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We have discovered imidazo[1,2-b]pyridazine derivatives that show suppressive activity of inflammation
in arthritis models. We optimized the substructures of imidazo[1,2-b]pyridazine derivatives to combine
potent IKKb inhibitory activity, TNFa inhibitory activity in vivo and excellent pharmacokinetics. The com-
pound we have acquired, which had both potent activities and good pharmacokinetic profiles based on
improved physicochemical properties, demonstrated efficacy on collagen-induced arthritis models in
mice and rats.

� 2011 Elsevier Ltd. All rights reserved.
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Nuclear factor-jB (NF-jB) is a transcription factor that has a
crucial part in the immune system.1,2 NF-jB plays a number of
important roles such as immune response, inflammation, cell pro-
liferation, survival and cell death by regulating the expression of a
variety of genes of proteins including pro-inflammatory cytokines
(e.g., TNFa, IL-1, IL-6), chemokines, anti-apoptotic proteins, adhe-
sion molecules, osteoclastogenesis-related factors and inducible
proteins.3–7 NF-jB is implicated in the pathogenesis of multiple
inflammatory diseases and autoimmune diseases including rheu-
matoid arthritis. It is observed that NF-jB is highly active in the
site of inflammation.3–5,8

There are some signal transduction cascades for the activation
of NF-jB.6d,9 In the classical (canonical) pathway, known as one
of the major pathways, IKK complex (IKKa/IKKb/NEMO) plays an
important role in activating NF-jB (RelA/p50).9,10 RelA/p50 exists
as an inactive complex associated with IjB. The phosphorylation
of IjB by the IKK complex and subsequent K48-linked polyubiqui-
tination lead to the degradation of IjB. The released RelA/p50
promotes transcription of genes of pro-inflammatory cytokines
and other inducible proteins in nucleus.

Of the IKK components, IKKb is essential in the phosphorylation
of IjB. It is anticipated that a potent IKKb inhibitor could be a prom-
ising anti-inflammatory agent.2a,11,12 A number of pharmaceutical
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companies and research institutes have tried to develop IKKb inhib-
itors.13 We also continued our effort to acquire orally active small
molecule IKKb inhibitors.14,15 We have confirmed the potency of
imidazo[1,2-b]pyridazine derivatives as IKKb inhibitors as we have
reported compounds 1 and 2 showed potent IKKb inhibitory activ-
ity (Fig. 1).14 Furthermore, compounds 3 and 4 exhibited strong
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Figure 1. Potent IKKb inhibitors with an imidazo[1,2-b]pyridazine scaffold.14,15
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TNFa inhibitory activity in mice.15 In the following step, it becomes
important to find compounds that show efficacy in arthritis models
to develop an anti-inflammatory agent.

To resolve the issue, we need to explore the compounds which
combine potent IKKb inhibitory activity, TNFa inhibitory activity
in vivo and good pharmacokinetic properties. We consider that
compounds 3 and 4, which exhibited TNFa inhibitory activity in
vivo, did not necessarily show satisfactory plasma concentration
for continuously administrated studies.15 As a result, we decided
to further explore and modify compounds 1 and 2 with the goal
to increase plasma concentrations and functional activity to help
improve efficacy in arthritis models.

To begin with, we planned to modify the benzamide moiety in
the 3-position of imidazo[1,2-b]pyridazine. It was assumed that
the benzamide moiety affects the pharmacokinetic properties.16

The results are summarized in Table 1. Compounds 5d and 5e,
which have 2-fluorobenzamide moiety, showed greater TNFa
inhibitory activity in vivo. Improvement was considered to be
caused by the enhancement of oral absorption, which was
indicated as the improvement of values in the permeability test
with Madin–Darby canine kidney (MDCK) cells (Papp: 5d = 6.2,
5e = 5.6 compared with 1 = 2.1, 5a = 2.3 (�10�6 cm/s)).17 The
improvement of permeability is possibly due to the enhancement
of hydrophobicity as seen in the distribution coefficient values,
Table 1
The modification of the 3-position of imidazo[1,2-b]pyridazine.
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Compds Ar R1 IKKba IC50

(lM)
TNFa productionb

IC50 (lM)
Inhibition of
TNFa (%) in micec

Plasm
30 mg

1 a j 0.20 0.80 10 0.39
2 a l 0.055 6.8 No inhibition 0.007
3i 0.016 0.17 52 0.16
4i 0.017 1.2 61 0.45
5a a k 0.071 0.64 2.0 0.44
5b b j 20 – – –
5c c j 1.9 – – –
5d d j 0.30 1.2 60 0.11
5e d k 0.14 1.0 61 0.29
5f d l 0.064 1.3 No inhibition 0.14
5g d m 0.027 0.26 37 0.38
5h e l 0.41 4.1 – –
5i f j 0.20 4.0 – –
5j f k 0.14 3.7 – –
5k g k 0.68 – – –
5l h j 2.0 – – –
5m i j 19 – – –

a The method is described in Ref. 14.
b Mouse whole blood cell. This method is described in Ref. 15.
c The inhibition ratio of TNFa at the oral dose of 30 mg/kg in mice. This method is de
d Plasma concentration of test compounds at 90 min after oral administration. This m
e The method is described in Ref. 19.
f The method is described in Ref. 20.
g Parallel artificial membrane permeability assay. This method is described in Ref. 21
h Not tested.
i Structure, see Figure 1.
the masking effect of amide NH moiety by the formation of weak
internal hydrogen bonding between fluorine and NH of benzamide
and/or the weakening of crystalinity.16,18 However, there was con-
cern that the clearance of 5d and 5e seemed to be higher as ob-
served in the decrease of plasma concentration of 5d and 5e
compared with 1 and 5a at 90 min after oral administration. To re-
duce the clearance, we tried to change the terminal amine sub-
structures such as pyrrolidin-2-ylmethyl derivatives 5f and 5g.15

We found that 5g showed potent IKKb inhibitory activity, TNFa
inhibitory activity and a higher level of plasma concentration
(MDCK Papp: 5g = 4.2 � 10�6 cm/s). The 2- or 3-methyl benzamide
group such as 5b or 5c led to the decrease in IKKb inhibitory activ-
ities. IKKb inhibitory activity of 5b decreased 10-fold than that of
5c. It is considered that the methyl group interfered with the pla-
narity of phenyl moiety and the imidazo[1,2-b]pyridazine scaffold.
In the same reason, 3-pyridyl derivative 5j was more potent than
2-pyridyl derivative 5k in cell-free inhibitory assay. Compounds
5i and 5j showed lower inhibitory activities in mouse whole blood
cell assay for IKKb inhibitory activities because of lower permeabil-
ity as shown in the PAMPA values in Table 1. The substitution of
benzamide to five-membered heteroaryl carbamoyl moieties such
as 5l and 5m reduced IKKb inhibitory activities. It is considered
that the difference of angle from 1,4-phenyl, which is larger in
the 2,5-furyl moiety than in the 2,5-thienyl moiety, causes IKKb
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Log Df

(pH 7.4)
PAMPAgPe (�10�6 cm/s)
(pH 7.4)

71/–h 2.5 >50
5 77/– 1.8 0.84

33/– 3.4 >50
28/– 5.0 39
75/– 2.6 >50
–/– – –
–/– – –
79/- 2.7 >50
57/- 2.8 >50
85/- 1.8 19
87/46 3.1 >50
92/- 2.2 14
100/- 2.0 14
100/- 2.0 11
–/– – –
–/– – –
–/– – –
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Table 2
The optimization of the 6-position of imidazo[1,2-b]pyridazine.
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Compds R2 IKKba

IC50 (lM)
TNFa
productionb

IC50 (lM)

Inhibition of TNFa
(%) in micec

Plasma leveld at
30 mg/kg
p.o. (lg/ml)

Microsomal stabilitye

(%) mice/rats
Log Df

(pH 7.4)
PAMPAg Pe

(�10�6 cm/s)
(pH 7.4)

6a n-Propyl 0.064 0.61 26 0.54 69/–h 3.1 >50
6b n-Butyl 0.019 0.47 45 0.60 56/– 3.5 >50
6c n-Pentyl 0.026 0.71 No inhibition 0.093 21/– 4.0 >50
6d Cyclobutyl 0.017 0.23 56 1.4 54/42 3.3 >50
6e Cyclopentyl 0.016 0.31 14 0.66 65/– 3.6 >50
6f –(CH2)2SCH3 0.097 1.6 – – 44/– 2.8 >50
6g –(CH2)3SCH3 0.061 1.2 No inhibition 0.15 13/– 3.0 40
6h –(CH2)3F 0.12 1.5 32 0.48 85/47 2.5 33
6i –(CH2)4F 0.043 1.2 57 0.42 80/18 2.8 >50
6j –(CH2)5F 0.029 0.71 18 0.11 44/– 3.3 37

a-hSee notes of Table 1.
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inhibitory activities to decrease more in 5m. The 2-chlorobenzam-
ide 5h, instead of 2-fluorobenzamide 5f, was not adequate.

To further optimize 5g, we explored the substituent located at
the 6-position of imidazo[1,2-b]pyridazine. The results are summa-
rized in Table 2. The compounds with cycloalkyl moieties such as
6d and 6e were more potent than n-alkyl (6a–6c) or substituted al-
kyl moieties (6f–6j) in IKKb inhibitory activity and/or TNFa inhib-
itory activity in mouse whole blood cell assay. The plasma
concentrations were moderate in most compounds, and we could
see the tendency for plasma levels to become lower as the sizes
of 6-substituents become larger. The same tendency can be seen
in microsomal stability values.

We discovered that compound 6d possesses an excellent profile
with potent in vitro and in vivo inhibitory activities and higher
plasma concentrations based on good physicochemical properties
(MDCK Papp: 6d = 7.0 � 10�6 cm/s).22 Pharmacokinetic properties
of 5g and 6d in mice and rats are displayed in Table 3. The pharma-
cokinetic parameters of 6d showed remarkable improvement com-
pared with that of 5g in AUC, Cmax and clearance. It is considered
that the improvement of permeability by the covering of the polar
secondary amine in the 6-position of imidazo[1,2-b]pyridazine by
the more bulky cyclobutyl group would increase the plasma level.
The difference can be seen between the species. The difference of
the plasma protein binding ratio between mice and rats could be
considered as one of the reasons for the difference in species. On
the basis of these results, we selected 6d for further evaluation in
rodent arthritis models.

We evaluated 6d for the anti-inflammatory effect in a collagen-
induced arthritis model in mice. Compound 6d showed efficacy by
the reduction of paw swelling at the oral dose of 100 mg/kg.26 The
clinical scores were reduced by 67% (100 mg/kg of 6d = 2.6 ± 2.3,
Table 3
Pharmacokinetic properties of 5g and 6d in mice and rats at the oral dose of 30 mg/kg.

Compd AUC0–24 h (lg h/ml) MRT (h) CL/F (ml/min/kg)

Mouseb 5g 0.888 2.3 563
6d 1.86 2.0 269

Ratc 5g 23.1 4.9 22.2
6d 95.3 5.1 5.46

a The methods are described in Ref. 23.
b Male BALB/c mouse, 30 mg/kg, p.o. This method is described in Ref. 24.
c Female Wistar–Lewis rat, 30 mg/kg, p.o. This method is described in Ref. 25.
vehicle control = 8.0 ± 3.2, mean ± SD) when the compound was or-
ally administrated once a day for 14 days after the second chal-
lenge of collagen.

Due to the more favorable pharmacokinetic and protein binding
properties of 6d we decided conducted a collagen-induced arthritis
model in rats. Compound 6d significantly reduced paw swelling in
a dose-dependent manner (Fig. 2).27 The paw volume decreased
58% at the 24th day after the first immunization when the com-
pound was orally administrated at the dose of 100 mg/kg once a
day for 18 days after the second challenge of collagen. It was ob-
served that 6d delayed onset, relieved symptoms of paw swelling
and suppressed bone destruction. Even though 6d possesses lower
functional activity in the rat whole blood cell assay (mouse:
IC50 = 0.23 lM vs rat: IC50 = 1.7 lM)28 the superior pharmacoki-
netic and physical properties led to efficacy.

The conversion of the benzamide moiety and the combination
with terminal amine units in the 3-position of imidazo[1,2-b]pyr-
idazine was conducted as shown in Schemes 1 and 2. We prepared
the benzamide parts as arylboronic acid (pinacol ester) or aryltin
derivatives 8a–8i, which are commercially available or are pre-
pared by the known procedures as indicated in a previous re-
ports.29 Palladium catalyzed coupling reactions with bromide 7,15

followed by hydrolysis of esters as appropriate gave carboxylic acid
10a–10i (Scheme 1). The condensation reaction of 10a–10i with
amine units R1NH2 and subsequent deprotection when needed
lead to compounds 5a–5m (Scheme 2).

Synthesis of analogs containing 2-fluoro-N-{[(2S,4R)-4-fluoro-
pyrrolidin-2-yl]methyl}benzamide group (6a–6j) at the 3-position
of imidazo[1,2-b]pyridazine is described in Schemes 3 and 4. The
carboxylic acids 14a–14j were prepared from 1214 by way of nucle-
ophilic substitution, conversion and/or protection of the functional
Vdss/F (L/kg) T1/2(h) Cmax (lg/ml) Tmax (h) Protein bindinga

78 0.89 0.26 1.0 90
32 0.90 0.75 1.0 94
6.5 2.8 4.1 4.0 98
1.7 2.4 16 2.8 99



Figure 2. Effect of compound 6d on the collagen-induced arthritis model in rats.
Seven days after the first immunization, the second immunization was performed
and each dose of compound 6d was orally administrated once a day. Data are
expressed as mean ± SD. Statistical significance was determined using Dunnett’s
test. ⁄p <0.05, ⁄⁄p <0.01, ⁄⁄⁄p <0.001 compared with the vehicle control group.
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Scheme 2. Condensation reaction with terminal amine units. Reagents and
conditions: (a) R1NH2, EDC�HCl, HOBt, Et3N, CH2Cl2, 90% for 11a, 81% for 11d, 83%
for 11e, 88% for 11f, 95% for 11g, quant. for 11h, for 11i–11k, 69% for 11m; (b)
R1NH2, DMT-MM, DMF, 94% for 5b, 94% for 5c, 57% for 5l; (c) TFA, CH2Cl2, 73% for 5f,
87% for 5g, 67% 2 steps for 5i, 68% 2 steps for 5j, 59% 2 steps for 5k, 69% for 5m; (d)
4 N HCl in 1,4-dioxane, 86% for 5a, 79% for 5d, 59% for 5e, 19% for 5h.
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groups and Suzuki–Miyaura coupling reaction (Scheme 3). Com-
pounds 6a–6j were synthesized by the condensation of 14a–14j
with tert-butyl (2S,4R) 2-(aminomethyl)-4-fluoropyrrolidinecarb-
oxylate, followed by the cleavage of protective groups (Scheme 4).

In conclusion, we successfully optimized the substructures at
the 3- and 6-positions of imidazo[1,2-b]pyridazine derivatives to
combine potent IKKb inhibitory activity, TNFa inhibitory activity,
good pharmacokinetics. During the optimization process it became
clear that the 2-fluorobenzamide improved permeability of the
compounds while the (2S,4R)-4-fluoropyrrolidin-2-ylmethyl group
improved potency and improved physicochemical properties as
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EDC�HCl, HOBt, Et3N, CH2Cl2, for 15a–15c, 79% for 15d, for 15e; (b) tert-butyl
(2S,4R)-2-(aminomethyl)-4-fluoropyrrolidinecarboxylate, DMT-MM, DMF, 88% for
15f, 85% for 15g, 89% for 15h, quant. for 15i, 99% for 15j; (c) TFA, CH2Cl2, 56% 2 steps
for 6a, 63% 2 steps for 6b, 59% 2 steps for 6c, 96% for 6d, 79% 2 steps for 6e, 45% for
6f, 61% for 6g, 84% for 6h, 81% for 6i, 45% for 6j.
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cyclopropylmethylamino moiety with cyclobutylamino moiety at
position 6 on the imidazo[1,2-b]pyridazine group. Compound 6d
showed potent functional activity, favorable physical properties,
good pharmacokinetics, and suitable plasma concentration level
that led to excellent efficacy in collagen-induced arthritis models.
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