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A series of twenty-five derivatives of tetrahydro-b-carbolines 1–3 was synthesized and assayed on FAAH
and TRPV1 and TRPA1 channels. Four carbamates, that is, 5a,c,e, and 9b inhibited FAAH with significant
potency and interacted also effectively with TRPV1 and TRPA1 nociceptive receptors, while ureas 7b,d,f,
and 8a,b were endowed with specific submicromolar TRPV1 modulating activities.

� 2012 Elsevier Ltd. All rights reserved.
The transient receptor potential vanilloid type 1 (TRPV1) is the
founding member of a large family of transient receptor potential
(TRP) channels, which typically acts as a molecular detector of nox-
ious signals in primary sensory neurons.1 The therapeutic potential
of targeting TRPV1 by agonists and antagonists, in particular for
chronic pain relief, has attracted an enormous amount of attention
over the past ten years.2 A wide range of stimuli are responsible for
TRPV1 activation including noxious heat, low extracellular pH and
a variety of chemical mediators. The prototypical endocannabinoid
anandamide (AEA) has been the first endogenous modulator of
TRPV1 to be identified, followed by other fatty acid conjugates of
biogenic amines such as N-arachidonoyldopamine, N-oleoyletha-
nolamine, and N-arachidonoylserotonin (AA-5-HT).3 In particular,
AA-5-HT exhibits interesting analgesic properties in models of
both inflammatory and neuropathic pain,4 owing to its peculiar
profile of ‘hybrid’ TRPV1 channel blocker and inhibitor of the endo-
cannabinoid degradative enzyme, fatty acid amide hydrolase
(FAAH), another attractive target involved in nociception.5 FAAH
inhibitors have in fact definitely demonstrated therapeutic benefit
in a variety of pain models.5

Two natural indoloquinazolone alkaloids endowed with vanil-
loid activity, evodiamine6 and rutaecarpine7 (Fig. 1), can be viewed
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as conformationally restricted tryptamine derivatives, thus bearing
a certain resemblance with AA-5-HT.

More recently, TRPV1 affinity has been also demonstrated for
certain acyl amides of salsolinol (e.g., N-arachidonoylsalsolinol,
Fig. 1), an endogenous tetrahydroisoquinoline formed by a Pic-
tet–Spengler condensation of dopamine with acetaldehyde.8

Tetrahydro-b-carbolines such as 6-hydroxy-1,2,3,4-tetrahydro-
b-carboline (1),9 6-hydroxy-1-methyl-1,2,3,4-tetrahydro-b-
carboline (2),10 and 1,2,3,4-tetrahydro-b-carboline (3),11 occurring
in mammals as a result of a reaction of serotonin or tryptamine
with formaldehyde or acetaldehyde,10,12 represent three con-
strained serotonin or tryptamine analogues. Therefore, we decided,
as a continuation of our previous studies on AA-5-HT,4 its ana-
logues,13 and other FAAH/TRP dual ligands based on the piperazi-
nylcarbamate and urea chemotypes,14 to prepare a number of
derivatives of carbolines 1–3 (compounds 4–9), and thus evaluate
the influence of the rigidification of the aminoethyl side chain of
the serotonin moiety of AA-5-HT on TRPV1 and FAAH activities
(Table 1). All compounds were tested on transient receptor poten-
tial ankyrin type-1 (TRPA1) as well.15 TRPA1 channel is expressed
in the polymodal C- and A-d fiber sensory neurons of the dorsal
root and trigeminal ganglia, is coexpressed with TRPV1 in a subset
of TRPV1-containing neurons, and is activated by noxious cold and
a variety of natural nocifensive or producing burning sensations
compounds, thus playing an important role in pain sensing.16 Since
all TRP channels are also rapidly desensitized by their agonists
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Scheme 1. Synthesis of compounds 4. Reagents and conditions: (a) RCO2H, HOBt/
EDC, DMF, rt, 1 h, then 1, Et3N, DMF, rt, 16 h.
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Figure 1. Structures of N-arachidonoylserotonin, alkaloids evodiamine and rutae-
carpine, N-arachidonoylsalsolinol, and tetrahydro-b-carbolines 1–3 (tryptamine
and phenethylamine moieties are highlighted in red).

ppm (t1) 3.04.05.06.07.08.0

0

50

100

150

NH aromatics C-1 H2 C-4 H2C-3 H2

NN
H

O

O

9b

1

3
4

Figure 2. 1H NMR spectrum of compound 9b in DMSO-d6 at room temperature.
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after activation,17 we also tested the capability of the compounds
to inhibit the activation of TRPV1 or TRPA1 by their canonical ago-
nists, capsaicin and allyl isothiocyanate. Therefore, for each com-
pound, both EC50 (for activation) and IC50 (for desensitization)
values were calculated. However, when exhibiting an EC50 >10 lM
and an IC50 in the low lM range, a compound is likely to behave as
a ‘true’ antagonist rather than as a desensitizer.

The synthesis of amides 4 was carried out by condensation of 1
(as the hydrochloride) with the appropriate carboxylic acids using
1-hydroxybenzotriazole (HOBt)/N-ethyl-N0-(3-dimethylaminopro-
pyl)carbodiimide hydrochloride (EDC) as the carboxylate activator
(Scheme 1). Carbamates 5, 6, 9a,b and ureas 7, 8, 9c,d were synthe-
sized by condensation of b-carbolines 1 (as the hydrochloride), 2,
and 3 (as the hydrochloride) with the appropriate aryl chlorofor-
mates or isocyanates (Scheme 2).18
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Scheme 2. Synthesis of compounds 5–9. Reagents and co
Most of compounds 4–9 displayed complex 1H and 13C NMR
spectra at room temperature, indicating their existence as inter-
converting rotamers. As an example, the 1H NMR spectrum of com-
pound 9b is shown in Figure 2.

In FAAH assays, amides 4 and ureas 7, 8, 9c,d were all essen-
tially inactive, whereas some of the carbamates (compounds 5a–
c,e and 9b) exhibited significant FAAH inhibitory activities. Amides
4, with the partial exception of 4d,e, had also modest effects on
TRPV1 and TRPA1 channels. Carbamates with meta-substituted
aromatic rings were more potent on FAAH than the para-substi-
tuted ones (compare compounds 5a,e and 5d,f), in line with previ-
ous results on AA-5-HT analogues,13 piperazinyl carbamates and
ureas,14 and arylcarbamic acid aryl esters.19 The presence of a
methyl group on the tetrahydro-b-carboline moiety was detrimen-
tal to the inhibitory potency (compare compounds 5e and 6). In
contrast, removal of the 6-OH group from carbamate 5e resulted
in a �six fold increase in potency (compound 9b), a result opposite
to that previously described by Fowler et al. for N-arachidonoyl-
tryptamine, a 2.3-fold weaker inhibitor of AEA hydrolysis than
AA-5-HT.20 Most of the carbamates were able to modulate both
TRPV1 and TRPA1 channels with EC50 and/or IC50 values <10 lM
(compounds 5a,c–f, and 9a,b). Four carbamates, that is 5a,c,e,
and 9b, acted as efficient triple FAAH/TRPV1/TRPA1 ligands and
could conceivably represent useful leads for novel analgesic com-
pounds targeting FAAH and additional players in pain. Carbamate
5b was the only dual FAAH/TRPV1 blocker identified, but with
potencies lower than those of AA-5-HT.

With the exception of 7c, all ureas showed good and selective
TRPV1 modulating activities. Particularly interesting in this respect
appeared to be compound 7b, endowed with selective activity in
the low nanomolar range. Recent investigations have been devoted
to the identification of TRPV1 regions involved in the recognition of
some ligands and in the prediction of their binding modes.21 The
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presence of a 4-t-Bu phenyl moiety in the lipophilic arm of TRPV1
modulators that can be traced back to capsaicinoids and resinifera-
toxin (RTX) was found frequently to be critical for potency, pre-
sumably related to optimal p–p stacking and hydrophobic
interactions.22 1-Methyl group on the carboline moiety reduced
the activity of ureas for TRPV1 (compare compounds 7b,d and
8a,b).

The influence of the removal of the 6-OH substituent on the TRP
activities was not uniform and both a reduction (compare com-
pounds 5d, 7b and 9a,c) and an improvement (compare com-
pounds 5e and 9b) of potencies, but not necessarily of efficacy,
was observed. Therefore, no definite conclusion can be drawn as
to the role of the 6-OH group in TRPV1 and TRPA1 modulation.
Anyway, among carbamates and ureas devoid of the 6-OH substi-
tuent, 9b and 9c exhibited submicromolar FAAH inhibitory/low
Table 1
Results of FAAH, TRPV1, and TRPA1 assays of derivatives of tetrahydro-b-carbolines 1,2, a

NNH

HO

R

O

4

NNH

R1

R2

5: R1 = OH; R
6: R1 = OH; R
9a,b: R1 = R2

Compound R or R3 FAAH (IC50,
lM)

TRPV1b

(efficacy)
TRPV
lM)

4a >10 <10 ND

4b >10 <10 ND

4c >10 <10 ND

4d Ph-4-t-Bu >10 71.8 ± 0.9 0.54
4e Ph-4-Ph >50 49.0 ± 1.6 6.42
4f CH2Ph-3-Ph >50 48.6 ± 0.5 11.80
5a Ph-3-t-Bu 3.69 ± 0.84 52.3 ± 0.5 5.1 ±
5b Ph-3-CF3 6.77 ± 0.85 <10 ND
5c Ph-3-(CH2)4CH3 6.25 ± 0.82 <10 ND
5d Ph-4-t-Bu >10 54.4 ± 0.4 0.4 ±
5e Ph-3-Ph 1.74 ± 0.03 12.5 ± 0.1 5.2 ±
5f Ph-4-Ph >10 37.6 ± 0.8 7.75
6 Ph-3-Ph >10 < 10 ND
7a Ph-3-t-Bu >10 30.7 ± 0.2 1.89
7b Ph-4-t-Bu >10 69.2 ± 0.7 0.019
7c Ph-3-CF3 >10 15.5 ± 1.3 7.43
7d Ph-4-CF3 >10 57.3 ± 0.2 0.26
7e Ph-3-Ph >50 78.3 ± 1.6 2.27
7f Ph-4-Ph >50 73.9 ± 2.6 0.17
8a Ph-4-t-Bu >50 68.2 ± 0.1 1.2 ±
8b Ph-4-CF3 >50 67.4 ± 0.3 0.47
9a Ph-4-t-Bu >50 17.30 ± 0.01 5.29
9b Ph-3-Ph 0.275 ± 0.04 20.6 ± 1.8 2.40
9c Ph-4-t-Bu >50 <10 ND
9d Ph-4-CF3 >50 <10 ND

ND, not determined when efficacy is lower than 10%.
a Data are means ± SEM of N = 3 determinations.
b As percent of ionomycin (4 lM).
c Determined against the effect of capsaicin (0.1 lM).
d As percent of allyl isothiocyanate (100 lM).
e Determined against the effect of allyl isothiocyanate (100 lM).
efficacy TRPA1 agonist activity and ‘true’23 TRPV1 antagonist prop-
erties, respectively, and deserve a special mention.

The EC50 and IC50 values at the same TRP channel were gener-
ally of the same order of magnitude and thus, in most cases, acti-
vation and desensitization potencies were comparable; some
discordances were, however, also evident, particularly for the
TRPA1 channel (see compounds 4a–c, 7b,f), suggesting in these
cases either the occurrence of antagonism (when the IC50 <<EC50)
or a poor capability of producing desensitization (when the
EC50 <<IC50).

Comparison of AA-5-HT and its analogues13 and tetrahydro-b-
carboline derivatives with identical R (or R3) groups revealed that
rigidification of the serotonin side chain generally reduced the
activity for FAAH and TRPV1, with only few exceptions (i.e., com-
pounds 5a,d for TRPV1).
nd 3a

OR3

O
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2 = Me
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7: R1 = OH; R2 =H
8: R1 = OH; R2 = Me
9c,d: R1 = R2 = H

NNH

R1
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NHR3

O

1 (EC50, TRPV1c (IC50,
lM)

TRPA1d

(efficacy)
TRPA1 (EC50,
lM)

TRPA1e (IC50,
lM)

9.30 ± 0.90 60.2 ± 0.1 5.24 ± 0.01 35.49 ± 0.77

10.60 ± 0.30 < 10 ND 11.67 ± 0.81

9.60 ± 0.03 16.7 ± 0.1 ND 20.17 ± 0.35

± 0.04 0.44 ± 0.01 64.9 ± 0.8 16.51 ± 0.59 30.60 ± 0.83
± 0.54 3.13 ± 0.35 83.5 ± 2.0 4.09 ± 0.56 12.90 ± 0.65

± 0.39 19.45 ± 0.30 109.6 ± 2.9 7.78 ± 0.86 15.30 ± 0.60
2.3 6.20 ± 0.10 65.4 ± 0.9 4.95 ± 0.10 10.47 ± 0.84

6.40 ± 0.10 113.0 ± 0.8 14.30 ± 0.25 26.32 ± 0.46
5.10 ± 0.10 81.4 ± 2.6 1.68 ± 0.32 3.25 ± 0.36

0.01 0.55 ± 0.5 73.9 ± 4.6 4.29 ± 1.03 3.40 ± 0.51
0.1 9.60 ± 0.20 77.5 ± 0.4 1.70 ± 0.04 3.48 ± 0.17
± 0.57 11.38 ± 0.37 73.4 ± 0.1 5.04 ± 0.03 9.76 ± 0.30

ND 59.1 ± 0.1 1.71 ± 0.02 5.36 ± 0.20
± 0.07 5.35 ± 0.42 38.1 ± 0.8 17.04 ± 1.09 34.87 ± 0.12

± 0.0012 0.001 ± 0.00001 17.9 ± 0.1 ND 21.11 ± 0.57
± 0.50 13.82 ± 0.77 88.8 ± 1.1 19.57 ± 0.75 55.36 ± 2.72
± 0.07 0.33 ± 0.02 91.6 ± 2.1 21.03 ± 0.10 24.56 ± 0.15
± 0.20 1.86 ± 0.11 136.5 ± 1.5 14.76 ± 0.86 17.03 ± 0.36
± 0.03 0.14 ± 0.01 93.3 ± 5.8 1.82 ± 0.75 18.84 ± 0.67
0.02 0.098 ± 0.05 117.5 ± 5.7 10.77 ± 0.10 22.50 ± 0.68
± 0.01 0.31 ± 0.01 70.5 ± 1.0 13.77 ± 0.62 35.12 ± 2.85
± 0.01 13.26 ± 1.23 117.8 ± 3.5 9.81 ± 0.83 3.36 ± 0.38
± 0.94 7.01 ± 0.29 33.4 ± 0.9 0.20 ± 0.04 2.84 ± 0.43

0.75 ± 0.01 52.6 ± 1.2 1.92 ± 0.29 3.90 ± 0.18
4.36 ± 0.67 102.2 ± 1.8 3.71 ± 0.25 7.14 ± 0.27
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In conclusion, in this Letter we have presented a series of tetra-
hydro-b-carboline derivatives designed as rigid analogues of AA-5-
HT and its congeners and have identified: (1) some carbamates
that inhibit FAAH with significant potency and interact also effec-
tively with TRPV1 and TRPA1 nociceptive receptors, and (2) a num-
ber of ureas endowed with submicromolar TRPV1 modulating
activities.
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