

Available online at www.sciencedirect.com

Carbohydrate RESEARCH

Carbohydrate Research 343 (2008) 1163–1170

Studies on the synthesis and unusual behavior of vinyl sulfone-modified hexenopyranosylthymines

Sachin G. Deshpande,^a Cheravakkattu G. Suresh^b and Tanmaya Pathak^{c,*}

^aOrganic Chemistry Division (Synthesis), National Chemical Laboratory, Pune 411 008, India ^bDivision of Biochemical Sciences, National Chemical Laboratory, Pune 411 008, India

^cDepartment of Chemistry, Indian Institute of Technology, Kharagpur 721 302, India

Received 14 January 2008; received in revised form 12 February 2008; accepted 14 February 2008 Available online 21 February 2008

Abstract—Although vinyl sulfone-modified- (VSM) pent-2'-enofuranosyl nucleosides 2 and hex-2-enopyranosyl glycoside 4 are easily synthesized from the corresponding mesylated sulfones 1c and 3c, respectively, via an oxidation–mesylation–elimination route, the 3'-C-sulfonyl-hex-2'-enopyranosylthymine 11 is not obtained from 10 and a glycal derivative 12 is formed instead. On the other hand, 3'-C-sulfonyl-hex-3'-enopyranosylthymine 20 is easily synthesized from the mesylated sulfone 19. Again unlike the reaction patterns of VSM-pent-2'-enofuranosyl nucleosides 2 and hex-2-enopyranosyl glycosides 4 as Michael acceptors, the reactions of nucleophiles with 3'-C-sulfonyl-hex-3'-enopyranosylthymine 20 yielded a rearranged product 21 instead of Michael adducts. © 2008 Published by Elsevier Ltd.

Keywords: Hexopyranosyl nucleosides; Vinyl sulfone-modified nucleosides; Unsaturated nucleosides; Michael addition; Glycal

1. Introduction

The selective reverse transcriptase inhibitory properties of the unsaturated nucleoside, 2',3'-didehydro-2',3'-dideoxythymidine (d₄T, stavudine), have triggered the designing of a plethora of unsaturated furanosyl nucleosides having variations at either or both of the 2'and 3'-positions.¹ Attempts are also currently underway to synthesize and study the biological properties of a wide range of unsaturated pyranosyl nucleosides.^{2–4}

As part of a program on the synthesis of modified nucleosides,^{5–8} we functionalized furanosyl nucleosides with electron-rich double bonds such as those of enamines⁶ as well as with electron-deficient double bonds such as those of vinyl sulfones.⁷ Although the vinyl sulfone moiety was identified as a biologically important functional group long ago, in recent times vinyl sulfone-containing dipeptides are shown to be efficient cysteine protease inhibitors through covalent bond formation

with the enzymes.⁹ In fact a wide range of vinyl sulfone-modified (VSM) organic molecules have been subjected to extensive biological studies.⁹ Surprisingly, no biological data on any VSM carbohydrates and nucleosides are available in the literature to date.⁹

Our interest in developing methodologies for the functionalization of hexopyranosyl nucleosides⁸ at the 2', 3', or 4' positions for the generation of new six-membered nucleosides prompted us to initiate a study for the designing of VSM pyranosyl nucleosides. As VSMpent-2'-enofuranosyl nucleosides 2 synthesized from 1a via 1b and 1c (Scheme 1) were used as efficient Michael

Scheme 1. Reported¹⁰ synthesis of vinyl sulfone-modified nucleosides 2.

^{*} Corresponding author. Tel.: +91 03222 283342/282251; fax: +91 03222 282252; e-mail: tpathak@chem.iitkgp.ernet.in

^{0008-6215/\$ -} see front matter @ 2008 Published by Elsevier Ltd. doi:10.1016/j.carres.2008.02.016

acceptors for the generation of a range of amino- and branched-chain nucleosides,¹⁰ we presumed that VSM hexopyranosyl nucleosides, in addition to their potential biological properties,⁹ would also act as useful intermediates for the functionalization of the sugar moiety of pyranosyl nucleosides.

2. Results and discussion

2.1. Attempted synthesis of 3'-C-sulfonyl-hex-2'-enopyranosylthymine (11)

In connection with VSM carbohydrates, we have demonstrated that the β -anomeric derivative 4 was easily accessible from 3a via 3b and 3c (Scheme 2).¹¹ We therefore decided to apply a similar strategy to synthesize VSM pyranosyl nucleosides. Our synthesis started from 1-(2,4,6-tri-O-acetyl-3-O-tosyl-B-D-glucopyranosyl)thymine (5), which was converted to a mixture of 6 and partially deacetylated compounds earlier reported by us (Scheme 3).⁸ Complete deacetylation of the mixture was achieved by NaOMe in methanol. Triol 7 thus obtained was benzylidenated yielding the partially protected alcohol 8. Compound 8 was oxidized with magnesium monoperoxypthalate (MMPP) in MeOH to produce the sulfonvlated nucleoside 9. Crude 9 was mesylated using the standard conditions, and product 10 was subsequently treated with 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU). Although oxidation-mesylationbase treatment is a standard route that was used earlier for the synthesis of VSM-nucleosides (Scheme 1) and carbohydrates (Scheme 2), to our surprise in this case the desired compound 11 was not produced. In the ¹H NMR spectrum, the H-2' proton of nucleoside **2** (B = U) appeared¹⁰ at δ 6.56, and the H-2 olefinic proton of the carbohydrate 4 appeared¹¹ at δ 6.94 (1H, m). The absence of any such peak around this region and the unusual chemical shift values of the other protons in the ¹H NMR spectrum of the product of mesylate 10 indicated the absence of a vinyl sulfone group. The isolated product was identified as 1-[2,3-deoxy-(4,6-O-benzylidene)-(3-C-p-toluenesulfonyl)-erythro-β-Dhex-1-eno-pyranosyl]- thymine 12 as follows: The signal of the H-2' alkene proton for 12 appeared $({}^{1}H{-}^{1}H$ COSY) as a doublet at δ 5.40. The peak position of qua-

Scheme 2. Reported¹¹ synthesis of vinyl sulfone-modified carbohydrate 4.

Scheme 3. Reagents and conditions: (i) (a) *p*-TolSH, NaOMe, DMF, 90 °C, 10 h; (b) NaOMe, MeOH, rt, 6 h; (c) PhCH(OCH₃)₂, TsOH, DMF, 100 °C, 1 h, 66% (from 5); (ii) MMPP, MeOH, rt, 3–3.5 h; (iii) (a) MsCl, pyridine, 0–4 °C, overnight; (b) DBU, DCM, rt, 5 h, 52% (from 8).

ternary C-1' was established to be δ 149.0 on the basis of its correlations with two β protons, H-3' (δ 4.20) and H-6 (δ 7.13) in the heteronuclear multiple bond correlation (HMBC) spectrum. The identification of C-1' as a quaternary carbon and the presence of the olefinic proton at a higher field (δ 5.40 as opposed to > δ 6.50) established the position of the double bond between C-1' and C-2'. Since the hex-1-enopyranosyl nucleoside **12** was not the desired product, no attempt was made further to unambiguously establish the configuration of the C-3' center of this compound (Scheme 3).

Although VSM-nucleoside 2 and the carbohydrate 4 were easily synthesized from the mesylates 1c (Scheme 1) and 3c (Scheme 2), respectively, the failure of the same reaction sequence to afford the VSM hexopyranosyl nucleosides 11 was a surprising result. The unexpected result may be partially explained by considering the fact that the presence of a better electron-withdrawing and sterically bulkier nucleobase at the anomeric position of the mesylate 10 as opposed to the methoxy group of 3c tripped the balance in favor of the C-1'-C-2' elimination product 12 instead of desired 11. However, as mentioned above, the VSM-nucleoside 2 was easily synthesized following a similar route. Therefore, to settle the anomaly, we argued that for the trans-elimination required for the bond formation between C-2' and C-3', the H-3' and C-4'-OMs should be antiperiplanar (diaxial). In that case the mesylated compound 10 needed to flip to a twist-boat conformation 10a, which

Scheme 4. Probable mechanism of formation of the undesired glycal 12.

would have created severe 1,3-diaxial interaction between the bulky nucleobase and H-3' proton (Scheme 4).^{12a} Under the circumstances, the acidity of H-1' as well as the stability of C-1'-C-2' olefin via conjugation of the ring oxygen would favor the formation of compound 12. It should be noted that the steric hindrance mentioned in Scheme 4 would be minimal in the case of the carbohydrate-derived mesylate 3c because of the much smaller bulk of OMe and also because of the fact that the methyl group attached to oxygen was 'removed somewhat^{12b} from the ring. It is noteworthy that the synthesis of the vinyl nitro analogue 1-(4,6-O-benzylidene-2,3-didehydro-2,3-dideoxy-3-nitro-β-D-hexopyranosyl)uracil was also difficult because the compound was 'too unstable'.¹³ However, it was possible to generate this compound in situ, and the Michael addition product was isolated although the authors suggested the involvement of a 'boat-like aci-nitro intermediate' in the product formation process.¹³ It is probable that the different structural as well as electronic features of the -NO2 and the -SO₂Ar groups also contributed significantly to the stability of one vinyl derivative over the other. However, it is also probable that the vinyl sulfone derivative 11 formed first via the elimination and then underwent rearrangement to yield glycal 12.

2.2. Synthesis of 3'-C-sulfonyl-hex-3'-enopyranosyl-thymine (20)

With the non-availability of one required VSM-nucleoside 11, we decided to explore the possibility of synthesizing 3'-C-sulfonyl-hex-3'-enopyranosylthymine 20 (Scheme 5), which was expected to be useful for the

Scheme 5. Reagents and conditions: (i) (a) TMSCl, pyridine, 1 h; BzCl, pyridine, rt, 1 h; (b) 0.25% TFA, CH₂Cl₂, MeOH, 20 min; (ii) BnBr, NaH, DMF, rt, overnight; (iii) NaOMe, MeOH, rt, 3–5 h; (iv) aq TFA (80%), rt, 30–45 min; (v) TrCl, pyridine, reflux, 3 h; (vi) MMPP, MeOH, rt, 3–3.5 h; (vii) MsCl, pyridine, 0–4 °C, overnight.

functionalization of the C-4' position. Because of its easy accessibility, we started our synthesis from thionucleoside 8. Our intention was to deprotect 15, protect the primary alcohol selectively, and then mesylate the C-4' hydroxyl group. However, for this strategy it was necessary to mask the C-2' hydroxyl group. The instability of ester groups under nucleophilic reaction conditions to be used later prompted us to benzylate the C-2' hydroxyl group. It was therefore necessary to protect the nucleobase prior to the protection of the C-2' hydroxyl group to avoid any alkylation of the nucleobase. Thus, alcohol 8 was treated with chlorotrimethylsilane in pyridine at 0 °C, followed by benzoyl chloride in a one-pot fashion. The product, after usual work-up, was treated with 0.25% TFA in 1:1 MeOH-CH₂Cl₂ for a few minutes to produce the N³-benzoylated derivative 13. Compound 13 was benzylated using excess of benzyl bromide and NaH in anhydrous DMF. After purification, compound 14 was treated with NaOMe in MeOH to afford nucleoside 15. Compound 15 was treated with 4:1 TFAwater for a brief period to remove the benzylidene protecting group. The primary C-6' hydroxyl group of 16, thus obtained, was protected with trityl group to produce 17. Compound 17 was oxidized to sulfone nucleoside 18. Sulfone 18 was mesylated in pyridine, and the reaction condition was basic enough to initiate an elimination reaction to afford the desired

Figure 1. ORTEP of compound 20.

1-[2-*O*-benzyl-3,4-deoxy-(3-*C*-*p*-toluenesulfonyl)-6-*O*-trityl-*erythro*-β-D-hex-3-*eno*-pyranosyl]thymine **20**. The characteristic peak of the vinyl proton of the vinyl sulfone group was identified at δ 7.10–7.43. However, the structure of **20** was established unambiguously with the help of X-ray crystallography (Fig. 1); notably the C-3'-C-4' bond length was 1.31 Å, which was less than the average C–C single bond length.

Compound 20 was easily synthesized from 19 because, in this case the six-membered ring could easily flip to the required conformation to place the H-3' and the C-4'-OMs in the antiperiplanar positions. It is important to note that even a strong base like DBU could not facilitate the formation of vinyl sulfone 11 from 10 (Scheme 3), whereas under the conditions employed for mesylation, 19 was transformed to 20 by pyridine at +4 °C.

2.3. Reactions of 3'-C-sulfonyl-hex-3'-enopyranosylthymine (20)

Michael acceptor **20** was treated with several amines and carbon nucleophiles generated from nitromethane or dimethyl malonate. Only benzylamine and piperidine in a nonpolar solvent like 1,2-dichloroethane (EDC) afforded an isomerized single product **21**, which was identified as having a C-4'-C-5' double bond to give the more stable product, namely, 1-[2-*O*-benzyl-3,4-dideoxy-(3-*C*-*p*-toluenesulfonyl)-6-*O*-trityl-*erythro*- β -D-hex-4-*eno*-pyranosyl]thymine (**21**) in 50–55% yield (Scheme 6). The peak at δ 5.84 (¹H NMR) for compound **21** was identified as the H-1' proton, and the rest of the protons were assigned using the correlation spectrum.

Notably the absence of H-5'-proton, simplified the splitting patterns of H-6' and H-6" protons that appeared at δ 3.44–3.55. The peak position of quaternary C-5' was established at δ 156.1 on the basis of its correlations with two α protons, H-4' (δ 5.10) and

Scheme 6. Reagents and conditions: (i) benzylamine, EDC, rt, 48 h, 55%; (ii) piperadine, EDC, rt, 5 h, 50%.

H-6', H-6" (δ 3.50) in the HMBC spectrum. Identification of C-5' as a quaternary carbon and the presence of the olefinic proton H-4' at a higher field (δ 5.10 as opposed to $>\delta$ 6.50 for vinyl sulfones **2** and **4**) devoid of any coupling with H-5', established the position of the double bond between C-4' and C-5'. Almost all the other reactions produced inseparable mixtures of products (Table 1). In this case also no attempt was made to establish the configuration at the C-3' position.

The formation of compound **21** may be considered as a simple migration of a double bond that was facilitated by the abstraction of the C-5' proton, followed by the stability imparted by the delocalization of the lone pairs of the ring oxygen. Although 20 did not react as a Michael acceptor, there are several reports on the addition of nucleophiles at the C-4 position of pyranosyl Michael acceptors, such as the addition of azide to methyl 6-O-benzoyl-3,4-dideoxy-a-D-glycero-hex-3-enopyranosid-2-ulose,¹⁴ functionalization of C-4 of methyl 3,4-dideoxy-6-O-(1-ethoxyethyl)-α-D-glycero-hex-3-enopyranosid-2-ulose with a methyl group,¹⁵ and most notably, the reaction of benzylamine with phenyl 4.6di-O-acetyl-2-O-benzyl-3-deoxy-3-nitro-\beta-D-glucopyranoside to afford the corresponding Michael adduct in 77% yield via the in situ generated vinyl nitro derivative.16

Table 1. Reactions of 20 under various conditions^a

S1.	Reaction conditions	Products
no.		
1	Benzylamine (5 equiv) in EDC; 48 h	55% 21
2	Piperidine (5 equiv) in EDC; 5 h	50% 21
3	Isobutylamine (neat); 8–10 h	Inseparable mixture
4	EtNH ₂ aq (70%, excess) in dioxane; 1 h	Inseparable mixture
5	NH ₃ aq (excess) in dioxane; rt; 1 h	Inseparable mixture
6	Nitromethane–NaOMe in MeOH; rt; 10–12 h	Inseparable mixture
7	Dimethyl malonate–NaH in THF; rt; 24 h	Inseparable mixture

^a All reactions were carried out at room temperature.

In summary, on one hand the presence of a nucleobase at the anomeric position of a VSM hexopyaranoside drastically altered its properties, which led to the formation of glycal derivative **12** instead of 3'-C-sulfonyl-hex-2'-enopyranosylthymine **11**; this is an unexpected deviation from the known pattern of reactions of mesylated sulfones, such as **1c** and **3c** under basic conditions. On the other hand, in spite of the reported reactions of vinylnitro-modified hex-3-enopyranosides and related Michael acceptors with nucleophiles, 3'-Csulfonyl-hex-3'-enopyranosylthymine (**20**) uncharacteristically underwent isomerization instead of the expected Michael addition reactions.

3. Experimental

3.1. General methods

Melting points were determined in open-end capillary tubes and are uncorrected. Carbohydrates and other fine chemicals were obtained from commercial suppliers and were used without purification. Solvents were dried and distilled following the standard procedures. TLC was carried out on precoated plates (E. Merck Silica Gel 60, F_{254}), and the zones were visualized with UV light or by charring the plates dipped in 5% H₂SO₄–MeOH or 5% H₂SO₄–vanillin–EtOH. Column chromatography was performed on silica gel (60–120 or 230–400 mesh). ¹H and ¹³C NMR spectra for most of the compounds were recorded at 200 and 50.3 MHz, respectively, in CDCl₃ unless stated otherwise. Optical rotations were recorded at 589 nm.

3.2. 1-(4,6-*O*-Phenylmethylene-3-deoxy-3-*S*-tolyl-β-D-allopyranosyl)thymine (8)

To a solution of 4-methylbenzenethiol (*p*-toluenethiol, 0.87 g, 7 mmol) in DMF (5 mL), NaOMe (0.27 g, 5 mmol) was added. The reaction mixture was stirred at rt for 0.5 h. Compound 5 (0.57 g, 1.0 mmol) was added, and the reaction mixture was heated at 90 °C for 10 h. The reaction mixture was allowed to cool to rt, and DMF was evaporated under reduced pressure. To a methanolic solution (10 mL) of the reaction mixture, NaOMe (0.17 g, 3 mmol) was added. After 6 h at rt, the reaction mixture was neutralized with Dowex H^+ (50 × 8) and filtered. All volatiles were removed under reduced pressure, and the crude residue was purified over silica gel to get 7. To a mixture of the unprotected thio nucleoside 7 (0.32 g, 0.81 mmol) and benzaldehyde dimethyl acetal (0.18 g, 1.21 mmol) in DMF (25 mL), a catalytic amount of *p*-toluenesulfonic acid (p-TsOH) was added. The reaction mixture was heated at 100 °C under vacuum for 1 h. After cooling the mixture at rt, DMF was evaporated under reduced pressure. The residue was diluted with EtOAc (50 mL), and the solution was washed with satd aq NaHCO₃ $(2 \times 25 \text{ mL})$. The organic layer was dried over anhyd Na₂SO₄, and filtered, and the filtrate was concentrated. The crude product was purified over a silica gel column to afford 8. (Eluent: 3:2 EtOAc-petroleum ether.) The compound was crystallized from a CHCl3-petroleum ether mixture to give 8 as white crystals: 0.32 g, (66%) from **5**. Mp: 220 °C. $[\alpha]_D^{25}$ -73.0 (*c* 1.20, CHCl₃). IR (Nujol): 1686 cm⁻¹. ¹H NMR (200 MHz, CDCl₃): δ 1.94 (s, 3H), 2.29 (s, 3H), 3.71-4.10 (m, 5H), 4.37 (dd, J = 4.8, 10.2 Hz, 1H), 5.62 (s, 1H), 5.69 (d, J = 8.8 Hz, 1H), 7.03 (d, J = 7.9 Hz, 2H), 7.12 (s, 1H), 7.37–7.51 (m, 7H, aromatic), 9.26 (s, 1H). ¹³C NMR (50.3 MHz, CDCl₃): *b* 12.3, 20.8, 59.0, 67.6, 68.5 (CH₂), 69.0, 78.0, 82.3, 101.4, 111.5, 126.2, 128.1, 129.0, 129.7, 131.2, 133.3, 135.0, 136.9, 137.8, 151.0, and 163.5. Anal. Calcd for C₂₅H₂₆N₂O₆S·0.5H₂O: C, 61.09; H, 5.54. Found: C, 61.35; H. 5.44.

3.3. 1-[4,6-*O*-Benzylidene-2,3-deoxy-(3-*C*-*p*-toluenesulfonyl)-*erythro*-β-D-hex-1-*eno*-pyranosyl]thymine (12)

A mixture of compound 8 (0.96 g, 2 mmol) and MMPP (4.94 g, 10 mmol) in MeOH (150 mL) was stirred vigorously at rt for 3–3.5 h. The reaction mixture was passed through a basic alumina column, and the filtrate was evaporated under reduced pressure. A pyridine solution (25 mL) of the resulting product 9 (1.0 g, 1.94 mmol) was cooled to 0 °C in an ice bath. Methanesulfonyl chloride (0.9 mL, 10 mmol) was added dropwise to the reaction mixture. The reaction mixture was kept at +4 °C overnight. The reaction mixture was quenched with ice. Pyridine was evaporated under reduced pressure, and co-evaporated with toluene. The residue was diluted with DCM (75 mL). The organic layer was washed with satd aq NaHCO₃ $(2 \times 10 \text{ mL})$, water (5 mL), and brine (5 mL). The organic layer was dried over anhyd Na₂SO₄, and filtered. The filtrate was evaporated under reduced pressure. A solution of the crude mesylated sulfone nucleoside 10 in DCM (40 mL) was cooled to 0 °C in an ice bath. To the reaction mixture was added DBU (0.61 g, 4 mmol), dropwise with constant stirring. The mixture was stirred at rt for 5 h. The volume of the reaction mixture was reduced to one-fifth by evaporation. The solution thus obtained was loaded directly on a silica gel column. (Eluent: 3:2 EtOAc-petroleum ether) Purification afforded compound 12. The product was crystallized from an EtOAc-petroleum ether mixture to afford 12 as white crystals: 0.46 g, (52% overall from 8). Mp: 204 °C (dec.); $[\alpha]_D^{27.7}$ +14.6 (c 1.60, CHCl₃). IR (CHCl₃): 1732, 1697.2. ¹H NMR (400 MHz, CDCl₃) (¹H–¹H COSY): δ 1.95 (s, 3H, CH₃ thymine), 2.36 (s, 3H, CH₃), 3.84 (t, J = 10.3 Hz, 1H, H6"), 4.09 (m, 1H, H5'), 4.20 (m, 2H, H3', H4'), 4.48 (dd, J = 5.0, 10.3 Hz, 1H, H6'), 5.37 (s, 1H, PhCH), 5.40 (d, 1H, H2'), 6.98 (m, 2H, aromatic),

7.13 (s, 1H, H6), 7.24–7.32 (m, 5H, aromatic), 7.82 (d, J = 8.3 Hz, 2H, aromatic), 9.00 (s, 1H, NH). ¹³C NMR (100.6 MHz, CDCl₃) (¹H–¹³C COSY; HSQC): δ 12.0 (*C*-methyl thymine), 21.5 (*C*-methyl), 63.1 (C-3'), 67.6 (CH₂, C-6'), 69.4 (C-5'), 73.4 (C-4'), 90.3 (C-2'), 100.9 (PhC), 111.2, 125.6, 127.8, 128.7, 129.0, 129.8, 135.3, 135.8, 138.7 (C-6 thymine), 145.3, 149.0, 149.7, 164.0. Anal. Calcd for C₂₅H₂₄N₂O₇S: C, 60.47; H, 4.87. Found: C, 60.38; H, 4.49.

3.4. 1-[2-*O*-Benzyl-(4,6-*O*-phenylmethylene)-3-deoxy-3-*S*-(*p*)-tolyl-β-D-*allo*pyranosyl]thymine (15)

To a solution of 8 (0.96 g, 2 mmol) in dry pyridine (10 mL) were added Et₃N (1.01 mL, 10 mmol) and chlorotrimethylsilane (0.4 mL, 3 mmol) under cold conditions. After stirring the reaction mixture for 1 h, it was cooled using an ice bath. Benzoyl chloride (0.35 mL, 3 mmol) was added dropwise and the reaction mixture was stirred at rt for an additional 1 h. The reaction mixture was quenched with a few drops of satd aq NaHCO₃. Pyridine was evaporated under reduced pressure, and co-evaporated with toluene. The residue was diluted with EtOAc (50 mL), and the organic layer was washed with satd aq NaHCO₃ $(3 \times 10 \text{ mL})$, water (5 mL), and brine (5 mL). The organic layer was dried over Na₂SO₄ and filtered. The filtrate was evaporated under reduced pressure. TFA (0.05 mL) was added to a solution of the crude product in a 1:1 mixture of CH₂Cl₂ and MeOH (20 mL), and the solution was left at rt for 20 min. All volatiles were removed under reduced pressure, and the crude product was purified over a silica gel column (Eluent: 1:1 EtOAc:Hexane) to afford 13 (0.82 g; 70%). A mixture of 13 (1.23 g, 2.1 mmol) and benzyl bromide (2.5 mL, 21 mmol) in DMF (10 mL) was cooled to 0 °C in an ice bath. To the reaction mixture was added NaH (0.092 g, 2.25 mmol, 60% dispersion in oil) in portions with constant stirring. The reaction mixture was stirred overnight at rt. The reaction mixture was diluted with EtOAc (250 mL). The organic layer was washed with brine $(3 \times 15 \text{ mL})$. The volatiles were evaporated under reduced pressure. Purification over silica gel column (Eluent: 1:3 EtOAc:Hexane) gave benzyl bromide-free compound 14. A solution of 14 in MeOH (40 mL), and NaOMe (0.33 g, 6 mmol) was stirred at rt for 3–5 h. Dowex H⁺ (50×8) resin was used to neutralize the solution. Silica gel column purification (Eluent: 1:1 EtOAc-petroleum ether) gave the desired compound 15 as a foamy solid: 0.80 g, (66% from 13). Mp: 108–110 °C; $[\alpha]_{D}^{27.1}$ –92.9 (c 1.40, CHCl₃). IR (CHCl₃): 1718.5, 1685.7 cm⁻¹. ¹H NMR (200 MHz, CDCl₃): δ 1.78 (s, 3H), 2.31 (s, 2H), 3.62-3.80 (m, 3H), 4.17 (m, 3H), 4.30-4.35 (m, 1H), 4.50 (d, J = 12.6 Hz, 1H), 5.55 (s, 1H), 6.09 (bs, 1H), 6.64 (br s, 1H), 7.03-7.56 (m, 14H, aromatic), 8.38 (d, J = 8.6 Hz, 1H). ¹³C NMR (50.3 MHz, CDCl₃): δ

12.3, 20.9, 53.1, 67.0, 68.4 (CH₂), 69.4 (CH₂), 73.5, 77.8, 79.5, 101.3, 110.9, 126.1, 128.0, 128.2, 128.4, 128.9, 129.4, 131.5, 133.8, 136.0, 136.7, 137.5, 150.5, 163.6. Anal. Calcd for $C_{32}H_{32}N_2O_6S\cdot0.25H_2O$: C, 66.59; H, 5.65. Found: C, 66.74; H, 5.54.

3.5. 1-[2-*O*-Benzyl-3,4-deoxy-(3-*C*-*p*-toluenesulfonyl)-6-*O*-trityl-*erythro*-β-D-hex-3-*eno*-pyranosyl]thymine (20)

Compound 15 (2.84 g, 5 mmol) was treated with 4:1 TFA-water (3 mL) at rt for 30-45 min. All the volatiles were evaporated under reduced pressure to afford 16. A solution of crude 16 (2.34 g, 5 mmol) in dry pyridine (20 mL) was reacted with trityl chloride (1.68 g, 6 mmol). The reaction mixture was heated under reflux for 3 h. The reaction mixture was cooled to rt. Pyridine was evaporated under reduced pressure. The reaction mixture was diluted with EtOAc (150 mL), washed with water (10 mL), and brine (5 mL), and the organic layer was dried over Na₂SO₄, and filtered. The filtrate was concentrated, and the crude product was purified over a neutral alumina column (Eluent: 1:6 EtOAc:Hexane) to afford 17 (3.2 g, 90%). A mixture of 17 (3.47 g, 4.78 mmol) and MMPP (11.82 g, 23.9 mmol) in MeOH (150 mL) was stirred vigorously at rt for 3-3.5 h. The solvent was concentrated to a small volume, and filtered over a column of basic alumina affording a polar compound 18. A solution of the trityl-protected sulfone nucleoside 18 (3.28 g, 4.42 mmol) in dry pyridine (30 mL) was cooled to 0 °C in ice bath. Methanesulfonyl chloride (1.8 mL, 22.1 mmol) was added dropwise to the reaction mixture. The reaction mixture was kept at +4 °C overnight. The reaction mixture was quenched with ice. Pyridine was evaporated under reduced pressure and co-evaporated with toluene. The residue was diluted with CH₂Cl₂ (75 mL), the organic layer was washed with satd aq NaHCO₃ (2×10 mL), water (5 mL), and brine (5 mL). The organic layer was dried over Na₂SO₄, and filtered. The filtrate was concentrated, and the product was purified over a neutral alumina column (Eluent: 1:3 EtOAc-petroleum ether) to yield compound 18. The product was crystallized from a mixture of CHCl₃ and petroleum ether to yield 18 as colorless crystals: 2 g, (61% from 15). Mp: 225-229 °C (dec.). $[\alpha]_{D}^{28}$ -87.8 (c 1.98, CHCl₃). IR (CHCl₃): 1695 cm⁻¹. ¹H NMR (400 MHz, CDCl₃) (¹H–¹H COSY): δ 1.69 (s, 3H, CH₃ thymine), 2.37 (s, 3H, CH₃), 3.28 (dd, 1H, H6'), 3.36 (dd, 1H, H6"), 4.54–4.63 (m, 3H, H2', benzylic CH₂), 4.73 (m, 1H, H5'), 5.83 (d, J_{1',2'} = 7.4 Hz, 1H, H1'), 6.85 (s, 1H, H6), 7.10-7.43 (m, 23H, aromatic, H4'), 7.69 (d, J = 8.3 Hz, 2H, aromatic), 8.49 (s, 1H, NH). ¹³C NMR (50.3 MHz, CDCl₃): δ 12.4, 21.5, 64.7 (CH₂), 71.2, 74.2, 74.8 (CH₂), 81.2, 87.0, 111.5, 127.3, 127.9, 128.6, 129.5, 134.1, 136.4, 137.3, 140.6, 141.3, 143.1, 144.4, 150.3, 163.1. Anal. Calcd for

C₄₄H₄₀N₂O₇S·0.25H₂O: C, 70.90; H, 5.47. Found: C, 70.89; H, 5.37.

3.6. 1-[2-*O*-Benzyl-3,4-deoxy-(3-*C*-*p*-toluenesulfonyl)-6-*O*-trityl-*erythro*-β-D-hex-4-*eno*-pyranosyl]thymine (21)

3.6.1. Reaction A. A mixture of **20** (0.20 g, 0.27 mmol) and benzylamine (0.14 g, 1.35 mmol) in EDC (5 mL) was stirred at rt for 48 h. The reaction mixture was directly loaded onto a silica gel column. (Eluent: 1:3 EtOAc-petroleum ether) The column purification afforded the amine free compound **21**.

3.6.2. Reaction B. A mixture of compound **20** (0.20 g, 0.27 mmol) and piperidine (0.115 g, 1.35 mmol) in EDC (5 mL) was stirred at rt for 5 h. Purification was carried out as above (Eluent: 1:3 EtOAc-petroleum ether), to afford 21 as a white solid: 0.14 g, (55%). Mp: 118–120 °C (dec.). $[\alpha]_D^{28}$ +22.1 (c 1.40, CHCl₃). IR (CHCl₃): 1765, 1716.5 cm⁻¹. ¹H NMR (400 MHz, CDCl₃) (¹H–¹H COSY): δ 1.73 (s, 3H, CH₃, thymine), 2.46 (s, 3H, CH₃), 3.44–3.55 (m, 2H, H6', H6"), 4.22 (m, 1H, H3'), 4.34 (m, 1H, H2'), 4.63 (d, J = 11.7 Hz, 1H, benzylic CH₂), 4.81 (d, J = 11.7 Hz, 1H, benzylic CH), 5.10 (bs, 1H, H4'), 5.84 (d, $J_{1',2'} = 9.0$ Hz, 1H, H1'), 6.66 (s, 1H, H6), 7.23-7.35 (m, 22H, aromatic), 7.87 (d, J = 8.1 Hz, 2H, aromatic), 8.35 (s, 1H, NH). ¹³C NMR (100.6 MHz, CDCl₃) (¹H–¹³C COSY; HSQC): δ 12.4 (*C*-methyl thymine), 21.7 (*C*-methyl), 61.7 (CH₂, C-6'), 66.9 (C-3'), 71.0 (C-2'), 73.2 (benzylic C), 81.0 (C-1'), 87.2 (Trityl C), 91.2 (C-4'), 111.7, 127.2, 127.9, 128.1, 128.3, 128.4, 128.5, 129.0, 129.9, 133.9, 134.1, 136.4 (C-6), 143.2, 145.3, 150.5, 156.1, 163.2. Anal. Calcd for C₄₄H₄₀N₂O₇S·H₂O: C, 69.63; H, 5.58. Found: C, 69.25; H, 5.70.

Acknowledgment

T.P. thanks Indo-French Centre for the Promotion of Advance Research, New Delhi, for funding (Project No. 3405-1). S.G.D. and T.P. thank Dr. M. S. Shashi-dhar for his interest in this work.

Supplementary data

Complete crystallographic data for the structural analysis have been deposited with the Cambridge Crystallographic Data Centre, CCDC No. 673335. Copies of this information may be obtained free of charge from the Director, Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge, CB21EZ, UK. (fax: +44-1223-336033, e-mail: deposit@ccdc.cam.ac.uk or via: www.ccdc.cam.ac.uk), and ¹H and ¹³C NMR spectra of compounds **5**, **8**, **12**, **15**, **20**, and **21**. Supplementary data associated with this article can be found, in the online version, at doi:10.1016/j.carres.2008.02.016.

References

- 1. Len, C.; Mackenzie, G. Tetrahedron 2006, 62, 9085-9107.
- Mendonca, F. J. B., Jr.; dos Anjos, J. V.; Sinou, D.; de Melo, S. J.; Srivastava, R. M. Synthesis 2007, 1890–1897, and references cited therein.
- Selected and recent references on unsaturated pyranosyl purines: (a) Pravdic, N. Carbohydr. Res. 1981, 97, 45–50; (b) Herscovici, J.; Argoullon, J. M.; Egron, M. J.; Antonakis, K. Carbohydr. Res. 1983, 112, 301–306; (c) Doboszewski, B.; Blaton, N.; Herdewijn, P. Tetrahedron Lett. 1995, 36, 1321–1324; (d) Perez-Perez, M.-J.; Doboszewski, B.; De Clercq, E.; Herdewijn, P. Nucleoside Nucleotide 1995, 14, 707–710; (e) Doboszewski, B.; Blaton, N.; Herdewijn, P. Nucleoside Nucleotide 1995, 14, 707–710; (e) Doboszewski, B.; Blaton, N.; Herdewijn, P. J. Org. Chem. 1995, 60, 7909–7919; (f) Polak, M.; Doboszewski, B.; Herdewijn, P.; Plavec, J. J. Am. Chem. Soc. 1997, 119, 9782–9792; (g) Guppi, S. R.; Zhou, M.; O'Doherty, G. A. Org. Lett. 2006, 8, 293–296.
- Selected and recent references on unsaturated pyranosyl pyrimidines: (a) Sugimura, H. Nucleoside Nucleotide Nucleic Acid 2000, 19, 629–635; (b) Thoithi, G. N.; Van Schepdael, A.; Busson, R.; Janssen, G.; Van Aerschot, A.; Herdewijn, P.; Roets, E.; Hoogmartens, J. Nucleoside Nucleotide Nucleic Acid 2000, 19, 189–203; (c) Lee, K.; Zhou, W.; Kelley, L.-L. C.; Momany, C.; Chu, C. K. Tetrahedron: Asymmetry 2002, 13, 1589–1598; (d) Len, C.; Violeau, B. Tetrahedron Lett. 2005, 46, 4835–4838; (e) Procopio, A.; Dalpozzo, R.; De Nino, A.; Nardi, M.; Oliverio, M.; Russo, B. Synthesis 2006, 15, 2608–2612; (f) Sabatino, D.; Damha, M. J. J. Am. Chem. Soc. 2007, 129, 8259–8270.
- 5. Pathak, T. Chem. Rev. 2002, 102, 1623-1667.
- (a) Sakthivel, K.; Pathak, T.; Suresh, C. G. *Tetrahedron* **1994**, *50*, 13251–13260; (b) Sakthivel, K.; Pathak, T.; Suresh, C. G. *Tetrahedron* **1996**, *52*, 1767–1772; (c) Sakthivel, K.; Pathak, T. *Tetrahedron* **1996**, *52*, 4877– 4882.
- (a) Bera, S.; Sakthivel, K.; Langley, G. J.; Pathak, T. *Tetrahedron* **1995**, *51*, 7857–7866; (b) Bera, S.; Langley, G. J.; Pathak, T. J. Org. Chem. **1998**, *63*, 1754–1760.
- (a) Deshpande, S. G.; Pathak, T. *Tetrahedron Lett.* 2004, 45, 2255–2258; (b) Deshpande, S. G.; Pathak, T. *Tetrahedron* 2007, 63, 602–608.
- 9. (a) Marquis, R. W. Ann. Rep. Med. Chem. 2004, 39, 79–98;
 (b) Meadows, D. C.; Gervay-Hague, J. Med. Res. Rev. 2006, 26, 793–814.
- Wu, J.-C.; Pathak, T.; Tong, W.; Vial, J.-M.; Remaud, G.; Chattopadhyaya, J. *Tetrahedron* **1988**, *44*, 6705–6722.
- (a) Ravindran, B.; Sakthivel, K.; Suresh, C. G.; Pathak, T. J. Org. Chem. 2000, 65, 2637–2641; (b) Ravindran, S.; Deshpande, S. G.; Pathak, T. Tetrahedron 2001, 57, 1093– 1098; (c) Sanki, A. K.; Pathak, T. Tetrahedron 2003, 59, 7203–7214.
- (a) Clayden, J.; Greeves, N.; Warren, S.; Wothers, P. *Organic Chemistry*; Oxford University Press: Oxford, 2001, pp 492–493; (b) Clayden, J.; Greeves, N.; Warren, S.; Wothers, P. *Organic Chemistry*; Oxford University Press: Oxford, 2001, pp 462–463.

- 13. Ohta, N.; Minamoto, K.; Yamamoto, T.; Koide, N.; Sakoda, R. Nucleoside Nucleotide **1996**, *15*, 833–855.
- 14. Gregersen, N.; Pedersen, C. Acta Chem. Scand. 1972, 26, 2695–2702.
- 15. Nakahara, Y.; Fujita, A.; Beppu, K.; Ogawa, T. Tetrahedron 1986, 42, 6465–6476.
- 16. Takamoto, T.; Sakakibara, T.; Matsumoto, M.; Sudoh, R. Carbohydr. Res. 1977, 53, 129–133.