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The preparation of substituted aromatic molecules and
heterocycles is of great importance because of the potential
biological activity of such structures, which are present in
many pharmaceuticals or agrochemicals.[1] The functionaliza-
tion of these compounds has often been achieved by directed
metalation using various bases.[2] Mg and Zn TMP bases
complexed with lithium chloride, such as TMPMgCl·LiCl (1,
TMP = 2,2,6,6-tetramethylpiperidyl),[3] TMP2Mg·2 LiCl (2),[4]

TMPZnCl·LiCl (3),[5] and TMP2Zn·2MgCl2·2 LiCl (4)[6] have
proven to be especially versatile metalating agents. In
contrast to aromatic and heteroaromatic systems, the directed
deprotonation of functionalized non-aromatic and olefinic
systems is more difficult and sensitive, as substituents such as
a nitro or a trifluoromethylcarbonyl group are usually not
tolerated. Furthermore, when the alkenes contain an ester or
a nitrile substituent, lithiation temperatures between �113
and �95 8C are required.[7] Herein, we report that the
kinetically very active TMP bases 1–4 allow the smooth
metalation of various substituted olefins of type 5 under
practical reaction conditions to give highly functionalized
unsaturated organometallic compounds of type 6 (Scheme 1).

Quenching of these compounds with various electrophi-
les E+ provides polyfunctional alkenes of type 7–9 with
high chemoselectivity. Remarkably, this method allows the
first reported preparation of a-zincated nitroolefins
(6 : FG1=NO2; MetX = ZnCl) and b-zincated trifluoromethyl

ketones (6 : FG2 = COCF3; FG1 = NMe2; MetX = ZnCl; see
Tables 1–3). Also, the zincation or magnesiation of various
unsaturated esters can now be carried out under practical
conditions (between �30 8C and 25 8C).

The reaction of ethyl (2E)-3-ethoxyacrylate ((E)-5a) with
TMPMgCl·LiCl (1; 1.2 equiv, THF, 25 8C, 0.5 h) led to a highly
regioselective magnesiation at the 2-position to afford the
magnesium reagent (E)-6a (> 90 %, Scheme 2a). The stereo-
selective copper-mediated acylation[8] of (E)-6a with 2-furoyl
chloride (2 equiv) provided the E-ketoester ((E)-7a) in 80%
yield. Similarly, the functionalized magnesium reagent (E)-6a
was acylated with pivaloyl chloride and morpholine-4-car-
bonyl chloride to give the E-1,4-dicarbonyl compounds
(E)-7b and c in 58 and 84% yield, respectively (Table 1,
entries 1 and 2). The copper-catalyzed allylation[8] of (E)-6a
with 3-bromocyclohexene or its addition to CyCHO stereo-
selectively provided the ester (E)-7d (83%; Table 1, entry 3)
and the lactone 7e (85 %; entry 4). The sensitive dihydrofuran
5b[9] was cleanly metalated with TMP2Zn·2 LiCl (4 ; 0.6 equiv,
25 8C, 0.5 h) to afford the diorganozinc compound 6b
(>90 %). A copper-mediated acylation[8] with PhCOCl pro-
vides the ketoester 7 f in 80% yield (Scheme 2b). The zinc
reagent 6b was also allylated with ethyl 2-(bromomethyl)a-
crylate[10] or underwent a Negishi cross-coupling reaction[11]

with 1-chloro-4-iodobenzene (3% [Pd(dba)2], 6% P(2-
furyl)3, 25 8C, 3 h)[12] to give the expected dihydrofurans 7g
and h in 83 and 55% yield, respectively (Table 1, entries 5 and
6). The related tetrahydropyridine 5c[9] requires a stronger

Scheme 1. Chemoselective metalation of functionalized alkenes.
FG = functional group.

Scheme 2. b-Metalation of unsaturated esters using TMP bases 1, 2, and 4,
and subsequent functionalization with electrophiles.
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TMP base: TMP2Mg·2 LiCl (2). This base can magnesiate the
N-heterocycle 5c at �10 8C within 0.5 h to give the magne-
sium species 6c (> 90 %), reaction of which with PhCHO
(2 equiv) gave the bicyclic lactone 7 i in 65% yield (Sche-
me 2c). Similarly, an acylation of the copper derivative of 6c[8]

with 4-chlorobenzoyl chloride or a palladium(0)-catalyzed
cross-coupling reaction[11] using 4-iodoanisole led to the new
tetrahydropyrimidines 7j–k in 50–80% yield (Table 1,
entries 7 and 8).

Deprotonation of the lactone 7 e using TMP2Mg·2 LiCl (2 ;
�30 8C, 20 min) gave the corresponding Mg intermediate,
which was quenched with iodine to give the iodolactone 7 l in
88% yield (Table 1, entry 9). Chlorination of this Mg reagent
with Cl3F3C2 or a copper-catalyzed allylation with allyl
bromide[8] or a palladium-catalyzed Negishi cross-coupling
reaction[11] led to the functionalized lactones 7m–o in 64–68%
yield (Table 1, entries 10–12). Ethyl (2E)-3-(phenylsulfony-
l)acrylate ((E)-5d)[9] was also smoothly zincated at 25 8C using
TMPZnCl·LiCl (3 ; 1.2 equiv, 15 min). The metalation also
occurs at the b-position to afford the corresponding organo-
zinc that undergoes a copper-mediated allylation[8] with ethyl
2-(bromomethyl)acrylate[10] to furnish the ester (E)-7p in
67% yield (Table 1, entry 13).

Table 1: b-Magnesiation or zincation of unsaturated carbonyl compounds
using TMP bases 1–4 and subsequent quenching with electrophiles.

Entry Substrate E+ Product [%][a]

1

(E)-5a
(25 8C, 0.5 h)[b,c]

(E)-7b : 84%[d]

2
(E)-5a

(25 8C, 0.5 h)[b,c]

(E)-7c : 58%[d]

3
(E)-5a

(25 8C, 0.5 h)[b,c]

(E)-7d : 83%[e]

4
(E)-5a

(25 8C, 0.5 h)[b,c]

7e : 85%

5

5b
(25 8C, 0.5 h)[b,f ]

7g : 83%[e]

6
5b

(25 8C, 0.5 h)[b,f ]

7h : 55%[g]

7 5c
(�10 8C, 0.5 h)[b,h]

p-IC6H4OMe 7 j : R =C6H4pOMe: 80 %[g]

8 5c
(�10 8C, 0.5 h)[b,h]

p-ClC6H4COCl 7k: R =COC6H4pCl: 50%[d]

9 7e
(�30 8C, 20 min)[b,h]

I2 7 l : R = I : 88%

10 7e
(�30 8C, 20 min)[b,h]

Cl3F3C2 7m : R =Cl: 67%

11 7e
(�30 8C, 20 min)[b,h]

allyl bromide 7n : R = allyl: 64%[e]

12 7e
(�30 8C, 20 min)[b,h]

p-IC6H4OMe 7o : R = C6H4pOMe: 68 %[g]

13

(E)-5d
(25 8C, 15 min)[b,i]

(E)-7p : 67 %[e]

14

(E)-5e
(25 8C, 0.5 h)[b,i]

(E)-7r : 85%[e]

[a] Yield of analytically pure isolated product.[b] Metalation conditions.
[c] TMPMgCl·LiCl. [d] 1.1 equiv CuCN·2 LiCl was added. [e] 5% CuCN·2
LiCl was added. [f ] TMP2ZnCl·2 LiCl. [g] 3% [Pd(dba)2] (dba= trans,trans-
dibenzylidineacetone) and 6% P(2-furyl)3 were added. [h] TMP2MgCl·2 LiCl.
[i] TMPZnCl·LiCl.

Table 2: a-Metalation of unsaturated nitriles using TMP-bases 1 and 3
and subsequent functionalization with electrophiles.

Entry Substrate E+ Product [%][a]

1

5 f
(25 8C, 0.5 h)[b,c]

8b : 68%

2 5 f
(25 8C, 0.5 h)[b,c]

MeSSO2Me 8c : R = SMe:70%

3 5 f
(25 8C, 0.5 h)[b,c]

I2 8d : R = I: 94%

4 5 f
(25 8C, 0.5 h)[b,c]

p-IC6H4CO2Et 8e : R = C6H4pCO2Et: 80%[d]

5

(E)-5g
(25 8C, 0.5 h)[b,e]

(E)-8g : 67%[f ]

6

(E)-5h
(25 8C, 1.5 h)[b,c]

(Z)-8h : 63%[f ]

7
(E)-5h

(25 8C, 1.5 h)[b,c]

8 i : 88% (E/Z= 50:50)[d]

[a] Yield of analytically pure isolated product. [b] Metalation conditions.
[c] TMPMgCl·LiCl. [d] 3% [Pd(dba)2] and 6% P(2-furyl)3 were added.
[e] TMPZnCl·LiCl. [f ] 5% CuCN·2 LiCl was added.
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Remarkably, TMPZnCl·LiCl (3) also allows the b-zinca-
tion (25 8C, 0.5 h) of (3E)-4-(dimethylamino)-1,1,1-trifluoro-
but-3-en-2-one ((E)-5e),[9] which bears a sensitive CF3CO
group. Acylation[8] of the resulting organozinc (E)-6e with
PhCOCl led to the expected new functionalized amine (E)-7q
in 80% yield (Scheme 3a). Allylation of intermediate (E)-6e
led to the dienic trifluoromethyl ketone (E)-7r (85 %,
entry 14) after double-bond isomerization during chromato-
graphic purification. Alkenylmagnesium compounds of type
6, which bear an electron-withdrawing group such as a
nitrile,[13] were previously prepared by a Br/Mg exchange
reaction using iPrMgCl·LiCl starting from an a-bromoni-
trile.[14]

Remarkably, when using TMPMgCl·LiCl (1; 1.2 equiv),
the unsaturated nitrile 5 f [9] was directly magnesiated (25 8C,
0.5 h) to give the magnesium reagent 6 f (> 90 %) that
undergoes a palladium(0)-catalyzed cross-coupling with

2-chloro-5-iodopyrimidine[11] to give the unsaturated nitrile
8a in 93% yield (Scheme 3b). The magnesium reagent 6 f was
also trapped with 4-(dimethylamino)benzaldehyde, MeS-
SO2Me, iodine, or submitted to a Negishi cross-coupling
reaction[11] to prove the new functionalized unsaturated
nitriles 8 b–e in 68-94% yield (Table 2, entries 1–4). Reaction
of the dihydrofuran acetonitrile (E)-5g[9] with TMPZnCl·LiCl
(3 ; 1.2 equiv) led to a stereoselective zincation (25 8C, 0.5 h)
to afford the alkenylzinc compound (E)-6g that underwent a
palladium-catalyzed cross-coupling with 4-iodo-benzoni-
trile[11] to produce the dinitrile (E)-8 f in 62% yield (Sche-
me 3c). The zinc reagent (E)-6g is remarkably stable with
respect to b-elimination, and reacted with allyl bromide to
give (E)-8g in 67% yield (Table 2, entry 5). Also, the
pyrrolidyl acrylonitrile ((E)-5h)[9] was easily magnesiated
with TMPMgCl·LiCl (1; 1.2 equiv, 25 8C, 1.5 h) to provide the
Mg species, which was allylated with 3-bromocyclohexene in
the presence of 5% CuCN·2 LiCl[8] to give the aminonitrile
(Z)-8h in 63% yield (Table 2, entry 6). Palladium-catalyzed
cross-coupling of the Mg compound with 4-iodo-chloroben-
zene[11] generated the nitrile 8 i as an E/Z mixture (88 %,
entry 7).

a-Metalated nitroolefins are elusive intermediates and
their preparation has not been reported to date.[15] This
metalation can be achieved using TMPZnCl·LiCl (3). Thus,
the dithiolane nitroolefin (5 i)[9] was smoothly zincated using
TMPZnCl·LiCl (3 ; 1.2 equiv) at 0 8C within 15 min to provide
the a-zincated nitroolefin 6 i (> 95%), which was allylated
with ethyl 2-(bromomethyl)acrylate[8, 10] to afford the nitro-
olefin 9 a in 78% yield (Scheme 4a). The zinc species 6 i was
also iodinated; the resulting iodide 9b was isolated in 89%
yield (Table 3, entry 1). Remarkably, the diphenylnitroolefin
(5j)[9] could be converted into the alkenylzinc 6j using
TMPZnCl·LiCl (3 ; 1.2 equiv, �20 8C, 1.0 h). This zinc reagent
underwent a palladium-catalyzed cross-coupling with 1-iodo-
4-(trifluoromethyl)benzene[11] to give the triarylated nitro-
olefin 9c in 55 % yield (Scheme 4b). Additionally, the
zincated nitroolefin was quenched with 2-furoyl chloride,
allyl bromide, or iodine to provide the corresponding nitro-
olefins 9d–f in 55–70 % yield (Table 3, entries 2–4). Similarly,

Table 3: a-Metalation of unsaturated nitroolefins using TMPZnCl·LiCl 3
and subsequent functionalization with electrophiles.

Entry Substrate E+ Product [%][a]

1 I2

5 i
(0 8C, 15 min)[b,c]

9b : 89%

2

5 j
(�20 8C, 1.0 h)[b,c]

9d : 55 %[d]

3 5 j
(�20 8C, 1.0 h)[b,c]

allyl bromide 9e : R = allyl: 70%[e]

4 5 j
(�20 8C, 1.0 h)[b,c]

I2 9 f : R = I: 70%

5

(E)-5k
(�50 8C, 0.5 h)[b,c]

9h : 57%(E/Z=80:20)[f ]

6

(E)-5 l
(�50 8C, 1.0 h)[b,c]

(E)-9 i : 70%[e]

7
(E)-5 l

(�50 8C, 1.0 h)[b,c]

9 j : 49 % (E/Z= 60:40)[e]

8
(E)-5m

(�50 8C, 0.5 h)[b,c]
(E)-9k : 72%[e]

[a] Yield of analytically pure isolated product. [b] Metalation conditions.
[c] TMPZnCl·LiCl. [d] 1.1 equiv CuCN·2 LiCl was added. [e] 5% CuCN·2
LiCl was added. [f ] 3% [Pd(dba)2] and 6% P(2-furyl)3 were added.

Scheme 3. Metalation of an unsaturated trifluoromethyl ketone and nitriles
using TMP bases 1 and 3, and subsequent functionalization. Pr= propyl,
tfp = P(2-furyl)3.
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2-cyclohexyl-nitroethylene ((E)-5 k)[9] was zincated with
TMPZnCl·LiCl (3 ; 1.2 equiv, �50 8C, 0.5 h) to give the zinc
species (E)-6k, which was trapped with allyl bromide[8] to give
the a-functionalized nitroolefin (E)-9g in 77% yield (Sche-
me 4c). Furthermore, the zincated nitroolefin (E)-6k under-
went a palladium(0)-catalyzed cross-coupling[11] with ethyl
4-iodobenzoate to give the nitro derivative 9h (57% yield,
E/Z = 80:20; Table 3, entry 5). Likewise, b-trans-nitrostyrene
((E)-5 l) reacted with the zinc base 3 (1.2 equiv,�50 8C, 1.0 h),
and the resulting alkenylzinc reagent underwent a copper-
mediated allylation[8] with allyl bromide to give (E)-9 i as one
isomer in 70% yield (Table 3, entry 6). However, trapping the
zincated nitrostyrene (E)-5 l with 3-bromocyclohexene led to
the allylated product 9j as a 60:40 mixture of isomers (49 %,
entry 7).

Finally, 2-[(E)-2-nitrovinyl]thiophene ((E)-5m)[9] was
metalated at the a-position of the nitro group with
TMPZnCl·LiCl (3 ; 1.2 equiv, 0.5 h, �50 8C) and the resulting
zinc species was trapped with allyl bromide to give the new
substituted olefin (E)-9k in 72 % yield (Table 3, entry 8).

In summary, we have shown that the kinetically highly
active bases 1–4 allow a smooth magnesiation or zincation of
several new classes of highly functionalized olefins. In
particular, new b-zincated unsaturated trifluoromethyl
ketones and a-zincated nitroolefins have been prepared and
successfully reacted with electrophiles. Further extensions of
this work are currently underway.

Experimental Section
Typical procedure for the metalation of substituted vinylic substrates
((E)-9 i):

TMPZnCl·LiCl (3 ; 1.3m in THF, 2.77 mL, 3.6 mmol) was added
to a solution of b-trans-nitrostyrene ((E)-5 l ; 450 mg, 3.0 mmol) in
THF (3 mL) at �50 8C and the mixture was stirred for 1 h. After this
time, CuCN·2 LiCl (1m solution in THF, 0.15 mL, 5 mol%) was
added. After 5 min of stirring, allyl bromide (720 mg, 6.0 mmol) was
added and the mixture was slowly warmed to �20 8C over 2 h. After
the workup and purification by flash chromatography (ether/2-methyl

pentane 1:9), the nitroolefin (E)-9 i (397 mg, 70%) was
isolated as a yellow oil.
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