 7.38 (2H, d, J 2.8 Hz, ArH), 7.67 (2H, d, J 15.6 Hz, 2 × -CH=CHCO-), 12.31 (2H, s, 2 × OH). ¹³C NMR (500 MHz, CDCl₃): δ 56.2, 113.0, 119.5, 119.6

Journal Name ARTICLE

121.4, 124.0, 129.2, 136.9, 144.1, 151.8, 158.0, 193.1. LCMS (ES+) m/z = 431.2 ([M+H]⁺, $t_r = 1.85$ min). These characterisation data are in accordance with that previously reported in the literature.41

(2E,2'E)-3,3'-(1,4-Phenylene)bis(1-(2-hydroxy-6-

methoxyphenyl)prop-2-en-1-one) (43) acetophenone 15 (2.50 g, 15.0 mmol), bialdehyde 11 (1.02 g, 7.60 mmol) and KOH (5.43 g, 96.8 mmol) in absolute EtOH (100 mL) was reacted according to GP-A. The crude residue was purified by recrystallization from MeOH to afford bichalcone 43 (2.76 g, 84%) as a bright yellow powdery solid. m.p. 228-230 °C. **TLC** $R_f = 0.43$ (CH₂Cl₂). **IR** v_{max} (neat)/cm⁻¹: 2947w (C-H str), 2843w (C-H str), 1634m (C=O str), 1587m (C=C str), 1563s (C=C str), 1476m, 1456m, 1435w, 1418m, 1361m, 1332w, 1238s, 1206m, 1200m, 1168m, 1088s, 1038m. ¹H NMR (500 MHz, CDCl₃): δ 3.98 (6H, s, 2 × -OCH₃), 6.45 (2H, dd, J 8.5, 1.0 Hz, ArH), 6.64 (2H, dd, J 8.5, 1.0 Hz, ArH), 7.38 (2H, t, J 8.5 Hz, ArH), 7.66 (4H, s, ArH), 7.80 (2H, d, J 15.5 Hz, 2 × -CH=CHCO-), 7.91 (2H, d, J 15.5 Hz, $2 \times -CH = CHCO - 13.11$ (2H, s, $2 \times OH$). ¹³C NMR (500) MHz, CDCl₃): δ 56.0, 101.5, 111.0, 111.9, 128.5, 128.9, 136.1, 137.1, 141.7, 161.0, 164.9, 194.2. **LCMS** (ES+) m/z = 431.2 $([M+H]^+, t_r = 1.84 \text{ min})$. These characterisation data are in accordance with that previously reported in the literature.

(2E,2'E)-3,3'-(1,4-Phenylene)bis(1-(2-hydroxy-4,6-

dimethoxyphenyl)prop-2-en-1-one) (44) A mixture of acetophenone 17 (2.82 g, 14.4 mmol), bialdehyde 11 (1.05 g, 7.83 mmol) and KOH (5.42 g, 96.6 mmol) in absolute EtOH (100 mL) was reacted according to GP-A. The crude residue was purified by recrystallization from MeOH to afford bichalcone 44 (2.73 g, 71%) as a dull yellow powdery solid. m.p. 288-290 °C. **TLC** $R_f = 0.34$ (CH₂Cl₂). **IR** v_{max} (neat)/cm⁻¹: 2944w (C-H str), 2843w (C-H str), 1619s (C=O str), 1588s (C=C str), 1565s (C=C str), 1489w, 1449w, 1438m, 1415m, 1346s, 1287w, 1216s, 1159s, 1110s, 1033w. ¹H NMR (500 MHz, CDCl₃): δ 3.86 (6H, s, 2 \times -OCH₃), 3.95 (6H, s, 2 \times -OCH₃), 5.99 (2H, d, J 2.4 Hz, ArH), 6.13 (2H, d, J 2.4 Hz, ArH), 7.65 (4H, s, ArH), 7.79 (2H, d, J 15.6 Hz, 2 × -CH=CHCO-), 7.96 (2H, d, J 15.6 Hz, 2 × -CH=CHCO-), 14.26 (2H, s, $2 \times OH$). ¹³C NMR (500 MHz, CDCl₃): δ 55.6, 55.9, 91.3, 93.8, 106.4, 128.4, 128.8, 137.2, 141.2, 162.5, 166.4, 168.5, 192.3. **LCMS** (ES+) m/z = 491.2 ([M+H]⁺, $t_r = 1.94$ min). **HRMS** (ESI+) m/z= $491.1685 [M+H]^{+}$ found, $C_{28}H_{27}O_{8}^{+}$ required 491.1700.

(2E,2'E)-3,3'-(1,4-Phenylene)bis(1-(5-bromo-2-

hydroxyphenyl)prop-2-en-1-one) (45) Α mixture acetophenone 18 (3.30 g, 15.3 mmol), bialdehyde 11 (1.09 g, 8.13 mmol) and KOH (5.37 g, 95.7 mmol) in absolute EtOH (100 mL) was reacted according to GP-A. The crude residue was purified by recrystallization from MeOH to afford bichalcone 45 (3.43 g, 80%) as a bright yellow-orange powdery solid. m.p. >300 °C. **TLC** $R_f = 0.68$ (CH₂Cl₂). **IR** v_{max} (neat)/cm⁻¹: 2969w (C-H str), 1738w, 1639s (C=O str), 1568s (C=C str), 1468s, 1415m, 1398w, 1367m, 1336m, 1303w, 1289w, 1269m, 1234w, 1194s, 1086w, 1023s. ¹H NMR (500 MHz, CDCl₃): δ 6.98 (2H, d, J 8.8 Hz, ArH), 7.61 (2H, dd, J 8.8, 2.4 Hz, ArH), 7.65 (2H, d, J 15.6 Hz, 2 × -CH=CHCO-), 7.79 (4H, s, ArH), 7.97 (2H, d, J 15.6 Hz, 2 × - CH=CHCO-), 8.04 (2H, d, J 2.4 Hz, ArH), 12.68 (2H, s, 2 × OH). 13 C **NMR** (500 MHz, CDCl₃): δ 110.5, 120.8, 120.8, 121.2, 129.5, 131.8, 136.8, 139.2, 145.0, 162.6, 192.4. LCMS (ES-) m/z = 527.0([M-H], $t_r = 2.52$ min). These characterisation data are in accordance with that previously reported in the literature. 46

(2E,2'E)-3,3'-([1,1'-Biphenyl]-4,4'-diyl)bis(1-(2-hydroxy-4methoxyphenyl)prop-2-en-1-one) (56) A mixture acetophenone 13 (1.63 g, 9.81 mmol), bialdehyde 12 (1.02 g, 4.85 mmol) and KOH (3.53 g, 62.9 mmol) in absolute EtOH (100 mL) was reacted according to GP-A. The crude residue was purified by recrystallization from MeOH to afford bichalcone 56 (1.15 g, 47%) as a bright yellow powdery solid. m.p. 248-250 °C. **TLC** $R_f = 0.41$ (CH₂Cl₂). **IR** v_{max} (neat)/cm⁻¹: 2968w (C-H str), 2843w (C-H str), 1635s (C=O str), 1574s (C=C str), 1552m (C=C str), 1508m (C=C str), 1500w, 1432m, 1363s, 1286m, 1216s, 1203s, 1123s, 1025m, 1017m, 1002m. ¹H NMR (500 MHz, CDCl₃): δ 3.89 (6H, s, 2 × -OCH₃), 6.50-6.54 (4H, m, ArH), 7.65 (2H, d, J 15.6 Hz, 2 × -CH=CHCO-), 7.72 (4H, d, J 8.4 Hz, ArH), 7.77 (4H, d, J 8.4 Hz, ArH), 7.87 (2H, d, J 8.8 Hz, ArH), 7.95 (2H, d, J 15.6 Hz, $2 \times \text{-CH=C}HCO\text{-}$), 13.45 (2H, s, $2 \times \text{OH}$). ¹³C NMR (500 MHz, CDCl₃): δ 55.6, 101.1, 107.9, 114.1, 120.5, 127.5, 129.2, 131.2, 134.4, 142.1, 143.6, 166.3, 166.8, 191.7. LCMS (ES+) m/z = 507.3 ($[M+H]^+$, t_r = 2.04 min). These characterisation data are in accordance with that previously reported in the literature.

(2E,2'E)-3,3'-([1,1'-Biphenyl]-4,4'-diyl)bis(1-(2-hydroxy-5methoxyphenyl)prop-2-en-1-one) (57) A mixture acetophenone 14 (1.60 g, 9.63 mmol), bialdehyde 12 (1.00 g, 4.76 mmol) and KOH (3.46 g, 61.2 mmol) in absolute EtOH (100 mL) was reacted according to GP-A. The crude residue was purified by recrystallization from MeOH to afford bichalcone 57 (780 mg, 32%) as a bright orange powdery solid. m.p. 214-216 °C. **TLC** $R_f = 0.11$ (CH₂Cl₂). **IR** v_{max} (neat)/cm⁻¹: 2970w (C-H str), 2839w (C-H str), 1636m (C=O str), 1568s (C=C str), 1548m (C=C str), 1486s, 1461w, 1410m, 1353s, 1309m, 1275m, 1261s, 1241w, 1180s, 1040m, 1013w, 1002m. ¹H NMR (500 MHz, CDCl₃): δ 3.88 (6H, s, 2 × -OCH₃), 7.01 (2H, d, J 8.8 Hz, ArH), 7.18 (2H, dd, J 9.2, 2.8 Hz, ArH), 7.41 (2H, d, J 2.8 Hz, ArH), 7.67 (2H, d, J 15.2 Hz, 2 × -CH=CHCO-), 7.74 (4H, d, J 8.4 Hz, ArH), 7.79 (4H, d, J 8.4 Hz, ArH), 7.98 (2H, d, J 15.6 Hz, 2 × -CH=CHCO-), 12.38 (2H, s, 2 × OH). ¹³C NMR (500 MHz, CDCl₃): δ 56.2, 113.0, 119.4, 119.7, 120.4, 123.9, 127.6, 129.3, 134.2, 142.4, 144.8, 151.7, 158.0, 193.2. **LCMS** (ES+) m/z = 507.2 ([M+H]⁺, $t_r = 2.00$ min). **HRMS** (ESI+) $m/z = 529.1607 [M+Na]^{+}$ found, $C_{32}H_{26}O_6Na^{+}$ required 529.1622.

(2E,2'E)-3,3'-([1,1'-Biphenyl]-4,4'-diyl)bis(1-(2-hydroxy-6methoxyphenyl)prop-2-en-1-one) (58) A mixture acetophenone 15 (1.62 g, 9.75 mmol), bialdehyde 12 (1.00 g, 4.76 mmol) and KOH (3.44 g, 61.3 mmol) in absolute EtOH (100 mL) was reacted according to GP-A. The crude residue was purified by recrystallization from MeOH to afford bichalcone 58 (2.14 g, 89%) as a bright yellow-orange powdery solid. m.p. 238-240 °C. **TLC** $R_f = 0.43$ (CH₂Cl₂). **IR** v_{max} (neat)/cm⁻¹: 2939w (C-H str), 2839w (C-H str), 1627m (C=O str), 1577m (C=C str), 1548s (C=C str), 1474m, 1453s, 1433m, 1354s, 1238s, 1199w, 1183s,

ARTICLE Journal Name

1167m, 1089s, 1037m, 1025m, 1003w. ¹H NMR (500 MHz, CDCl₃): δ 3.99 (6H, s, 2 × -OCH₃), 6.46 (2H, dd, J 8.5, 1.0 Hz, ArH), 6.65 (2H, dd, J 8.5, 1.0 Hz, ArH), 7.39 (2H, t, J 8.5 Hz, ArH), 7.70 (4H, d, J 8.5 Hz, ArH), 7.73 (4H, d, J 8.5 Hz, ArH), 7.86 (2H, d, J 15.5 Hz, 2 × -CH=CHCO-), 7.93 (2H, d, J 15.5 Hz, 2 × -CH=CHCO-), 13.15 (2H, s, 2 × OH). ¹³C NMR (500 MHz, CDCl₃): δ 56.0, 101.6, 111.0, 112.0, 127.4, 127.8, 129.1, 134.9, 136.0, 141.9, 142.2, 161.0, 164.9, 194.3. **LCMS** (ES+) $m/z = 507.2 ([M+H]^+, t_r = 2.00)$ min). **HRMS** (ESI+) $m/z = 507.1802 [M+H]^{+}$ found, $C_{32}H_{27}O_{6}^{+}$ required 507.1802.

(2E,2'E)-3,3'-([1,1'-Biphenyl]-4,4'-diyl)bis(1-(2-hydroxy-4,6dimethoxyphenyl)prop-2-en-1-one) (59) A mixture of 2hydroxy-4,6-dimethoxyacetophenone 17 (1.88 g, 9.58 mmol), bialdehyde 12 (1.01 g, 4.80 mmol) and KOH (3.45 g, 61.5 mmol) in absolute EtOH (100 mL) was reacted according to GP-A. The crude residue was purified by recrystallization from MeOH to afford bichalcone 59 (2.17 g, 80%) as a bright yellow powdery solid. **m.p.** 268-270 °C. **TLC** $R_f = 0.17$ (CH₂Cl₂). **IR** v_{max} (neat)/cm⁻¹: 2938w (C-H str), 2838w (C-H str), 1608s (C=O str), 1579s (C=C str), 1547s (C=C str), 1498w, 1481w, 1440m, 1406m, 1343s, 1295m, 1214s, 1186m, 1153s, 1114s, 1035m, 1023w, 1002w. ¹H **NMR** (500 MHz, CDCl₃): δ 3.86 (6H, s, 2 × -OCH₃), 3.96 (6H, s, 2 × -OCH₃), 6.00 (2H, d, J 2.4 Hz, ArH), 6.14 (2H, d, J 2.4 Hz, ArH), 7.68-7.73 (8H, m, ArH), 7.84 (2H, d, J 15.6 Hz, $2 \times -CH = CHCO - J$, 7.97 (2H, d, J 15.6 Hz, $2 \times \text{-CH=C}HCO$ -), 14.31 (2H, br s, $2 \times OH$). 13 C NMR (500 MHz, CDCl₃): δ 55.6, 55.9, 91.3, 93.8, 106.4, 127.4, 127.7, 129.0, 135.1, 141.7, 141.7, 162.5, 166.3, 168.5, 192.5. **LCMS** (ES+) m/z = 567.2 ([M+H]⁺, $t_r = 2.10$ min). These characterisation data are in accordance with that previously reported in the literature. 48

Published on 12 May 2017. Downloaded by Cornell University Library on 13/05/2017 03:56:02.

(2E,2'E)-3,3'-([1,1'-Biphenyl]-4,4'-diyl)bis(1-(5-bromo-2hydroxyphenyl)prop-2-en-1-one) (60) A mixture acetophenone 18 (2.12 g, 9.86 mmol), bialdehyde 12 (1.08 g, 5.14 mmol) and KOH (3.50 g, 62.4 mmol) in absolute EtOH (100 mL) was reacted according to GP-A. The crude residue was purified by recrystallization from MeOH to afford bichalcone 60 (2.77 g, 89%) as a bright yellow-orange powdery solid. m.p. 258-260 °C. **TLC** $R_f = 0.65$ (CH₂Cl₂). **IR** v_{max} (neat)/cm⁻¹: 2938w (C-H str), 1738w, 1637s (C=O str), 1563s (C=C str), 1496w, 1465s, 1398m, 1362m, 1335s, 1308m, 1289m, 1279m, 1264m, 1232w, 1179s, 1085w, 1015m, 1003m. 1 H NMR (500 MHz, CDCl₃): δ 6.97 (2H, d, J 8.8 Hz, ArH), 7.60 (2H, dd, J 9.2, 2.4 Hz, ArH), 7.64 (2H, d, J 16.0 Hz, 2 × -CH=CHCO-), 7.75 (4H, d, J 8.4 Hz, ArH), 7.81 (4H, d, J 8.4 Hz, ArH), 8.01 (2H, d, J 15.6 Hz, $2 \times$ -CH=CHCO-), 8.05 (2H, d, J 2.4 Hz, ArH), 12.76 (2H, s, 2 × OH). ¹³C NMR (500 MHz, CDCl₃): δ 110.5, 119.6, 120.7, 121.3, 127.7, 129.5, 131.8, 134.0, 139.0, 142.6, 145.8, 162.5, 192.6. **LCMS** (ES-) m/z = 603.0 ([M-H] , $t_r = 2.42 \text{ min}$). **HRMS** (ESI-) $m/z = 600.9658 \text{ [M-H]}^{-} \text{ found,}$ $C_{30}H_{19}O_4Br_2^+$ required 600.9656.

(2E,2'E,2"E)-3,3',3"-(Benzene-1,3,5-triyl)tris(1-(2-hydroxy-4methoxyphenyl)prop-2-en-1-one) (72) A mixture of 2-hydroxy-4-methoxyacetophenone 13 (1.56 g, 9.39 mmol), benzene-1,3,5tricarbaldehyde 71 (503 mg, 3.10 mmol) and KOH (2.32 g, 41.3 mmol) in absolute EtOH (100 mL) was reacted according to GP- A. The crude residue was purified by recrystallization from MeOH to afford trichalcone 72 (972 mg, 52%) as a bright yellow powdery solid. **m.p.** 278-280 °C. **TLC** $R_f = 0.50$ (CH₂Cl₂). **IR** v_{max} (neat)/cm⁻¹: 2926w (C-H str), 2843w (C-H str), 1714w, 1637m (C=O str), 1619m, 1572s (C=C str), 1508m (C=C str), 1443w, 1360s, 1280w, 1265w, 1212s, 1154w, 1128s, 1021m. ¹H NMR (500 MHz, CDCl₃): δ 3.90 (9H, s, 3 × -OCH₃), 6.52 (3H, d, J 2.4 Hz, ArH), 6.56 (3H, dd, J 8.8, 2.4 Hz, ArH), 7.69 (3H, d, J 15.2 Hz, 3 × -CH=CHCO-), 7.91 (3H, d, J 9.2 Hz, ArH), 7.92 (3H, s, ArH), 7.94 (3H, d, J 16.0 Hz, $3 \times -CH = CHCO -$), 13.34 (3H, s, $3 \times OH$). ¹³C NMR (500 MHz, CDCl₃): δ 55.7, 101.1, 108.1, 114.0, 122.4, 129.6, 131.3, 136.5, 142.4, 166.6, 166.9, 191.2. **LCMS** (ES+) m/z = 607.2 $([M+H]^{+}, t_{r} = 2.17 \text{ min}). \text{ HRMS (ESI+) } m/z = 629.1764 [M+Na]^{+}$ found, C₃₆H₃₀O₉Na⁺ required 629.1782.

Synthesis of biflavones and triflavone

2,2'-(1,3-Phenylene)bis(7-methoxy-4H-chromen-4-one) (27) A mixture of bichalcone 20 (207 mg, 0.482 mmol) and I₂ (81.2 mg, 0.314 mmol) in DMSO (10 mL) was reacted according to GP-B. The crude residue was purified by flash column chromatography $(SiO_2, 1-5\% MeOH/CH_2Cl_2)$ to afford biflavone **27** (123 mg, 60%) as a pale yellow-white powdery solid. **m.p.** 288-290 °C. **TLC** R_f = 0.31 (5% MeOH/CH₂Cl₂). **IR** ν_{max} (neat)/cm⁻¹: 2931w (C-H str), 2838w (C-H str), 1626s (C=O str), 1602s, 1578m (C=C str), 1501w (C=C str), 1481w, 1436s, 1373m, 1359s, 1276w, 1260m, 1235w, 1202w, 1164m, 1128w, 1088m, 1037w, 1026m. ¹H NMR (500 MHz, CDCl₃): δ 3.98 (6H, s, 2 × -OCH₃), 6.87 (2H, s, 2 × -C=CH), 7.00-7.02 (4H, m, ArH), 7.67 (1H, t, J 8.0 Hz, ArH), 8.03 (2H, dd, J 8.0, 1.2 Hz, ArH), 8.13 (2H, d, J 8.4 Hz, ArH), 8.41 (1H, br s, ArH). ^{13}C NMR (500 MHz, CDCl $_{\!3}$): δ 56.0, 100.3, 108.1, 114.9, 117.7, 123.6, 127.0, 128.6, 129.8, 132.8, 158.0, 161.6, 164.4, 177.6. **LCMS** (ES+) m/z = 427.2 ([M+H]⁺, $t_r = 1.75$ min). **HRMS** (ESI+) m/z= 427.1161 $[M+H]^{+}$ found, $C_{26}H_{19}O_{6}^{+}$ required 427.1176.

2,2'-(1,3-Phenylene)bis(6-methoxy-4H-chromen-4-one) (28) A mixture of bichalcone 21 (203 mg, 0.472 mmol) and I₂ (30.6 mg, 0.121 mmol) in DMSO (10 mL) was reacted according to GP-B. The crude residue was purified by flash column chromatography (SiO₂, 1-10% MeOH/CH₂Cl₂) to afford biflavone 28 (131 mg, 65%) as a pale yellow-white powdery solid. **m.p.** >300 °C. **TLC** $R_f = 0.36$ (5% MeOH/CH₂Cl₂). **IR** ν_{max} (neat)/cm⁻¹: 3075w (C-H str), 2834w (C-H str), 1630s (C=O str), 1611s, 1578m (C=C str), 1565m (C=C str), 1484s, 1464s, 1434m, 1362s, 1293m, 1281m, 1244m, 1205s, 1132w, 1079m, 1023s. ¹H NMR (500 MHz, CDCl₃): δ 3.95 (6H, s, 2 × -OCH₃), 6.93 (2H, s, 2 × -C=CH), 7.36 (2H, dd, J 9.0, 3.0 Hz, ArH), 7.59 (2H, d, J 9.0 Hz, ArH), 7.63 (2H, d, J 3.0 Hz, ArH), 7.71 (1H, t, J 8.0 Hz, ArH), 8.08 (2H, dd, J 8.0, 2.0 Hz, ArH), 8.49 (1H, t, J 1.5 Hz, ArH). ¹³C NMR (500 MHz, CDCl₃): δ 56.0, 104.9, 107.5, 119.6, 123.9, 124.1, 124.6, 128.9, 129.9, 133.0, 151.1, 157.2, 161.9, 178.2. **LCMS** (ES+) m/z = 427.2 ([M+H]⁺, $t_r = 1.96$ min). **HRMS** (ESI+) $m/z = 427.1168 [M+H]^{+}$ found, $C_{26}H_{19}O_{6}^{+}$ required 427.1176.

2,2'-(1,3-Phenylene)bis(5-methoxy-4H-chromen-4-one) (29) A mixture of bichalcone 22 (307 mg, 0.714 mmol) and I₂ (33.8 mg, 0.133 mmol) in DMSO (10 mL) was reacted according to GP-B. The crude residue was purified by flash column chromatography

Journal Name ARTICLE

(SiO₂, 1-5% MeOH/CH₂Cl₂) to afford biflavone **29** (237 mg, 78%) as a white powdery solid. **m.p.** >300 °C. **TLC** $R_f = 0.55$ (10% MeOH/CH₂Cl₂). **IR** v_{max} (neat)/cm⁻¹: 3019w (C-H str), 2842w (C-H str), 1633s (C=O str), 1600s (C=C str), 1568m (C=C str), 1477s, 1459m, 1437m, 1382s, 1316s, 1267s, 1214m, 1191w, 1089s, 1072m, 1042m, 1026s. ¹**H NMR** (500 MHz, CDCl₃): δ 4.04 (6H, s, 2 × -OCH₃), 6.85 (2H, s, 2 × -C=CH), 6.88 (2H, d, J 8.4 Hz, ArH), 7.23 (2H, d, J 8.4 Hz, ArH), 7.62-7.70 (3H, m, ArH), 8.04 (2H, dd, J 8.0, 1.6 Hz, ArH), 8.44 (1H, br s, ArH). ¹³**C NMR** (500 MHz, CDCl₃): δ 56.6, 106.7, 109.8, 110.2, 114.6, 123.5, 128.7, 129.8, 132.5, 134.1, 158.3, 159.8, 159.9, 178.2. **LCMS** (ES+) m/z = 427.1 ([M+H]⁺, t_r = 1.49 min). **HRMS** (ESI+) m/z = 427.1164 [M+H]⁺ found, $C_{26}H_{19}O_6^+$ required 427.1176.

2,2'-(1,3-Phenylene)bis(6,7-dimethoxy-4H-chromen-4-one) (30) A mixture of bichalcone 23 (61.6 mg, 0.126 mmol) and I2 (21.1 mg, 0.0831 mmol) in DMSO (10 mL) was reacted according to GP-B. The crude residue was purified by flash column chromatography (SiO₂, 1-5% MeOH/CH₂Cl₂) to afford biflavone 30 (28.3 mg, 46%) as a pale yellow-white powdery solid. m.p. >300 °C. **TLC** $R_f = 0.38$ (5% MeOH/CH₂Cl₂). **IR** v_{max} (neat)/cm⁻¹: 2924w (C-H str), 2837w (C-H str), 1739w, 1627s (C=O str), 1594s (C=C str), 1507s (C=C str), 1475s, 1456s, 1431s, 1365m, 1346s, 1264s, 1217s, 1198s, 1166m, 1081s, 1027w. ¹H NMR (500 MHz, CDCl₃): δ 4.00 (6H, s, 2 × -OCH₃), 4.08 (6H, s, 2 × -OCH₃), 6.91 (2H, s, 2 × -C=CH), 7.07 (2H, s, ArH), 7.55 (2H, s, ArH), 7.66 (1H, t, J 7.0 Hz, ArH), 8.03 (2H, dd, J 7.6, 1.2 Hz, ArH), 8.41 (1H, br s, ArH). ¹³C NMR (500 MHz, CDCl₃): δ 56.4, 56.7, 99.8, 104.2, 107.6, 117.3, 123.4, 128.4, 129.8, 132.8, 147.9, 152.3, 154.8, 161.4, 177.5. **LCMS** (ES+) m/z = 487.2 ([M+H]⁺, $t_r = 1.57$ min). **HRMS** (ESI+) $m/z = 487.1414 [M+H]^{+}$ found, $C_{28}H_{23}O_{8}^{+}$ required 487.1393.

2,2'-(1,3-Phenylene)bis(5,7-dimethoxy-4H-chromen-4-one) (31) A mixture of bichalcone 24 (303 mg, 0.618 mmol) and I_2 (26.7 mg, 0.105 mmol) in DMSO (10 mL) was reacted according to GP-B. The crude residue was purified by flash column chromatography (SiO2, 1-5% MeOH/CH2Cl2) to afford biflavone 31 (239 mg, 80%) as a pale yellow-white powdery solid. m.p. 288-290 °C. **TLC** $R_f = 0.56$ (10% MeOH/CH₂Cl₂). **IR** v_{max} (neat)/cm⁻¹ 1: 2989w (C-H str), 2948w (C-H str), 1640s (C=O str), 1596s (C=C str), 1572s (C=C str), 1489m, 1457m, 1424m, 1395w, 1339s, 1273m, 1216m, 1203s, 1162s, 1110s, 1059m, 1034w. ¹H NMR (500 MHz, CDCl₃): δ 3.98 (6H, s, 2 × -OCH₃), 3.98 (6H, s, 2 × -OCH₃), 6.42 (2H, d, J 2.0 Hz, ArH), 6.68 (2H, d, J 2.0 Hz, ArH), 6.81 (2H, s, $2 \times -C=CH$), 7.64 (1H, t, J 8.0 Hz, ArH), 8.00 (2H, dd, J 8.0, 2.0 Hz, ArH), 8.37 (1H, t, J 2.0 Hz, ArH). 13C NMR (500 MHz, CDCl₃): δ 56.0, 56.5, 92.9, 96.5, 109.3, 109.6, 123.1, 128.3, 129.7, 132.4, 159.4, 159.9, 160.9, 164.3, 177.5. **LCMS** (ES+) *m/z* = 487.2 $([M+H]^+, t_r = 1.72 \text{ min}). \text{ HRMS (ESI+) } m/z = 487.1384 [M+H]^+$ found, C₂₈H₂₃O₈⁺ required 487.1387.

2,2'-(1,3-Phenylene)bis(6-bromo-4H-chromen-4-one) (32) A mixture of bichalcone **25** (222 mg, 0.421 mmol) and I_2 (95.1 mg, 0.375 mmol) in DMSO (10 mL) was reacted according to GP-B. The crude residue was purified by flash column chromatography (SiO_2 , 1-5% MeOH/CH₂Cl₂) to afford biflavone **32** (191 mg, 87%)

as a pale yellow-white powdery solid. **m.p.** >300 °C. **TLC** R_f = 0.25 (1% MeOH/CH₂Cl₂). **IR** v_{max} (neat)/cm⁻¹: 2919w (C-H str), 2851w (C-H str), 1738w, 1631s (C=O str), 1602s, 1559m (C=C str), 1478w, 1460s, 1435m, 1354m, 1328w, 1288w, 1245w, 1212w, 1138w, 1119w, 1092w, 1037m. ¹**H NMR** (500 MHz, CDCl₃): δ 6.95 (2H, s, 2 × -C=CH), 7.56 (2H, d, J 8.8 Hz, ArH), 7.74 (1H, t, J 8.0 Hz, ArH), 7.86 (2H, dd, J 8.8, 2.4 Hz, ArH), 8.10 (2H, dd, J 8.0, 1.6 Hz, ArH), 8.40 (2H, d, J 2.4 Hz, ArH), 8.46 (1H, br s, ArH). ¹³**C NMR** (500 MHz, CDCl₃): δ 108.4, 119.1, 120.1, 124.0, 125.3, 128.5, 129.3, 130.1, 132.7, 137.1, 155.0, 162.3, 176.8. **LCMS** (ES+) m/z = 525.0 ([M+H]⁺, t_r = 2.19 min). **HRMS** (ESI+) m/z = 522.9181 [M+H]⁺ found, $C_{24}H_{13}O_4Br_2$ required 522.9175.

6,6'-(1,3-Phenylene)bis(8H-[1,3]dioxolo[4,5-g]chromen-8-one) (33) A mixture of bichalcone 26 (167 mg, 0.365 mmol) and I₂ (96.7 mg, 0.381 mmol) in DMSO (10 mL) was reacted according to GP-B. The crude residue was purified by flash column chromatography (SiO2, 1-5% MeOH/CH2Cl2) to afford biflavone 33 (46.4 mg, 28%) as a pale yellow-white powdery solid. m.p. >300 °C. **TLC** $R_f = 0.35$ (5% MeOH/CH₂Cl₂). **IR** v_{max} (neat)/cm⁻¹: 3051w (C-H str), 2916w (C-H str), 1739w, 1636s (C=O str), 1611s, 1502w (C=C str), 1457s, 1437m, 1361s, 1252s, 1174m, 1140m, 1032s. ¹H NMR (500 MHz, CDCl₃): δ 6.16 (4H, s, 2 × -OCH₂O-), 6.87 (2H, s, 2 × -C=CH), 7.05 (2H, s, ArH), 7.58 (2H, s, ArH), 7.69 (1H, t, J 8.0 Hz, ArH), 8.03 (2H, dd, J 8.0, 1.6 Hz, ArH), 8.41 (1H, br s, ArH). ¹³C NMR (500 MHz, CDCl₃): δ 98.1, 102.4, 102.6, 107.8, 119.1, 123.6, 128.6, 129.9, 132.9, 146.5, 153.1, 153.6, 161.5, 177.2. **LCMS** (ES+) m/z = 455.1 ([M+H]⁺, $t_r = 1.67$ min). **HRMS** (ESI+) $m/z = 455.0787 [M+H]^{+}$ found, $C_{26}H_{15}O_{8}^{+}$ required 455.0767.

2,2'-(1,4-Phenylene)bis(7-methoxy-4H-chromen-4-one) (46) A mixture of bichalcone 41 (205 mg, 0.476 mmol) and I₂ (93.2 mg, 0.367 mmol) in DMSO (10 mL) was reacted according to GP-B. The crude residue was purified by flash column chromatography (SiO₂, 1-5% MeOH/CH₂Cl₂) to afford biflavone **46** (136 mg, 67%) as a pale yellow powdery solid. **m.p.** >300 °C. **TLC** R_f = 0.32 (5% MeOH/CH₂Cl₂). **IR** v_{max} (neat)/cm⁻¹: 3066w (C-H str), 2844w (C-H str), 1622s (C=O str), 1588s (C=C str), 1502w (C=C str), 1438s, 1421m, 1376m, 1354s, 1301w, 1286m, 1257s, 1238s, 1203m, 1166m, 1129m, 1092m, 1047w, 1019m. ¹H NMR (500 MHz, CDCl₃): δ 3.97 (6H, s, 2 × -OCH₃), 6.85 (2H, s, 2 × -C=CH), 7.00-7.03 (4H, m, ArH), 8.06 (4H, s, ArH), 8.15 (2H, d, J 8.5 Hz, ArH). 13 C NMR (500 MHz, CDCl₃): δ 55.9, 100.5, 108.4, 114.7, 117.8, 126.6, 127.1, 134.4, 158.0, 161.5, 164.4, 177.6. LCMS (ES+) m/z = 427.1 ([M+H]⁺, t_r = 1.69 min). **HRMS** (ESI+) m/z = 449.0980 [M+Na]⁺ found, C₂₆H₁₈O₆Na⁺ required 449.0996.

2,2'-(1,4-Phenylene)bis(6-methoxy-4H-chromen-4-one) (47) A mixture of bichalcone **42** (214 mg, 0.498 mmol) and I_2 (70.5 mg, 0.278 mmol) in DMSO (10 mL) was reacted according to GP-B. The crude residue was purified by flash column chromatography (SiO₂, 1-5% MeOH/CH₂Cl₂) to afford biflavone **47** (55.7 mg, 26%) as a pale yellow-white powdery solid. **m.p.** >300 °C. **TLC** R_f = 0.38 (5% MeOH/CH₂Cl₂). **IR** v_{max} (neat)/cm⁻¹: 2921w (C-H str), 1737w, 1647s (C=O str), 1615s, 1580m (C=C str), 1510w (C=C str), 1484s, 1459m, 1426m, 1413w, 1359s, 1352s, 1294m, 1258w, 1201s,

Journal Name

DOI: 10.1039/C7OB00804J

ARTICLE

1125m, 1074s, 1048m, 1020s, 1010m. ¹H NMR (500 MHz, CDCl₃): δ 3.94 (6H, s, 2 × -OCH₃), 6.92 (2H, s, 2 × -C=CH), 7.34 (2H, dd, J 9.6, 2.4 Hz, ArH), 7.56 (2H, d, J 9.6 Hz, ArH), 7.63 (2H, d, J 2.4 Hz, ArH), 8.10 (4H, s, ArH). ¹³C NMR (500 MHz, CDCl₃): δ 56.0, 104.9, 107.7, 119.6, 124.2, 124.6, 126.8, 134.5, 151.1, 157.2, 161.7, 178.1. **LCMS** (ES+) $m/z = 427.2 ([M+H]^+, t_r = 1.91)$ min). These characterisation data are in accordance with that previously reported in the literature. 46

2,2'-(1,4-Phenylene)bis(5-methoxy-4H-chromen-4-one) (48) A mixture of bichalcone 43 (227 mg, 0.526 mmol) and I₂ (88.0 mg, 0.347 mmol) in DMSO (10 mL) was reacted according to GP-B. The crude residue was purified by flash column chromatography (SiO₂, 1-5% MeOH/CH₂Cl₂) to afford biflavone 48 (151 mg, 22%) as a pale yellow-white powdery solid. **m.p.** >300 °C. **TLC** R_f = 0.50 $(10\% \text{ MeOH/CH}_2\text{Cl}_2)$. **IR** v_{max} (neat)/cm⁻¹: 2935w (C-H str), 2842w (C-H str), 1739w, 1633s (C=O str), 1599s (C=C str), 1513w (C=C str), 1476s, 1437m, 1417s, 1374s, 1327m, 1286m, 1268s, 1092s, 1070m, 1030s, 1011w. ¹H NMR (500 MHz, CDCl₂): δ 4.03 (6H, s, $2 \times -OCH_3$), 6.83 (2H, s, $2 \times -C=CH$), 6.87 (2H, d, J 8.5 Hz, ArH), 7.18 (2H, d, J 8.5 Hz, ArH), 7.62 (2H, t, J 8.5 Hz, ArH), 8.05 (4H, s, ArH). ¹³C NMR (500 MHz, CDCl₃): δ 56.5, 106.7, 110.0, 110.1, 114.7, 126.6, 134.0, 158.2, 159.7, 159.8, 178.1. **LCMS** (ES+) *m/z* = 427.2 ([M+H]⁺, t_r = 1.53 min). **HRMS** (ESI+) m/z = 427.1166 $[M+H]^{+}$ found, $C_{26}H_{19}O_{6}^{+}$ required 427.1176.

Published on 12 May 2017. Downloaded by Cornell University Library on 13/05/2017 03:56:02.

2,2'-(1,4-Phenylene)bis(5,7-dimethoxy-4H-chromen-4-one) (49) A mixture of bichalcone 44 (212 mg, 0.432 mmol) and I₂ (77.4 mg, 0.305 mmol) in DMSO (10 mL) was reacted according to GP-B. The crude residue was purified by flash column chromatography (SiO2, 1-5% MeOH/CH2Cl2) to afford biflavone 49 (107 mg, 51%) as a pale yellow-white powdery solid. m.p. >300 °C. **TLC** $R_f = 0.44$ (10% MeOH/CH₂Cl₂). **IR** v_{max} (neat)/cm⁻¹: 2981w (C-H str), 2844w (C-H str), 1633s (C=O str), 1588s (C=C str), 1566s (C=C str), 1491m, 1462m, 1418s, 1346s, 1292m, 1264w, 1216m, 1202s, 1162s, 1117s, 1107s, 1058m, 1029w. ¹H **NMR** (500 MHz, CDCl₃): δ 3.95 (6H, s, 2 × -OCH₃), 3.99 (6H, s, 2 × -OCH₃), 6.42 (2H, d, J 2.0 Hz, ArH), 6.62 (2H, d, J 2.0 Hz, ArH), 6.77 (2H, s, $2 \times -C=CH$), 8.02 (4H, s, ArH). ¹³C NMR (500 MHz, $CDCl_3$): δ 55.8, 56.5, 92.9, 96.4, 109.4, 109.9, 126.4, 134.0, 159.3, 159.9, 161.0, 164.3, 177.4. **LCMS** (ES+) $m/z = 487.1 ([M+H]^{+}, t_r =$ 1.53 min). **HRMS** (ESI+) $m/z = 487.1376 [M+H]^{+}$ found, $C_{28}H_{23}O_{8}^{+}$ required 487.1387.

2,2'-(1,4-Phenylene)bis(6-bromo-4H-chromen-4-one) (50) A mixture of bichalcone 45 (221 mg, 0.418 mmol) and I_2 (97.9 mg, 0.386 mmol) in DMSO (10 mL) was reacted according to GP-B. The crude residue was purified by flash column chromatography (SiO₂, 1-5% MeOH/CH₂Cl₂) to afford biflavone **50** (191 mg, 87%) as a pale yellow-white powdery solid. **m.p.** >300 °C. **TLC** R_f = 0.40 (3% MeOH/CH₂Cl₂). **IR** v_{max} (neat)/cm⁻¹: 3039w (C-H str), 2922w (C-H str), 1738w, 1629s (C=O str), 1600s, 1564m (C=C str), 1515m (C=C str), 1461m, 1438s, 1355m, 1328w, 1295w, 1252m, 1213w, 1133m, 1094w, 1042s, 1014w. ¹H NMR (500 MHz, CDCl₃): δ 6.94 (2H, s, 2 × -C=CH), 7.53 (2H, d, J 8.8 Hz, ArH), 7.84 (2H, dd, J 8.8, 2.4 Hz, ArH), 8.10 (4H, s, ArH), 8.40 (2H, d, J 2.0 Hz, ArH). ¹³C NMR (500 MHz, CDCl₃): δ 108.6, 119.0, 120.1, 125.3,

126.9, 128.5, 134.4, 137.1, 155.0, 162.0, 176.8. LCMS (ES+) m/z = 524.9 ($[M+H]^+$, t_r = 2.17 min). These characterisation data are in accordance with that previously reported in the literature. 46

2,2'-([1,1'-Biphenyl]-4,4'-diyl)bis(7-methoxy-4H-chromen-4one) (61) A mixture of bichalcone 56 (215 mg, 0.423 mmol) and I₂ (46.8 mg, 0.184 mmol) in DMSO (10 mL) was reacted according to GP-B. The crude residue was purified by flash column chromatography (SiO2, 1-5% MeOH/CH2Cl2) to afford biflavone 61 (147 mg, 69%) as a pale yellow-green powdery solid. **m.p.** >300 °C. **TLC** R_f = 0.28 (5% MeOH/CH₂Cl₂). **IR** v_{max} (neat)/cm⁻¹: 2922w (C-H str), 2849w (C-H str), 1625s (C=O str), 1607s, 1570s (C=C str), 1499m, 1439s, 1405m, 1377s, 1358m, 1319w, 1275m, 1252m, 1199m, 1163s, 1134m, 1091s, 1016m, 1004m. ¹H NMR (500 MHz, CDCl₃): δ 3.97 (6H, s, 2 × -OCH₃), 6.85 $(2H, s, 2 \times -C=CH)$, 7.02-7.04 (4H, m, ArH), 7.83 (4H, d, J, 8.5 Hz, L)ArH), 8.05 (4H, d, J 8.5 Hz, ArH), 8.17 (2H, d, J 9.0 Hz, ArH). 13C **NMR** (500 MHz, CDCl₃): δ 55.9, 100.5, 107.7, 114.5, 117.9, 126.8, 127.1, 127.7, 131.5, 142.7, 158.0, 162.4, 164.3, 177.8. LCMS (ES+) m/z = 503.2 ([M+H]⁺, $t_r = 1.80$ min). **HRMS** (ESI+) m/z =503.1506 [M+H]⁺ found, C₃₂H₂₃O₆⁺ required 503.1489.

2,2'-([1,1'-Biphenyl]-4,4'-diyl)bis(6-methoxy-4H-chromen-4one) (62) A mixture of bichalcone 57 (231 mg, 0.455 mmol) and I₂ (91.4 mg, 0.360 mmol) in DMSO (10 mL) was reacted according to GP-B. The crude residue was purified by flash column chromatography (SiO2, 1-5% MeOH/CH2Cl2) to afford biflavone 62 (134 mg, 59%) as a pale yellow-white powdery solid. **m.p.** >300 °C. **TLC** R_f = 0.39 (5% MeOH/CH₂Cl₂). **IR** ν_{max} (neat)/cm⁻¹: 3066w (C-H str), 2937w (C-H str), 1736w, 1635s (C=O str), 1615s, 1576s (C=C str), 1483s, 1452w, 1434m, 1405m, 1361s, 1320m, 1287m, 1252m, 1205m, 1127m, 1079s, 1049m, 1014m, 1002w. ¹H NMR (500 MHz, CDCl₃): δ 3.94 (6H, s, 2 × -OCH₃), 6.90 (2H, s, 2 × -C=CH), 7.33 (2H, d, J 8.8 Hz, ArH), 7.56 (2H, d, J 9.2 Hz, ArH), 7.63 (2H, s, ArH), 7.83 (4H, d, J 8.0 Hz, ArH), 8.06 (4H, d, J 8.0 Hz, ArH). ¹³C NMR (500 MHz, CDCl₃): δ 56.0, 104.9, 107.0, 119.5, 123.9, 124.6, 126.9, 127.7, 131.5, 142.7, 151.1, 157.1, 162.6, 178.3. **LCMS** (ES+) m/z = 503.2 $([M+H]^{+}, t_{r} = 1.94 \text{ min}). \text{ HRMS (ESI+) } m/z = 503.1470 [M+H]^{+}$ found, $C_{32}H_{23}O_6^+$ required 503.1489.

2,2'-([1,1'-Biphenyl]-4,4'-diyl)bis(5-methoxy-4H-chromen-4one) (63) A mixture of bichalcone 58 (206 mg, 0.407 mmol) and I₂ (12.8 mg, 0.0504 mmol) in DMSO (10 mL) was reacted according to GP-B. The crude residue was purified by flash column chromatography (SiO2, 1-5% MeOH/CH2Cl2) to afford biflavone 63 (162 mg, 79%) as a pale yellow powdery solid. m.p. >300 °C. **TLC** $R_f = 0.50$ (10% MeOH/CH₂Cl₂). **IR** v_{max} (neat)/cm⁻¹: 3020w (C-H str), 2843w (C-H str), 1631s (C=O str), 1601s, 1573m (C=C str), 1498w, 1476s, 1459m, 1438m, 1405m, 1377s, 1330w, 1309s, 1269s, 1094s, 1071m, 1036m, 1018m, 1000w. ¹H NMR (500 MHz, CDCl₃): δ 4.03 (6H, s, 2 × -OCH₃), 6.81 (2H, s, 2 × -C=CH), 6.86 (2H, d, J 8.0 Hz, ArH), 7.18 (2H, dd, J 8.5, 1.0 Hz, ArH), 7.61 (2H, t, J 8.5 Hz, ArH), 7.80 (4H, d, J 8.5 Hz, ArH), 8.02 (4H, d, J 8.5 Hz, ArH). ¹³C NMR (500 MHz, CDCl₃): δ 56.5, 106.5, 109.2, 110.2, 114.6, 126.7, 127.6, 131.1, 133.8, 142.6, 158.3, 159.8, 160.5, 178.3. **LCMS** (ES+) m/z = 503.2 ([M+H]⁺, $t_r = 1.64$

Journal Name ARTICLE

min). **HRMS** (ESI+) $m/z = 503.1485 \text{ [M+H]}^+ \text{ found, } C_{32}H_{23}O_6^+ \text{ required } 503.1489.$

2,2'-([1,1'-Biphenyl]-4,4'-diyl)bis(5,7-dimethoxy-4H-chromen-4one) (64) A mixture of bichalcone 59 (201 mg, 0.355 mmol) and I_2 (57.0 mg, 0.225 mmol) in DMSO (10 mL) was reacted according to GP-B. The crude residue was purified by flash column chromatography (SiO2, 1-5% MeOH/CH2Cl2) to afford biflavone 64 (138 mg, 69%) as a pale yellow-white powdery solid. **m.p.** >300 °C. **TLC** $R_f = 0.46$ (10% MeOH/CH₂Cl₂). **IR** v_{max} (neat)/cm⁻¹: 2915w (C-H str), 2837w (C-H str), 1635s (C=O str), 1603s, 1571s (C=C str), 1491m, 1458m, 1420w, 1404w, 1348s, 1315s, 1271m, 1215s, 1202m, 1159s, 1116s, 1056s, 1034w, 1002w. ¹H NMR (500 MHz, CDCl₃): δ 3.95 (6H, s, 2 × -OCH₃), 3.99 $(6H, s, 2 \times -OCH_3)$, 6.42 (2H, s, ArH), 6.62 (2H, s, ArH), 6.76 (2H, s, ArH) $2 \times -C = CH$), 7.80 (4H, d, J 8.0 Hz, ArH), 8.00 (4H, d, J 8.0 Hz, ArH). ¹³C NMR (500 MHz, CDCl₃): δ 55.8, 56.5, 92.9, 96.2, 109.2, 109.4, 126.6, 127.6, 131.1, 142.5, 159.9, 160.1, 161.0, 164.1, 177.5. **LCMS** (ES+) m/z = 563.2 ([M+H]⁺, $t_r = 1.85$ min). **HRMS** (ESI+) m/z= $563.1691 [M+H]^{+}$ found, $C_{34}H_{27}O_{8}^{+}$ required 563.1700.

2,2'-([1,1'-Biphenyl]-4,4'-diyl)bis(6-bromo-4*H*-chromen-4-one)

(65) A mixture of bichalcone 60 (203 mg, 0.335 mmol) and I_2 (55.2 mg, 0.217 mmol) in DMSO (10 mL) was reacted according to GP-B. The crude residue was purified by flash column chromatography (SiO2, 1-5% MeOH/CH2Cl2) to afford biflavone 65 (92.0 mg, 46%) as a pale yellow-green powdery solid. m.p. >300 °C. **TLC** $R_f = 0.39$ (5% MeOH/CH₂Cl₂). **IR** v_{max} (neat)/cm⁻¹: 2955w (C-H str), 2868w (C-H str), 1731w, 1636s (C=O str), 1607s, 1567s (C=C str), 1549m (C=C str), 1496m, 1461s, 1430s, 1350s, 1316s, 1277w, 1232w, 1156m, 1137w, 1040w, 1002w. ¹H NMR (500 MHz, CDCl₃): δ 6.92 (2H, s, 2 × -C=CH), 7.53 (2H, d, J 8.8 Hz, ArH), 7.81-7.85 (6H, m, ArH), 8.06 (4H, d, J 8.0 Hz, ArH), 8.40 (2H, d, J 2.4 Hz, ArH). ¹³C NMR (500 MHz, CDCl₃): δ 107.8, 118.8, 120.0, 125.4, 127.0, 127.8, 128.5, 131.1, 136.9, 143.0, 155.0, 163.0, 177.0. **LCMS** (ES+) m/z = 601.0 ([M+H]⁺, $t_c = 2.22$ min). **HRMS** (ESI+) $m/z = 598.9488 \text{ [M+H]}^{+} \text{ found, } C_{30}H_{17}Br_2O_4^{-1}$ required 598.9494.

2,2',2"-(Benzene-1,3,5-triyl)tris(7-methoxy-4H-chromen-4-one)

(73) A mixture of trichalcone 72 (205 mg, 0.338 mmol) and l₂ (88.4 mg, 0.348 mmol) in DMSO (10 mL) was reacted according to GP-B. The crude residue was purified by flash column chromatography (SiO₂, 1-10% MeOH/CHCl₃) to afford triflavone 73 (57.6 mg, 28%) as a pale yellow powdery solid. m.p. >300 °C. **TLC** $R_f = 0.38$ (3% MeOH/CH₂Cl₂). **IR** v_{max} (neat)/cm⁻¹: 3076w (C-H str), 2932w (C-H str), 2842w (C-H str), 1739w, 1625s (C=O str), 1603s, 1503m (C=C str), 1436s, 1371s, 1354s, 1275m, 1262m, 1236m, 1199m, 1160s, 1129m, 1087s, 1020m. ¹H NMR (500 MHz, CDCl₃): δ 4.05 (9H, s, 3 × -OCH₃), 7.06-7.09 (6H, m, 3 × -C=CH and ArH), 7.14 (3H, d, J 2.4 Hz, ArH), 8.19 (3H, d, J 8.8 Hz, ArH), 8.60 (3H, s, ArH). 13 C NMR (500 MHz, CDCl₃): δ 56.2, 100.2, 108.8, 115.6, 117.7, 125.7, 127.1, 133.9, 158.1, 160.5, 164.8, 177.6. **LCMS** (ES+) m/z = 601.1 ([M+H]⁺, $t_r = 2.00$ min). **HRMS** (ESI+) $m/z = 601.1477 [M+H]^{+}$ found, $C_{36}H_{25}O_{9}^{+}$ required 601.1493.

Synthesis of biaurones and triaurone (2Z,2'Z)-2,2'-(1,3-Phenylenebis(methanylylidene))bis(6-

methoxybenzofuran-3(2H)-one) (34) A mixture of bichalcone 20 (102 mg, 0.237 mmol) and Hg(OAc)₂ (151 mg, 0.474 mmol) in pyridine (10 mL) was reacted according to GP-C. The crude residue was purified by flash column chromatography (SiO₂, 1% MeOH/CH₂Cl₂) to afford biaurone 34 (27.0 mg, 27%) as a pale yellow-white powdery solid. m.p. 228-230 °C. TLC $R_f = 0.25$ (1% MeOH/CH₂Cl₂). IR v_{max} (neat)/cm⁻¹: 2919w (C-H str), 2842w (C-H str), 1700m (C=O str), 1651m (C=C str), 1591s (C=C str), 1498m, 1440s, 1339m, 1324m, 1265s, 1193m, 1150s, 1124s, 1112s, 1093s, 1018m. ¹H NMR (500 MHz, CDCl₃): δ 3.98 (6H, s, 2 × -OCH₃), 6.80 (2H, dd, J 8.4, 2.0 Hz, ArH), 6.87 (2H, d, J 2.0 Hz, ArH), 6.89 (2H, s, 2 × -C=CH), 7.55 (1H, t, J 7.6 Hz, ArH), 7.75 (2H, d, J 8.8 Hz, ArH), 7.94 (2H, dd, J 8.0, 1.6 Hz, ArH), 8.45 (1H, br s, ArH). ¹³C NMR (500 MHz, CDCl₃): δ 56.1, 96.7, 111.1, 112.4, 114.7, 126.0, 129.4, 132.0, 133.1, 134.0, 148.2, 167.7, 168.7, 183.0. **LCMS** (ES+) m/z = 427.1 ([M+H]⁺, $t_r = 1.89$ min). **HRMS** (ESI+) $m/z = 427.1183 [M+H]^{+}$ found, $C_{26}H_{19}O_{6}^{+}$ required 427.1176.

(2Z,2'Z)-2,2'-(1,3-Phenylenebis(methanylylidene))bis(5-

methoxybenzofuran-3(2H)-one) (35) A mixture of bichalcone 21 (202 mg, 0.470 mmol) and Hg(OAc)₂ (303 mg, 0.949 mmol) in pyridine (10 mL) was reacted according to GP-C. The crude residue was purified by recrystallization from CHCl3 to afford biaurone 35 (117 mg, 58%) as a bright yellow powdery solid. m.p. 278-280 °C. TLC $R_f = 0.34$ (0.5% MeOH/CH₂Cl₂). IR v_{max} (neat)/cm⁻¹: 3076w (C-H str), 2837w (C-H str), 1706s (C=O str), 1648s (C=C str), 1600s (C=C str), 1489s, 1434m, 1318m, 1297m, 1276s, 1253w, 1196s, 1182m, 1172m, 1115s, 1020s. ¹H NMR (500 MHz, CDCl₃): δ 3.87 (6H, s, 2 × -OCH₃), 6.94 (2H, s, 2 × -C=CH), 7.26-7.31 (6H, m, ArH, overlain by CDCl₃), 7.57 (1H, t, J 7.6 Hz, ArH), 7.97 (2H, d, J 7.6 Hz, ArH), 8.43 (1H, br s, ArH). 13C **NMR** (500 MHz, CDCl₃): δ 56.0, 105.4, 112.2, 113.8, 121.7, 126.5, 129.5, 132.5, 133.1, 134.3, 148.1, 156.2, 161.4, 185.0. **LCMS** (ES+) m/z = 427.2 ([M+H]⁺, $t_r = 2.01$ min). **HRMS** (ESI+) m/z = $427.1162 [M+H]^{+}$ found, $C_{26}H_{19}O_{6}^{+}$ required 427.1176.

(2Z,2'Z)-2,2'-(1,3-Phenylenebis(methanylylidene))bis(4-

methoxybenzofuran-3(2H)-one) (36) A mixture of bichalcone 22 (207 mg, 0.480 mmol) and Hg(OAc)₂ (319 mg, 0.999 mmol) in pyridine (10 mL) was reacted according to GP-C. The crude residue was purified by flash column chromatography (SiO2, 0.5% MeOH/CH₂Cl₂) to afford biaurone **36** (172 mg, 84%) as a bright yellow powdery solid. m.p. 248-250 °C. TLC R_f = 0.45 (2% MeOH/CH₂Cl₂). **IR** v_{max} (neat)/cm⁻¹: 2938w (C-H str), 2840w (C-H str), 1702s (C=O str), 1643s (C=C str), 1594s (C=C str), 1491s, 1422m, 1348m, 1324m, 1284m, 1250s, 1213w, 1158w, 1136w, 1076s, 1061s. ¹**H NMR** (500 MHz, CDCl₃): δ 4.03 (6H, s, 2 × - OCH_3), 6.66 (2H, d, J 8.4 Hz, ArH), 6.89 (2H, s, 2 × -C=CH), 6.95 (2H, d, J 8.0 Hz, ArH), 7.53 (1H, t, J 8.0 Hz, ArH), 7.62 (2H, d, J 8.0 Hz, ArH), 7.92 (2H, dd, J 8.0, 1.6 Hz, ArH), 8.42 (1H, br s, ArH). 13C **NMR** (500 MHz, CDCl₃): δ 56.3, 104.8, 105.3, 110.8, 111.1, 129.3, 132.1, 133.1, 133.9, 138.6, 147.2, 158.6, 167.1, 182.4. LCMS (ES+) m/z = 427.1 ([M+H]⁺, $t_c = 1.80$ min). **HRMS** (ESI+) m/z =427.1164 [M+H]⁺ found, C₂₆H₁₉O₆⁺ required 427.1176.

ARTICLE

Journal Name

DOI: 10.1039/C7OB00804J

(2Z,2'Z)-2,2'-(1,3-Phenylenebis(methanylylidene))bis(5,6-

dimethoxybenzofuran-3(2H)-one) (37) A mixture of bichalcone 23 (95.6 mg, 0.195 mmol) and Hg(OAc)₂ (142 mg, 0.446 mmol) in pyridine (10 mL) was reacted according to GP-C. The crude residue was purified by flash column chromatography (SiO2, 0.5% MeOH/CH₂Cl₂) to afford biaurone 37 (42.0 mg, 44%) as a bright yellow powdery solid. m.p. >300 °C. TLC R_f = 0.40 (3% MeOH/CH₂Cl₂). IR v_{max} (neat)/cm⁻¹: 2937w (C-H str), 2835w (C-H str), 1687m (C=O str), 1647m (C=C str), 1605s (C=C str), 1496s, 1477s, 1437s, 1328m, 1278s, 1240m, 1221s, 1192s, 1130s, 1103s, 1027w, 1001m. ¹H NMR (500 MHz, CDCl₃): δ 3.93 (6H, s, 2 × -OCH₃), 4.06 (6H, s, 2 × -OCH₃), 6.89 (2H, s, 2 × -C=CH), 6.90 (2H, s, ArH), 7.20 (2H, s, ArH), 7.53 (1H, t, J 7.6 Hz, ArH), 7.95 (2H, dd, J 7.6, 1.2 Hz, ArH), 8.36 (1H, br s, ArH). ¹³C NMR (500 MHz, CDCl₃): δ 56.4, 56.8, 95.7, 104.1, 111.2, 112.9, 129.4, 131.9, 133.1, 134.3, 146.7, 148.3, 157.9, 163.6, 183.5. LCMS (ES+) m/z = 487.3 ([M+H]⁺, $t_c = 1.79$ min). **HRMS** (ESI+) m/z =487.1371 [M+H]⁺ found, C₂₈H₂₃O₈⁺ required 487.1387.

(2Z,2'Z)-2,2'-(1,3-Phenylenebis(methanylylidene))bis(4,6-

Published on 12 May 2017. Downloaded by Cornell University Library on 13/05/2017 03:56:02.

dimethoxybenzofuran-3(2H)-one) (38) A mixture of bichalcone 24 (105 mg, 0.213 mmol) and Hg(OAc)₂ (134 mg, 0.421 mmol) in pyridine (10 mL) was reacted according to GP-C. The crude residue was purified by flash column chromatography (SiO2, 1% MeOH/CH₂Cl₂) to afford biaurone 38 (62.1 mg, 60%) as a pale yellow-white powdery solid. m.p. 296-298 °C. TLC R_f = 0.45 (5% MeOH/CH₂Cl₂). IR v_{max} (neat)/cm⁻¹: 2938w (C-H str), 2842w (C-H str), 1697m (C=O str), 1650w (C=C str), 1588s (C=C str), 1503m (C=C str), 1468m, 1423m, 1363w, 1346m, 1241m, 1215s, 1154s, 1087s, 1037w. ¹H NMR (500 MHz, CDCl₃): δ 3.96 (6H, s, 2 × -OCH₃), 3.98 (6H, s, 2 × -OCH₃), 6.17 (2H, d, J 1.6 Hz, ArH), 6.49 (2H, d, J 1.6 Hz, ArH), 6.83 (2H, s, 2 × -C=CH), 7.50 (1H, t, J 8.0 Hz, ArH), 7.88 (2H, dd, J 7.6, 1.2 Hz, ArH), 8.39 (1H, br s, ArH). 13C **NMR** (500 MHz, CDCl₃): δ 56.2, 56.3, 89.4, 94.2, 105.2, 110.1, 129.2, 131.6, 133.2, 133.7, 148.2, 159.5, 169.2, 180.7. LCMS (ES+) m/z = 487.1 ([M+H]⁺, $t_r = 1.75$ min). These characterisation data are in accordance with that previously reported in the literature.49

(2Z,2'Z)-2,2'-(1,3-Phenylenebis(methanylylidene))bis(5-

bromobenzofuran-3(2H)-one) (39) A mixture of bichalcone 25 (203 mg, 0.384 mmol) and Hg(OAc)₂ (265 mg, 0.832 mmol) in pyridine (10 mL) was reacted according to GP-C. The crude residue was purified by recrystallization from CHCl3 to afford biaurone 39 (173 mg, 86%) as a pale yellow-brown powdery solid. **m.p.** >300 °C. **TLC** $R_f = 0.27$ (CH₂Cl₂). **IR** v_{max} (neat)/cm⁻¹: 3066w (C-H str), 1713s (C=O str), 1649s, 1602s (C=C str), 1596s (C=C str), 1456s, 1424m, 1336w, 1291m, 1259s, 1193m, 1180s, 1171s, 1134m, 1116s, 1052w. 1 H NMR (500 MHz, CDCl₃): δ 6.98 $(2H, s, 2 \times -C=CH)$, 7.31 (2H, d, J 8.8 Hz, ArH), 7.59 (1H, t, J 8.0 Hz, ArH)ArH), 7.81 (2H, dd, J 8.8, 2.0 Hz, ArH), 7.97 (2H, d, J 2.0 Hz, ArH), 8.00 (2H, dd, J 8.0, 1.2 Hz, ArH), 8.40 (1H, br s, ArH). 13C NMR (500 MHz, CDCl₃): δ 113.1, 114.7, 116.6, 123.2, 127.5, 129.6, 132.8, 132.9, 134.6, 139.7, 147.2, 164.8, 183.3. LCMS (ES+) m/z = 525.1 ([M+H]⁺, t_c = 2.30 min). **HRMS** (ESI+) m/z = 522.9162 [M+H]⁺ found, C₂₄H₁₃O₄Br₂⁺ required 522.9181.

(6Z,6'Z)-6,6'-(1,3-

Phenylenebis(methanylylidene))bis([1,3]dioxolo[4,5-

f]benzofuran-7(6H)-one) (40) A mixture of bichalcone 26 (105 mg, 0.229 mmol) and Hg(OAc)₂ (150 mg, 0.470 mmol) in pyridine (10 mL) was reacted according to GP-C. The crude residue was purified by flash column chromatography (SiO2, 0.5% MeOH/CH2Cl2) and recrystallized from CHCl3 to afford biaurone 40 (10.2 mg, 10%) as a bright yellow powdery solid. m.p. >300 °C. **TLC** $R_f = 0.38$ (1% MeOH/CH₂Cl₂). **IR** v_{max} (neat)/cm⁻¹: 3051w (C-H str), 2917w (C-H str), 1702m (C=O str), 1652m, 1615s (C=C str), 1488m, 1460s, 1325w, 1300m, 1280m, 1228w, 1189w, 1178m, 1115s, 1034m. ¹H NMR (500 MHz, DMSO-d₆): δ 6.23 (4H, s, 2 × -OC H_2 O-), 6.87 (2H, s, 2 × -C=CH), 7.21 (2H, s, ArH), 7.25 (2H, s, ArH), 7.63 (1H, t, J 8.0 Hz, ArH), 8.04 (2H, dd, J 8.0, 1.6 Hz, ArH), 8.39 (1H, br s, ArH). ¹³C NMR (500 MHz, DMSO-d₆): δ 94.9, 101.2, 103.3, 110.5, 113.7, 129.7, 132.1, 132.7, 145.3, 147.9, 156.2, 156.3, 164.4, 181.9. **LCMS** (ES+) m/z = 455.1 $([M+H]^{+}, t_{r} = 2.02 \text{ min}). \text{ HRMS (ESI+) } m/z = 455.0763 [M+H]^{+}$ found, C₂₆H₁₅O₈⁺ required 455.0761.

(2Z,2'Z)-2,2'-(1,4-Phenylenebis(methanylylidene))bis(6-

methoxybenzofuran-3(2H)-one) (51) A mixture of bichalcone 41 (49.4 mg, 0.115 mmol) and Hg(OAc)₂ (84.4 mg, 0.265 mmol) in pyridine (10 mL) was reacted according to GP-C. The crude residue was purified by flash column chromatography (SiO2, 1% MeOH/CH₂Cl₂) to afford biaurone 51 (47.0 mg, 95%) as a bright yellow-orange powdery solid. **m.p.** 288-290 °C. **TLC** R_f = 0.55 (1% MeOH/CH₂Cl₂). IR v_{max} (neat)/cm⁻¹: 2941w (C-H str), 2848w (C-H str), 1693m (C=O str), 1642m (C=C str), 1605s (C=C str), 1585s (C=C str), 1498m, 1440m, 1350m, 1323w, 1296w, 1267s, 1192m, 1116s, 1093s, 1015m. ¹H NMR (500 MHz, CDCl₃): δ 3.95 (6H, s, 2 \times -OCH₃), 6.76-6.79 (4H, m, ArH), 6.81 (2H, s, 2 \times -C=CH), 7.72 (2H, d, J 8.4 Hz, ArH), 7.95 (4H, s, ArH). 13C NMR (500 MHz, $CDCl_3$): δ 56.1, 96.7, 110.9, 112.2, 114.7, 125.9, 131.6, 133.5, 148.4, 167.6, 168.5, 182.8. **LCMS** (ES+) $m/z = 427.0 ([M+H]^{+}, t_r =$ 5.25 min). **HRMS** (ESI+) $m/z = 427.1178 [M+H]^+$ found, $C_{26}H_{19}O_6^{-1}$ required 427.1176.

(2Z,2'Z)-2,2'-(1,4-Phenylenebis(methanylylidene))bis(5-

methoxybenzofuran-3(2H)-one) (52) A mixture of bichalcone 42 (106 mg, 0.245 mmol) and Hg(OAc)₂ (153 mg, 0.481 mmol) in pyridine (10 mL) was reacted according to GP-C. The crude residue was purified by flash column chromatography (SiO2, 1% MeOH/CH2Cl2) and recrystallized from MeOH to afford biaurone 52 (79.0 mg, 76%) as a bright orange powdery solid. m.p. >300 °C. **TLC** $R_f = 0.47$ (1% MeOH/CH₂Cl₂). **IR** v_{max} (neat)/cm⁻¹: 3072w (C-H str), 2950w (C-H str), 1704s (C=O str), 1647s, 1620w (C=C str), 1599s (C=C str), 1489s, 1435m, 1421m, 1322m, 1281m, 1190m, 1164m, 1129m, 1110s, 1098s, 1023s. ¹H NMR (500 MHz, CDCl₃): δ 3.87 (6H, s, 2 × -OCH₃), 6.90 (2H, s, 2 × -C=CH), 7.25 (2H, t, J 2.0 Hz, ArH), 7.29 (4H, t, J 1.2 Hz, ArH), 8.01 (4H, s, ArH). ¹³C NMR (500 MHz, CDCl₃): δ 56.0, 105.4, 112.0, 113.8, 126.4, 131.8, 146.1, 147.3, 148.3, 156.2, 161.2, 184.9. LCMS (ES+) m/z = 427.1 ([M+H]⁺, t_r = 1.96 min). **HRMS** (ESI+) m/z = 426.1111 $[M+H]^{+}$ found, $C_{26}H_{19}O_{6}^{+}$ required 426.1098.

Journal Name ARTICLE

(2Z,2'Z)-2,2'-(1,4-Phenylenebis(methanylylidene))bis(4-

methoxybenzofuran-3(2H)-one) (53) A mixture of bichalcone 43 (202 mg, 0.470 mmol) and Hg(OAc)₂ (309 mg, 0.969 mmol) in pyridine (10 mL) was reacted according to GP-C. The crude residue was purified by recrystallization from CHCl₃ to afford biaurone 53 (199 mg, 99%) as a bright yellow-orange powdery solid. **m.p.** >300 °C. **TLC** R_f = 0.21 (1% MeOH/CH₂Cl₂). **IR** v_{max} (neat)/cm⁻¹: 2968w (C-H str), 2840w (C-H str), 1698s (C=O str), 1652s, 1594s (C=C str), 1509w (C=C str), 1495s (C=C str), 1458w, 1355w, 1300w, 1280w, 1251s, 1165m, 1073s. ¹H NMR (500 MHz, CDCl₃): δ 4.03 (6H, s, 2 × -OCH₃), 6.66 (2H, d, J 8.4 Hz, ArH), 6.86 (2H, s, 2 × -C=CH), 6.92 (2H, d, J 8.0 Hz, ArH), 7.61 (2H, t, J 8.0 Hz, ArH), 7.99 (4H, s, ArH). ^{13}C NMR (500 MHz, CDCl $_3$): δ 56.3, 104.8, 105.4, 110.8, 111.0, 131.6, 133.6, 138.6, 147.5, 158.6, 167.0, 182.3. **LCMS** (ES+) m/z = 427.1 ([M+H]⁺, $t_r = 1.83$ min). **HRMS** (ESI+) $m/z = 427.1165 [M+H]^+$ found, $C_{26}H_{19}O_6^{-1}$ required 427.1176.

(2Z,2'Z)-2,2'-(1,4-Phenylenebis(methanylylidene))bis(4,6-

dimethoxybenzofuran-3(2H)-one) (54) A mixture of bichalcone 44 (204 mg, 0.415 mmol) and Hg(OAc)₂ (283 mg, 0.888 mmol) in pyridine (10 mL) was reacted according to GP-C. The crude residue was purified by recrystallization from CHCl₃ to afford biaurone 54 (181 mg, 90%) as a bright yellow powdery solid. **m.p.** >300 °C. **TLC** $R_f = 0.30$ (3% MeOH/CH₂Cl₂). **IR** v_{max} (neat)/cm⁻¹ 1: 2999w (C-H str), 2843w (C-H str), 1694m (C=O str), 1647w, 1609s (C=C str), 1590s (C=C str), 1502w (C=C str), 1466w, 1428w, 1362m, 1327w, 1248m, 1211s, 1153s, 1085s, 1038w. ¹H NMR (500 MHz, CDCl₃): δ 3.95 (6H, s, 2 × -OCH₃), 3.98 (6H, s, 2 × -OCH₃), 6.17 (2H, d, J 1.6 Hz, ArH), 6.43 (2H, d, J 1.6 Hz, ArH), 6.79 (2H, s, 2 × -C=CH), 7.94 (4H, s, ArH). ¹³C NMR (500 MHz, CDCl₃): δ 56.2, 56.3, 89.3, 94.1, 105.2, 110.0, 131.4, 133.5, 148.4, 159.5, 169.0, 169.1, 180.5. **LCMS** (ES+) m/z = 487.2 ([M+H]⁺, $t_r = 1.75$ min). These characterisation data are in accordance with that previously reported in the literature. 49

(2Z,2'Z)-2,2'-(1,4-Phenylenebis(methanylylidene))bis(5-

bromobenzofuran-3(2*H***)-one) (55)** A mixture of bichalcone **45** (208 mg, 0.393 mmol) and Hg(OAc)₂ (266 mg, 0.835 mmol) in pyridine (10 mL) was reacted according to GP-C. The crude residue was purified by recrystallization from CHCl₃ to afford biaurone **55** (90.5 mg, 44%) as a bright orange powdery solid. **m.p.** >300 °C. **TLC** $R_f = 0.40$ (PE/CH₂Cl₂; 2:1). **IR** v_{max} (neat)/cm⁻¹: 3081w (C-H str), 1702s (C=O str), 1639s, 1591s (C=C str), 1509w (C=C str), 1449s, 1422m, 1347w, 1293m, 1259s, 1196m, 1174s, 1132m, 1110s, 1046w. ¹**H NMR** (500 MHz, CDCl₃): δ 6.94 (2H, s, 2 × -C=CH), 7.29 (2H, s, ArH), 7.79 (2H, dd, J 8.8, 2.0 Hz, ArH), 7.96 (2H, d, J 2.0 Hz, ArH), 8.01 (4H, s, ArH). ¹³C NMR (500 MHz, CDCl₃): δ 112.9, 114.7, 116.6, 123.2, 127.5, 132.0, 133.6, 139.6, 147.5, 164.7, 183.1. **LCMS** (ES-) m/z = 523.9 ([M-H]⁻, t_r = 2.28 min). **HRMS** (ESI+) m/z = 522.9180 [M+H]⁺ found, $C_{24}H_{13}O_4Br_2^+$ required 522.9181.

(2Z,2'Z)-2,2'-([1,1'-Biphenyl]-4,4'-

diylbis(methanylylidene))bis(6-methoxybenzofuran-3(2H)-one) (66) A mixture of bichalcone 56 (153 mg, 0.302 mmol) and Hg(OAc), (208 mg, 0.653 mmol) in pyridine (10 mL) was reacted

according to GP-C. The crude residue was purified by flash column chromatography (SiO₂, 0.5% MeOH/CH₂Cl₂) and recrystallized from CHCl₃ to afford biaurone **66** (45.7 mg, 30%) as a bright yellow-orange powdery solid. **m.p.** 264-266 °C. **TLC** R_f = 0.44 (1% MeOH/CH₂Cl₂). **IR** v_{max} (neat)/cm⁻¹: 2921w (C-H str), 2835w (C-H str), 1648m (C=O str), 1644m, 1589s (C=C str), 1551m (C=C str), 1495m (C=C str), 1443m, 1347w, 1321m, 1271m, 1191m, 1129s, 1112s, 1099s, 1014m, 1003m. ¹**H NMR** (500 MHz, CDCl₃): δ 3.96 (6H, s, 2 × -OCH₃), 6.78-6.82 (4H, m, ArH), 6.88 (2H, s, 2 × -C=CH), 7.73-7.76 (6H, m, ArH), 8.01 (4H, d, J 8.4 Hz, ArH). ¹³**C NMR** (500 MHz, CDCl₃): δ 56.1, 96.7, 111.3, 112.2, 114.9, 125.9, 127.4, 131.9, 132.0, 141.1, 148.1, 167.5, 168.5, 182.9. **LCMS** (ES+) m/z = 503.2 ([M+H]⁺, t_r = 2.11 min). **HRMS** (ESI+) m/z = 503.1487 [M+H]⁺ found, $C_{32}H_{23}O_6^+$ required 503.1489.

(2Z,2'Z)-2,2'-([1,1'-Biphenyl]-4,4'-

diylbis(methanylylidene))bis(5-methoxybenzofuran-3(2*H*)-one) (67) A mixture of bichalcone 57 (206 mg, 0.406 mmol) and Hg(OAc)₂ (265 mg, 0.832 mmol) in pyridine (10 mL) was reacted according to GP-C. The crude residue was purified by recrystallization from CHCl₃ to afford biaurone 67 (128 mg, 63%) as a bright yellow-orange powdery solid. m.p. 284-286 °C. TLC R_f = 0.56 (0.5% MeOH/CH₂Cl₂). IR v_{max} (neat)/cm⁻¹: 3072w (C-H str), 2948w (C-H str), 1705s (C=O str), 1645s, 1597s (C=C str), 1491s (C=C str), 1437w, 1317m, 1282m, 1201s, 1162m, 1122m, 1112s, 1102m, 1025m, 1004w. ¹H NMR (500 MHz, CDCl₃): δ 3.87 (6H, s, 2 × -OCH₃), 6.95 (2H, s, 2 × -C=CH), 7.26-7.30 (6H, m, ArH), 7.77 (4H, d, J 8.4 Hz, ArH), 8.04 (4H, d, J 8.4 Hz, ArH). ¹³C NMR (500 MHz, CDCl₃): δ 56.0, 105.3, 112.5, 113.8, 121.8, 126.3, 127.4, 132.0, 132.1, 141.3, 148.0, 156.2, 161.2, 184.9. LCMS (ES+) m/z

= 503.2 ([M+H]⁺, t_r = 2.18 min). **HRMS** (ESI+) m/z = 525.1293

(2Z,2'Z)-2,2'-([1,1'-Biphenyl]-4,4'-

 $[M+Na]^{+}$ found, $C_{32}H_{22}O_6Na^{+}$ required 525.1309.

diylbis(methanylylidene))bis(4-methoxybenzofuran-3(2H)-one) (68) A mixture of bichalcone 58 (100 mg, 0.197 mmol) and Hg(OAc)₂ (137 mg, 0.428 mmol) in pyridine (10 mL) was reacted according to GP-C. The crude residue was purified by flash column chromatography (SiO₂, 1% MeOH/CH₂Cl₂) and recrystallized from MeOH to afford biaurone 68 (88.5 mg, 89%) as a bright yellow powdery solid. m.p. 298-300 °C. TLC $R_f = 0.37$ (2% MeOH/CH₂Cl₂). IR v_{max} (neat)/cm⁻¹: 2944w (C-H str), 2841w (C-H str), 1698m (C=O str), 1648m, 1594s (C=C str), 1492s (C=C str), 1439w, 1353w, 1317m, 1281m, 1251s, 1197m, 1163m, 1074s, 1002w. 1 H NMR (500 MHz, CDCl₃): δ 4.04 (6H, s, 2 × - OCH_3), 6.66 (2H, d, J 8.0 Hz, ArH), 6.90 (2H, s, 2 × -C=CH), 6.93 (2H, d, J 8.0 Hz, ArH), 7.61 (2H, t, J 8.0 Hz, ArH), 7.75 (4H, d, J 8.4 Hz, ArH), 8.01 (4H, d, J 8.4 Hz, ArH). 13 C NMR (500 MHz, CDCl₃): δ 56.3, 104.8, 105.2, 110.9, 111.4, 127.4, 131.9, 132.1, 138.4, 141.1, 147.1, 158.6, 167.0, 182.3. **LCMS** (ES+) m/z = 503.2 $([M+H]^{+}, t_{r} = 1.91 \text{ min}). \text{ HRMS (ESI+) } m/z = 503.1486 [M+H]^{+}$ found, $C_{32}H_{23}O_6^+$ required 503.1489.

(2Z,2'Z)-2,2'-([1,1'-Biphenyl]-4,4'-

diylbis(methanylylidene))bis(4,6-dimethoxybenzofuran-3(2H)-one) (69) A mixture of bichalcone 59 (102 mg, 0.180 mmol) and

DOI: 10.1039/C7OB00804J **Journal Name**

ARTICLE

Hg(OAc)₂ (114 mg, 0.359 mmol) in pyridine (10 mL) was reacted according to GP-C. The crude residue was purified by flash column chromatography (SiO2, 0.5% MeOH/CH2Cl2) to afford biaurone 69 (45.0 mg, 44%) as a bright yellow powdery solid. **m.p.** >300 °C. **TLC** $R_f = 0.24$ (3% MeOH/CH₂Cl₂). **IR** v_{max} (neat)/cm⁻¹ 1: 3004w (C-H str), 2841w (C-H str), 1694m (C=O str), 1648m, 1587s (C=C str), 1500m (C=C str), 1457m, 1416w, 1360m, 1330m, 1255s, 1208s, 1146s, 1084s, 1037m, 1002w. ¹H NMR (500 MHz, CDCl₃): δ 3.95 (6H, s, 2 × -OCH₃), 3.98 (6H, s, 2 × -OCH₃), 6.17 (2H, d, J 1.6 Hz, ArH), 6.44 (2H, d, J 1.6 Hz, ArH), 6.83 (2H, s, 2 × -C=CH), 7.73 (4H, d, J 8.4 Hz, ArH), 7.98 (2H, d, J 8.4 Hz, ArH). ¹³C NMR (500 MHz, CDCl₃): δ 56.2, 56.3, 89.3, 94.1, 105.3, 110.2, 127.3, 131.7, 132.2, 140.9, 148.1, 159.5, 169.0, 180.6. **LCMS** (ES+) m/z = 563.1 ([M+H]⁺, $t_r = 1.87$ min). These characterisation data are in accordance with that previously reported in the literature. 49

(2Z,2'Z)-2,2'-([1,1'-Biphenyl]-4,4'-

Published on 12 May 2017. Downloaded by Cornell University Library on 13/05/2017 03:56:02.

diylbis(methanylylidene))bis(5-bromobenzofuran-3(2H)-one)

(70) A mixture of bichalcone 60 (210 mg, 0.348 mmol) and Hg(OAc)₂ (220 mg, 0.689 mmol) in pyridine (10 mL) was reacted according to GP-C. The crude residue was purified by recrystallization from CHCl₃ to afford biaurone 70 (182 mg, 87%) as a bright yellow-orange powdery solid. **m.p.** >300 °C. **TLC** R_f = 0.38 (CH₂Cl₂). IR v_{max} (neat)/cm⁻¹: 3021w (C-H str), 1706s (C=O str), 1698s, 1639s (C=C str), 1588s (C=C str), 1497w (C=C str), 1455s, 1322w, 1296w, 1259s, 1207w, 1172s, 1119s, 1047w, 1002w. ¹H NMR (500 MHz, CDCl₃): δ 6.99 (2H, s, 2 × -C=CH), 7.30 (2H, d, J 8.8 Hz, ArH), 7.77-7.80 (6H, m, ArH), 7.96 (2H, d, J 2.0 Hz, ArH), 8.03 (4H, d, J 8.4 Hz, ArH). 13 C NMR (500 MHz, CDCl₃): δ 113.5, 114.7, 116.5, 123.4, 127.4, 127.5, 131.7, 132.3, 139.4, 141.6, 147.1, 164.7, 183.2. **LCMS** (ES+) $m/z = 602.1 ([M+H]^+, t_r =$ 2.67 min). **HRMS** (ESI+) $m/z = 598.9500 \text{ [M+H]}^{+}$ found, $C_{30}H_{17}O_4Br_2^+$ required 598.9494.

(2Z,2'Z,2"Z)-2,2',2"-(Benzene-1,3,5-

triyltris(methanylylidene))tris(6-methoxybenzofuran-3(2H)-

one) (74) A mixture of trichalcone 72 (102 mg, 0.168 mmol) and Hg(OAc)₂ (160 mg, 0.502 mmol) in pyridine (10 mL) was reacted according to GP-C. The crude residue was purified by flash column chromatography (SiO₂, 1-5% MeOH/CHCl₃) and recrystallized from CHCl₃ to afford triaurone 74 (53.1 mg, 52%) as a pale yellow-brown powdery solid. m.p. >300 °C. TLC R_f = 0.40 (2% MeOH/CH₂Cl₂). **IR** v_{max} (neat)/cm⁻¹: 3074w (C-H str), 2947w (C-H str), 2842w (C-H str), 1698m (C=O str), 1649m, 1591s (C=C str), 1499m (C=C str), 1440s, 1346m, 1328m, 1265s, 1194m, 1151m, 1124s, 1112s, 1095s, 1015m. ¹H NMR (500 MHz, CDCl₃): δ 4.01 (9H, s, 3 × -OCH₃), 6.82 (3H, dd, J 8.4, 2.0 Hz, ArH), 6.94 (3H, d, J 1.6 Hz, ArH), 6.96 (3H, s, 3 × -C=CH), 7.76 (3H, d, J8.4 Hz, ArH), 8.46 (3H, s, ArH). ^{13}C NMR (500 MHz, CDCl₃): δ 56.2, 96.7, 110.5, 112.7, 114.6, 126.0, 133.7, 134.3, 148.6, 167.9, 168.8, 183.0. **LCMS** (ES+) m/z = 601.1 ([M+H]⁺, $t_r = 2.18$ min). **HRMS** (ESI+) $m/z = 601.1511 [M+H]^+$ found, $C_{36}H_{25}O_9^+$ required 601.1493.

Biological screening

Aß preparation

 $A\beta_{42}$ was prepared as previously described.³³ Briefly, $A\beta_{42}$ (1 mg) was purchased from Eurogentec Ltd as a lyophilised powder. The peptide was dissolved in trifluroacetic acid (TFA, 1 mL), sonicated in an ice-water bath for 60 sec, then lyophilised. Ice cold 1,1,1,3,3,3-hexafluro-2-propanol (HFIP, 1 mL) was added to re-suspend the peptide. The sample was sonicated for 60 sec at 0 °C, then aliquoted into 20 µL portions. The HFIP was removed in the vacuum desiccator overnight and the lyophilised samples were stored at -80 °C until use. The required concentration of Aβ42 was prepared by dissolving the sample in dimethyl sulfoxide (DMSO) (5% of total solvent volume), then adding sodium phosphate buffer (50 mM, pH 7.4). The solution was sonicated at 0 °C for 3 min, then centrifuged at 13,400 r.p.m for 30 min at 0 °C to separate any aggregated species.

Thioflavin T Assay

ThT was purchased from AbCam (Cambridge). concentrations of 10 µM AB42, 20 µM ThT and 50 µM compound in sodium phosphate buffer (50 mM, pH 7.4) were used for all samples. The assay samples (100 µL) were mixed in a black non-binding 96-well plate (Greiner Bio-One, Switzerland) which was sealed (Nunc, polyolefin acrylate film) and loaded into the fluorescence plate reader (Tecan, Switzerland) at 37 °C. Fluorescence kinetics were measured at 5 min reading intervals, with 15 sec shaking before each read. The excitation and emission wavelengths were 440 and 480 nm respectively.

Acknowledgements

We thank the Cambridge Commonwealth Trust and Cambridge Home and European Scholarship Scheme for the awards of scholarships to T.H.S., T.J.S and S.C. The research leading to these results has received funding from the European Research Council under the European Union's Seventh Framework Programme (FP7/2007-2013)/ERC grant agreement n° [279337/DOS]. The authors also thank AstraZeneca, the European Union (EU), the Engineering and Sciences Research Council (EPSRC), the Biotechnology and Biological Sciences Research Council (BBSRC), the Medical Research Council (MRC), and the Wellcome Trust for funding. Data accessibility: all data supporting this study are included in the paper and provided as Supporting Information accompanying this

Notes and references

- M. Rahman, M. Riaz and U. R. Desai, Chem. Biodiversity, 2007, 4, 2495-2527.
- H. P. Kim, H. Park, K. H. Son, H. W. Chang and S. S. Kang, Arch. Pharmacal Res., 2008, 31, 265-273.
- K. F. Chan, I. L. Wong, J. W. Kan, C. S. Yan, L. M. Chow and T. H. Chan, J. Med. Chem., 2012, 55, 1999-2014.
- J. Chen, H. W. Chang, H. P. Kim and H. Park, Bioorg. Med. Chem. Lett., 2006, 16, 2373-2375.

DOI: 10.1039/C7OB00804J

Journal Name ARTICLE

- Z. H. Mbwambo, M. C. Kapingu, M. J. Moshi, F. Machumi, S. Apers, P. Cos, D. Ferreira, J. P. Marais, D. Vanden Berghe, L. Maes, A. Vlietinck and L. Pieters, J. Nat. Prod., 2006, 69, 369-372.
- M. K. Lee, S. W. Lim, H. Yang, S. H. Sung, H. S. Lee, M. J. Park and Y. C. Kim, *Bioorg. Med. Chem. Lett.*, 2006, 16, 2850-2854.
- A. Lale, J. M. Herbert, J. M. Augereau, M. Billon, M. Leconte and J. Gleye, J. Nat. Prod., 1996, 59, 273-276.
- 8 H. Sievers, G. Burkhardt, H. Becker and H. D. Zinsmeister, *Phytochemistry*, 1992, **31**, 3233.
- G. Sagrera, A. Bertucci, A. Vazquez and G. Seoane, Bioorg. Med. Chem., 2011, 19, 3060-3073.
- S. Liang, J. Tang, Y. H. Shen, H. Z. Jin, J. M. Tian, Z. J. Wu,
 W. D. Zhang and S. K. Yan, *Chem. Pharm. Bull.*, 2008,
 56, 1729-1731.
- 11 A. Thapa, E. R. Woo, E. Y. Chi, M. G. Sharoar, H. G. Jin, S. Y. Shin and I. S. Park, *Biochemistry*, 2011, **50**, 2445-2455.
- 12 H. Lim, S. B. Kim, H. Park, H. W. Chang and H. P. Kim, Arch. Pharmacal Res., 2009, **32**, 1525-1531.
- 13 H. Park, Y. H. Kim, H. W. Chang and H. P. Kim, *J. Pharm. Pharmacol.*, 2006, **58**, 1661-1667.
- 14 For a discussion of chemical space exploration in drug discovery see: (a) C. M. Dobson, Nature, 2004, 432, 824–828;(b) C. Lipinski and A. Hopkins, Nature, 2004, 432, 855–861; (c) D. J. Huggins, A. R. Venkitaraman and D. R. Spring, ACS Chem. Biol., 2011, 6, 208-217; (d) W. R. J. D. Galloway, A. Isidro-Llobet and D. R. Spring, Nat. Commun., 2010, 1, 80, DOI: 10.1038/ncomms1091; (e) S. Y, Chow and A. Nelson, J. Med. Chem., 2017, DOI: 10.1021/acs.jmedchem.7b00423; (f) J. L. Medina-Franco, K. Martinez-Mayorga and N. Meurice, Exp. Opin. Drug. Discov., 2014, 9, 151-165.
- H. W. Querfurth and F. M. LaFerla, N. Engl. J. Med., 2010, 362, 329-344.
- 16 M. Citron, Nat. Rev. Drug Discov., 2010, 9, 387-398.
- 17 Q. Nie, X. G. Du and M. Y. Geng, Acta Pharmacol. Sin., 2011, 32, 545-551.
- 18 Sunphenon EGCg (Epigallocatechin-Gallate) in the Early Stage of Alzheimer's Disease (SUN-AK), https://clinicaltrials.gov/ct2/show/NCT00951834
- 19 R. MacLeod, E. K. Hillert, R. T. Cameron and G. S. Baillie, Future Science OA, 2015, 1, FSO11.
- H. J. Jung, K. Park, I. S. Lee, H. S. Kim, S. H. Yeo, E. R. Woo and D. G. Lee, *Biol. Pharm. Bull.*, 2007, 30, 1969-1971.
- 21 D. Zembower, J. Org. Chem., 1998, 63, 9300.
- 22 J. Bero, M. Frederich and J. Quetin-Leclercq, J. Pharm. Pharmacol., 2009, 61, 1401-1433.
- 23 H.Hahn, T. Seegerm H. Geiger, H. D. Zinsmeister, K. R. Markham and H. Wong, *Phytochemistry* 1995, **40**, 573-576.
- 24 T. J. Sum, T. H. Sum, W. R. J. D. Galloway and D. R. Spring, *Synlett*, 2016, 27, 1725-1727.
- 25 T. H. Sum, T. J. Sum, J. E. Stokes, W. R. J. D. Galloway and D. R. Spring, *Tetrahedron*, 2015, **71**, 4557-4564.
- 26 J. Alvim, Jr., R. P. Severino, E. F. Marques, A. M. Martinelli, P. C. Vieira, J. B. Fernandes, M. F. da Silva and A. G. Correa, J. Comb. Chem., 2010, 12, 687-695.
- 27 A. Detsi, M. Majdalani, C. A. Kontogiorgis, D. Hadjipavlou-Litina and P. Kefalas, *Bioorg. Med. Chem.*, 2009, 17, 8073-8085.
- 28 J. Zhang, X.-L. Fu and Q. Wang, Sci. World J., 2013, 2013, 1-6.
- 29 A. Abbott and E. Dolgin, *Nature*_2016, **540**, 15-16.
- 30 Editorial, *Nat. Rev. Drug Discov.*, 2010, **9**, 499.

- 31 M. Stefani and S. Rigacci, Int. J. Mol. Sci., 2013, 14, 12411-12457.
- 32 Y. Porat, A. Abramowitz and E. Gazit, *Chem. Biol. Drug Des.*, 2006, **67**, 27-37.
- T. H. Sum, T. J. Sum, W. R. J. D. Galloway, S. Collins, D. G. Twigg, F. Hollfelder and D. R. Spring, *Molecules*, 2016, 21, 1230.
- 34 D. E. Ehrnhoefer, J. Bieschke, A. Boeddrich, M. Herbst, L. Masino, R. Lurz, S. Engemann, A. Pastore and E. E. Wanker, Nat. Struct. Mol. Biol., 2008, 15, 558-566.
- 35 F. L. Palhano, J. Lee, N. P. Grimster and J. W. Kelly, J. Am. Chem. Soc., 2013, 135, 7503-7510.
- 36 M. Necula, R. Kayed, S. Milton and C. G. Glabe, J. Biol. Chem., 2007, 282, 10311-10324.
- 37 A. R. Ladiwala, J. S. Dordick and P. M. Tessier, J. Biol. Chem., 2011, 286, 3209-3218.
- 38 J. A. Lemkul and D. R. Bevan, *Biochemistry*, 2012, **51**, 5990-6009.
- 39 A. A. Reinke and J. E. Gestwicki, *Chem. Biol. Drug Des.*, 2007, **70**, 206-215.
- 40 W. M. Pardridge, Alzheimer's & Dementia, 2009, 5, 427-432.
- 41 N. J. Abbott, *Drug Discov. Today: Technol.*, 2004, **1**, 407-416.
- 42 T. T. Wagner, X. hou, P. R. Verhoest and A. Villalobos, *ACS Chem, Neurosci.*, 2010, 1, 435-449.
- 43 VCCLAB, Virtual Computational Chemistry Laboratory, http://www.vcclab.org, 2005 (accessed April 2017). For more details on the software used see: I. V. Tetko, J. Gasteiger, R. Todeschini, A. Mauri, D. Livingstone, P. Ertl, V. A. Palyulin, E. V. Radchenko, N. S. Zefirov, A. S. Makarenko, V. Y. Tanchuk and V. V. Prokopenko, J. Comput. Aid. Mol. Des., 2005, 19, 453-463.
- 44 J. L. Mikitsh and A.-M. Chacko, *Perspect. Medicin. Chem.*, 2014, **6**, 11-24.
- 45 G. Wurm and H. Loth, *Arch. Pharm. Ber. Dtsch. Pharm. Ges.*, 1970, **5**, 428-434.
- 46 S.-F. Chang and K.-K. Hsu, *Taiwan Kexue*, 1978, **32**, 87-97.
- 47 Non-subliming Mid-UV dyes and ultra-thin organic arcs having differential solubility, J. D. Meador, X. Shao, V. Krishnamurthy, E. C. Murphy, T. D. Flaim and T. L. Brewer US5688987(A) 1997-11-18.
- 48 S. K. Gurung, S. B. Kim and H. Park, Arch. Pharmacal. Res., 2010, 33, 1919-1926.
- 49 A. Meguellati, A. Ahmed-Belkacem, A. Nurisso, W. Yi, R. Brillet, N. Berqouch, L. Chavoutier, A. Fortune, J. M. Pawlotsky, A. Boumendjel and M. Peuchmaur, Eur. J. Med. Chem., 2016, 115, 217-229.