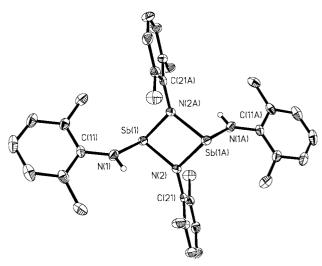
COMMUNICATION

## Antimony imido and imido-amido compounds: a new route to an imidoantimony macrocycle

Richard Bryant, Siân C. James, John C. Jeffery, Nicholas C. Norman,\* A. Guy Orpen and Ulrike Weckenmann

The University of Bristol, School of Chemistry, Bristol, UK BS8 1TS. E-mail: N. C. Norman@Bristol.ac.uk

Received 30th August 2000, Accepted 18th October 2000 First published as an Advance Article on the web 30th October 2000


The syntheses of the antimony imido–amido and imido compounds  $Sb_2(NH-2,6-Me_2C_6H_3)_2(\mu-N-2,6-Me_2C_6H_3)_2$  and  $Sb_{12}(NPh)_{18} \ are \ described.$ 

Compounds of antimony and bismuth incorporating amido and/or imido substituents are important both in terms of the fundamental chemistry of these elements1 and as starting materials for further synthesis.<sup>2</sup> Well characterised examples in which the antimony and bismuth centres are bonded only to nitrogen are still few in number, however. For antimony these include the tris-amido species Sb(NR<sub>2</sub>)<sub>3</sub> (R = Me, <sup>3,4</sup> Et, <sup>4</sup> Pr,<sup>4</sup> Bu,<sup>4</sup> SiMe<sub>3</sub> <sup>1c</sup>) and Sb(NH-2,4,6-But<sub>3</sub>C<sub>6</sub>H<sub>2</sub>)<sub>3</sub>,<sup>5</sup> dinuclear imido-amido compounds  $Sb_2(NMe_2)_2(\mu-NR)_2$  [R = 4-methylmindo-aimido compounds  $So_2(1^{1}Mc_2)_2(\mu^{-1}Mc_2)_2 + \pi^{-1}mc_1)_1$ pyridin-2-yl 1,  ${}^6$  3,4,5-(MeO) $_3C_6H_2$  2,  ${}^6$  2,6-Pr $_2^iC_6H_3$   $3^2$ ] and  $Sb_2[N(SiMe_3)_2]_2(\mu^{-1}NBu^t)_2$ ,  ${}^7$  and a range of species based on
the anions  $[Sb(NR)_3]^3$   $- (R = PhCH_2CH_2$ ,  ${}^8$  cyclohexyl  ${}^9$ ),  $[Sb_2-(NCy)_2(\mu^{-1}NCy)_2]^2$  - (Cy = cyclohexyl),  ${}^9b_110$   $- [Sb_3(NMe_2)_2(\mu^{-1}NCy)_4]^{-8,10c}$  and  $[Sb_3(NHCy)_2(\mu^{-1}NCy)_4]^{-9b_10c}$  - (Cp = cyclohexyl) for particular instances (see balance) in the twenty four membered inside interest (see below) is the twenty four-membered imidoantimony metallacycle  $Sb_{12}[N\text{-}2\text{-}(MeO)C_6H_4]_{18}\_4.^{11}\_Bismuth$ compounds include the tris-amido derivatives  $Bi(NR_2)_3$  ( $R = Me,^{12-14}$   $SiMe_3,^{13,14}$   $Ph^{15}$ ) and  $Bi(NH-2,4,6-But_3^{\dagger}C_6H_2)_3,^5$  the imido-amido compounds  $Bi_2(NHR)_2(\mu-NR)_2$   $(R = 2,6-Pr_2^i)_2$  $C_6H_3$ ) 5<sup>16</sup> and Bi<sub>3</sub>(NHR)( $\mu$ -NR)<sub>4</sub> (R = 2,6-Me<sub>2</sub>C<sub>6</sub>H<sub>3</sub>)<sup>17</sup> and the dianion [Bi<sub>2</sub>(NBut)<sub>2</sub>( $\mu$ -NBut)<sub>2</sub>]<sup>2-18</sup> We note also the structure of Bi<sub>2</sub>[Me<sub>2</sub>Si(NBut)<sub>2</sub>]<sub>2</sub>[ $\mu$ -Me<sub>2</sub>Si(NBut)<sub>2</sub>]. Herein we describe the structure of the s the synthesis and structure of the dinuclear imido-amido compound  $Sb_2(NH-2,6-Me_2C_6H_3)_2(\mu-N-2,6-Me_2C_6H_3)_2$  6 and the imido metallacycle  $Sb_{12}(NPh)_{18}$  7.

The reaction between SbCl<sub>3</sub> and three equivalents of the primary amide salt Li[NH-2,6-Me<sub>2</sub>C<sub>6</sub>H<sub>3</sub>] in thf/Et<sub>2</sub>O (thf = tetrahydrofuran) afforded, after work-up, yellow crystals of the imido–amido compound Sb<sub>2</sub>(NH-2,6-Me<sub>2</sub>C<sub>6</sub>H<sub>3</sub>)<sub>2</sub>( $\mu$ -N-2,6-Me<sub>2</sub>C<sub>6</sub>H<sub>3</sub>)<sub>2</sub> 6; the structure of which was established by X-ray crystallography (Fig. 1).§ Compound 6, which resides on a crystallographic centre of inversion, comprises two trigonal pyramidal antimony centres each carrying a terminal primary amido group and bridged by two imido units. The disposition of the amido groups with respect to the central Sb<sub>2</sub>N<sub>2</sub> unit is *trans* (A) (required by the crystallographic inversion centre) as

found in the related structures of 1, 2 and 5 although in contrast to the cis (B) configuration observed for 3.¶ The Sb–N bond distances (terminal and bridging) are all similar [Sb(1)–N(1) 2.042(4), Sb(1)–N(2) 2.033(4), Sb(1)–N(2A) 2.057(4) Å] and are comparable to those observed in 1 and 2 although the Sb–amide bond lengths in 1 and 2 [2.019(5) and 2.013(5) Å respectively] are shorter than the Sb–imido nitrogen distances in these structures [1, 2.052(5), 2.068(5); 2, 2.048(4), 2.060(4) Å]. § In all

DOI: 10.1039/b007020n



**Fig. 1** A view of the molecular structure of **6** showing the atom numbering scheme. Atoms are drawn as spheres of arbitrary radius. Ellipsoids are drawn at the 40% level. Selected bond lengths (Å) and angles (°) include: Sb(1)–N(1) 2.042(4), Sb(1)–N(2) 2.033(4), Sb(1)–N(2A) 2.057(4), N(1)–C(11) 1.403(6), N(2)–C(21) 1.427(6); N(1)–Sb(1)–N(2) 92.2(2), N(1)–Sb(1)–N(2A) 98.8(2), N(2)–Sb(1)–N(2A) 77.5(2), Sb(1)–N(1)–C(11) 136.2(4), Sb(1)–N(2)–Sb(1A) 102.5(2), Sb(1)–N(2)–C(21) 129.7(3), Sb(1A)–N(2)–C(21) 126.2(3). Symmetry transformations used to generate equivalent atoms: A, -x, -y, -z.

examples the nitrogen atoms are very close to trigonal planar and the antimony atoms are highly pyramidal. The orientation of the imido aryl groups with respect to the  $Sb_2N_2$  units range from almost perpendicular in 6 to nearly coplanar in 1; in both 1 and 2, however, these orientations are influenced by significant intermolecular interactions  $^6$  which are absent in the solid state structure of 6. Further metric data for 6 is given in the caption to Fig. 1.

The reaction between SbCl<sub>3</sub> and three equivalents of lithium anilide Li[NHPh] also afforded a yellow crystalline material which was identified by X-ray crystallography as the twenty four-membered imidoantimony metallacycle Sb<sub>12</sub>(NPh)<sub>18</sub> 7 analogous to the previously characterised species Sb<sub>12</sub>[N-2-(MeO)C<sub>6</sub>H<sub>4</sub>]<sub>18</sub> 4.<sup>11</sup> Crystals of 7 were of very poor quality, however, and no metric or crystallographic data is given here but the structure determination \*\* was sufficient to establish the atom connectivities beyond reasonable doubt. The structure is illustrated below. Molecules of 7 have approximate  $C_{6h}$  symmetry with antimony centres alternating between being on the outside and inside of the twenty four-membered ring and alternately bridged by (μ-NPh)<sub>2</sub> and (μ-NPh) units. The structure may also be described as containing linked trans-related (NPh)Sb(μ-NPh)<sub>2</sub>Sb(NPh) moieties (i.e. type A above) of similar form to 6 but having the terminal amido hydrogens replaced by the next antimony in the macrocycle. Thus, the gross structure of 7 is the same as found in 4 although the molecular symmetry of **4** is reduced to  $S_6$  due to the presence

J. Chem. Soc., Dalton Trans., 2000, 4007–4009

and disposition of the imido OMe groups. Clearly the intramolecular O · · · Sb interactions present in 4 are not found in 7 which is interesting in light of the conjecture in ref. 11 indicating that such intramolecular interactions might favour the observed metallacyclic structure over alternative polymeric forms. The basic Sb<sub>12</sub>N<sub>18</sub> cyclic structure found in 4 and 7 may now be seen as a more general structural type not critically dependent on the nature of the R group and any associated secondary bonding interactions.

The formation of 6 and 7 may be thought to occur formally according to eqns. (1)-(3) as discussed for related examples by Burford et al.5 and Roesky et al.16

$$SbCl_3 + 3 Li[NHR] \longrightarrow Sb(NHR)_3 + 3 LiCl$$
 (1)

$$2 \operatorname{Sb(NHR)_3} \longrightarrow \operatorname{Sb_2(NHR)_2}(\mu - \operatorname{NR})_2 + 2 \operatorname{NH_2R} \quad (2)$$

$$12 \text{ Sb(NHR)}_3 \longrightarrow \text{Sb}_{12}(\mu\text{-NR})_{18} + 18 \text{ NH}_2 R$$
 (3)

In conclusion, these results show that the structure of the product obtained from reactions between SbCl3 and lithium primary amides is strongly dependent on the amido R group but that formation of the twenty four-membered imidoantimony macrocycles is not dependent on intramolecular secondary bonding interactions. The high yield synthesis of macrocyclic 7 will also enable a study of its hostguest chemistry, the potential for which was also discussed for 4.11

## Acknowledgements

We thank the EPSRC for support and Laporte plc and The Royal Society for additional supporting funds.

## Notes and references

† For a more detailed discussion of the anionic imido and imido-amido compounds of antimony, see refs. 1a,b and 2.

‡ A solution of SbCl<sub>3</sub> (0.050 g, 2.19 mmol) dissolved in thf (10 cm<sup>3</sup>) was added to a stirred solution of Li[NH-2,6-Me<sub>2</sub>C<sub>6</sub>H<sub>3</sub>], prepared from  $1-NH_2-2,6-Me_2C_6H_3$  (0.81 cm³, 6.57 mmol) and  $Bu^nLi$  (4.1 cm³ of a 1.6 M solution in hexanes), in Et<sub>2</sub>O (10 cm<sup>3</sup>) at 0 °C which resulted in an immediate colour change from colourless to yellow-orange and formation of a white precipitate. After warming to room temperature, all volatiles were removed by vacuum and the remaining solid redissolved in CH<sub>2</sub>Cl<sub>2</sub> (30 cm<sup>3</sup>). Filtration afforded a clear yellow filtrate which was reduced in volume by vacuum to about 5 cm<sup>3</sup>. Addition of an overlayer of hexane (20 cm<sup>3</sup>) followed by solvent diffusion at -30 °C over a period of days afforded yellow needle-like crystals of 6 (25% recrystallised yield) one of which was used for X-ray diffraction. <sup>1</sup>H NMR  $(C_6D_6)\,\delta\,7.20-6.55$  (m, Ph), 2.85 (s, Me), 2.80 (s, Me), 2.30 (s, Me), 2.25 (s, Me).  $C_{32}H_{38}Sb_2N_4$  requires C, 53.20; H, 5.30; N, 7.75. Found C, 50.35; H, 5.00; N, 7.10%.

§ Crystal data for  $Sb_2(NH-2,6-Me_2C_6H_3)_2(\mu-N-2,6-C_6H_3)_2$  6: M =722.16, triclinic, space group  $P\bar{1}$  (no. 2), a = 7.929(2), b = 10.012(3), c = 11.075(4) Å, a = 101.00(2),  $\beta = 110.705(14)$ ,  $\gamma = 107.892(14)^\circ$ , U = 736.9(4) Å<sup>3</sup>, T = 173(2) K, Z = 1,  $\mu(\text{Mo-K}\alpha) = 1.860 \text{ mm}^{-1}$ , 3491. reflections measured, 2479 unique ( $R_{\rm int}=0.0297$ ), final R1=0.0417 (all data). Data for 6 were collected on a Bruker SMART-CCD detector and the structure was solved and refined against  $F^2$  using SHELXL97.<sup>20</sup>

Hydrogen atoms were attached in idealised positions. CCDC reference number 186/2229. See http://www.rsc.org/suppdata/dt/b0/b007020n/ for crystallographic files in .cif format.

 $\P$  The factors affecting whether a trans or cis geometry is observed in the solid state for imido-amido compounds of the type  $E_2(NR_2)_2$ - $(\mu$ - $NR)_2$  (E = Sb, Bi) have been discussed by Wright and Beswick<sup>2</sup> although it is likely that both isomers of such species are present in solution. In the case of 6, the <sup>1</sup>H NMR spectrum reveals four methyl signals of equal intensity consistent with the presence of equal amounts of both isomers in C<sub>6</sub>D<sub>6</sub> solution.

 $\parallel$  A solution of SbCl<sub>3</sub> (0.050 g, 2.19 mmol) dissolved in thf (10 cm<sup>3</sup>) was added to a stirred solution of Li[NHPh], prepared from PhNH<sub>2</sub> (0.59 cm<sup>3</sup>, 6.57 mmol) and Bu<sup>n</sup>Li (4.1 cm<sup>3</sup> of a 1.6 M solution in hexanes), in Et<sub>2</sub>O (10 cm<sup>3</sup>) at 0 °C which resulted in an immediate colour change from colourless to yellow-orange and formation of a white precipitate. After warming to room temperature, filtration afforded a clear yellow filtrate which yielded yellow feather-like crystals of 7 (85% recrystallised yield) on cooling to 4 °C. One of these was used for X-ray diffraction although it was of poor quality. Repeated attempts to grow better quality crystals from this and other (e.g. CH2Cl2/hexane) solvent systems met with no success.  $C_{108}H_{90}Sb_{12}N_{18}$  requires C, 41.85; H, 2.95; N, 8.15. Found C, 41.60; H, 2.70; N, 9.00%. Mass spectrum (EI): the following antimony-imido fragments were observed, m/z 943 [Sb<sub>4</sub>-(NPh)<sub>5</sub>], 820 [Sb<sub>3</sub>(NPh)<sub>5</sub>], 729 [Sb<sub>3</sub>(NPh)<sub>4</sub>], 638 [Sb<sub>3</sub>(NPh)<sub>5</sub>], 426 [Sb<sub>2</sub>(NPh)<sub>2</sub>].

\* Despite repeated attempts, good quality crystals of 7 could not be obtained and only a weak and poor quality data set was collected. The data is not of sufficient quality to warrant deposition although the unit cell dimensions are given here; triclinic, space group  $P\bar{1}$ , a = 17.538(5), b = 17.596(5), c = 27.431(7) Å, a = 84.085(16),  $\beta = 79.647(19)$ ,  $\gamma = 61.340(17)^{\circ}$ , U = 2566(2) Å<sup>3</sup>. The possibility of the presence of solvent of crystallisation in 7 cannot be ruled out although the microanalytical data on bulk samples || are consistent with unsolvated crystals.

- 1 (a) M. A. Paver, C. A. Russell and D. S. Wright, *Angew. Chem.*, *Int. Ed. Engl.*, 1995, **34**, 1545; (b) M. A. Beswick, M. E. G. Mosquera and D. S. Wright, J. Chem. Soc., Dalton Trans., 1998, 2437; (c) M. F. Lappert, A. R. Sanger, R. C. Srivastava and P. P. Power, Metal and Metalloid Amides, Ellis Horwood, Chichester,
- 2 M. A. Beswick and D. S. Wright, Coord. Chem. Rev., 1998, 176, 373
- 3 K. Moedritzer, Inorg. Chem., 1964, 3, 609.
- 4 A. Kiennemann, G. Levy, F. Schué and C. Taniélian, J. Organomet. Chem., 1972, 35, 143.
- 5 N. Burford, C. L. B. Macdonald, K. N. Robertson and T. S. Cameron, Inorg. Chem., 1996, 35, 4013.
- 6 A. J. Edwards, M. A. Paver, M.-A. Rennie, P. R. Raithby, C. A. Russell and D. S. Wright, J. Chem. Soc., Dalton Trans., 1994,
- 7 B. Ross, J. Belz and M. Nieger, Chem. Ber., 1990, 123, 975.
- 8 A. J. Edwards, M. A. Paver, P. R. Raithby, M.-A. Rennie, C. A. Russell and D. S. Wright, Angew. Chem., Int. Ed. Engl., 1994, 33, 1277
- 9 (a) D. Barr, A. J. Edwards, M. A. Paver, P. R. Raithby, M.-A. Rennie, C. A. Russell and D. S. Wright, Angew. Chem., Int. Ed. Engl., 1995, 34, 1012; (b) M. A. Beswick, N. L. Cromhout, C. N. Harmer, M. A. Paver, P. R. Raithby, M.-A. Rennie, A. Steiner and D. S. Wright, Inorg. Chem., 1997, 36, 1740; (c) A. Bashall, M. A. Beswick, C. N. Harmer, M. McPartlin, M. A. Paver and D. S. Wright, J. Chem. Soc., Dalton Trans., 1998, 517.
- 10 (a) D. Barr, A. J. Edwards, S. Pullen, M. A. Paver, P. R. Raithby, M.-A. Rennie, C. A. Russell and D. S. Wright, *Angew. Chem.*, *Int. Ed. Engl.*, 1994, **33**, 1875; (b) R. A. Alton, D. Barr, A. J. Edwards, M. A. Paver, P. R. Raithby, M.-A. Rennie, C. A. Russell and D. S. Wright, J. Chem. Soc., Chem. Commun., 1994, 1481; (c) A. Bashall, M. A. Beswick, C. N. Harmer, A. D. Hopkins, M. McPartlin, M. A. Paver, P. R. Raithby and D. S. Wright, J. Chem. Soc., Dalton Trans., 1998, 1389; (d) A. Bashall, M. A. Beswick, H. Ehlenberg, S. J. Kidd, M. McPartlin, J. S. Palmer, P. R. Raithby, J. M. Rawson and D. S. Wright, Chem. Commun., 2000, 749.
- 11 M. A. Beswick, M. K. Davies, M. A. Paver, P. R. Raithby, A. Steiner and D. S. Wright, Angew. Chem., Int. Ed. Engl., 1996, 35,
- 12 F. Ando, T. Hayashi, K. Ohashi and J. Koketsu, J. Inorg. Nucl.
- Chem., 1975, 37, 2011.

  13 W. Clegg, N. A. Compton, R. J. Errington, G. A. Fisher, M. E. Green, D. C. R. Hockless and N. C. Norman, Inorg. Chem., 1991, **30**, 4680.
- 14 C. J. Carmalt, N. A. Compton, R. J. Errington, G. A. Fisher, I. Moenandar and N. C. Norman, Inorg. Synth., 1996, 31, 98.

- W. Clegg, N. A. Compton, R. J. Errington, N. C. Norman and N. Wishart, *Polyhedron*, 1989, 8, 1579.
   U. Wirringa, H. W. Roesky, M. Noltemeyer and H.-G. Schmidt, *Inorg. Chem.*, 1994, 33, 4607.
   S. C. James, N. C. Norman, A. G. Orpen, M. J. Quayle and U. Weckenman, *J. Chem. Soc.*, *Dalton Trans.*, 1996, 4150. 4159.
- 18 A. J. Edwards, M. A. Beswick, J. R. Galsworthy, M. A. Paver, P. R. Raithby, M.-A. Rennie, C. A. Russell, K. L. Verhorevoort and D. S. Wright, *Inorg. Chim. Acta.*, 1996, 248, 9.
  M. Veith and B. Bersch, *Z. Anorg. Allg. Chem.*, 1988, 557, 7.
  G. M. Sheldrick SHELXL97, Program for Crystal Structure Determination, University of Göttingen, Göttingen, Germany, 1997.