Synthesis and Structure of Novel Germanium-Containing Cyclic Polysulfides

Tsuyoshi Matsumoto, Norihiro Tokitoh, and Renji Okazaki*

Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113, Japan

Midori Goto

National Institute of Materials and Chemical Research. 1-1 Higashi, Tsukuba, Ibaraki 305, Japan

Received September 30, 1994[®]

Novel germanium-containing cyclic polysulfides 1,2,3,4,5-tetrathiagermolanes 5 (Tbt(Ar)- GeS_4 ; Tbt = 2,4,6-tris[bis(trimethylsily])methyl]phenyl; Ar = mesityl, 2,6-diethylphenyl, 2,4,6triisopropylphenyl) have been synthesized, and the molecular structure of $Tbt(Mes)GeS_4$ was determined by X-ray crystallographic analysis. Reaction of the tetrathiagermolanes 5 with diphenyldiazomethane gave 1,2,3,5-tetrathia-4-germacyclohexanes 10, 1,2,4,5-tetrathia-3-germacyclohexanes 11, and 1,2,4-trithia-3-germacyclopentanes 12. The structure of 1,2,3,5tetrathia-4-germacyclohexane 10a was determined by X-ray structural analysis.

Introduction

In recent years, there has been much interest in the chemistry of polysulfido complexes containing transition metals because of their structural features, synthetic utility, and biological activities.¹ There have been reported syntheses and structures of some cyclic polysulfides such as Cp_2TiS_5 ,² Cp_2VS_5 ,³ Cp_2MoS_4 ,⁴ Cp_2WS_4 ,⁵ Cp_2TiS_3 ,⁶ and Cp_2ZrS_3 ⁶ ($Cp = C_5H_5$, $Cp^* = C_5Me_5$), which can be used as versatile sources to prepare the sulfur rings of predetermined size. On the other hand, polysulfides containing group 14 elements such as Si, Ge, and Sn had not been investigated when we started the present study. Recently we preliminarily reported the synthesis of the first 1,2,3,4,5-tetrathiametallolanes $RR'MS_4$ (M = Si, Ge, Sn)^{7,8} having an efficient steric protection group, 2,4,6-tris[bis(trimethylsilyl)methyl]-

phenyl (denoted as Tbt).⁹ Immediately after our communication⁷ Steudel independently reported the synthesis of the same type of polysulfides Ph_2MS_4 (M = Si, Ge).¹⁰ In this paper we delineate a detailed account of the synthesis of kinetically stabilized 1,2,3,4,5-tetrathiagermolanes and their reactions, which gave some novel cyclic polysulfides.¹¹

Results and Discussion

Synthesis of Diarylgermanes. The trichlorogermane TbtGeCl₃ (1) was synthesized from tetrachlorogermane and TbtLi, which was prepared by treatment of TbtBr with t-BuLi in THF. Another aryl group was introduced by nucleophilic reaction with Grignard reagents, giving the bromochlorogermanes Tbt(Ar)GeBrCl (2) instead of the expected Tbt(Ar)GeCl₂.¹² The formation of 2 can be rationalized in terms of rapid chlorinebromine exchange in $TbtGeCl_3$ or $Tbt(Ar)GeCl_2$ by bromide ion derived from either ArMgBr or LiBr generated in the preparation of TbtLi from TbtBr. In these reactions no trisubstituted halogermane Tbt(Ar)₂GeX was formed even upon addition of excess Grignard reagents (ArMgBr), in contrast to similar reactions using tin compounds.⁸ This is most likely because of bond lengths around the Ge atom being shorter than those around the Sn atom, which renders 2 more congested than the corresponding Sn compound and hence prohibits the attack of a second Grignard reagent (Scheme 1).

[®] Abstract published in Advance ACS Abstracts, December 15, 1994. (1) For reviews on polychalcogenido complexes, see: (a) Müller, A.; Diemann, E.; Jostes, R.; Bögge, H. Angew. Chem., Int. Ed. Engl. 1981, 20, 934. (b) Mülller, A.; Jaegermann, W.; Enemark, J. H. Coord. Chem. Rev. 1982, 46, 245. (c) Draganjac, M.; Rauchfuss, T. B. Angew. Chem., Int. Ed. Engl. 1985, 24, 742. (d) Coucouvanis, D.; Hadjikyriacou, A.; Draganjac, M.; Kanatzidis, M. G.; Ileperuma, O. Polyhedron 1986, 5, b) Agailjac, M., Kallatzluis, M. G., Heperulia, O. Polynezhon 1986, 5, 349. (e) Müller, A. Polyhedron 1986, 5, 323. (f) Müller, A.; Diemann, E. Adv. Inorg. Chem. 1987, 31, 89. (g) DuBois, M. R. Chem. Rev. 1989, 89, 1. (h) Ansari, M. A.; Ibers, J. A. Coord. Chem. Rev. 1990, 100, 223. (i) Kolis, J. W. Coord. Chem. Rev. 1990, 105, 195.

^{(2) (}a) Köpf, H.; Block, B.; Schmidt, M. Chem. Ber. 1968, 101, 272. (b) Samuel, E. Bull. Soc. Chim. Fr. 1966, 3548. (c) Schmidt, M.; Block, (b) Samuel, E. Bull. Soc. Chim. Fr. 1960, 3548. (c) Schmidt, M.; Block,
B.; Block, H. D.; Köpf, H.; Wilhelm, E. Angew. Chem., Int. Ed. Engl.
1968, 7, 632. (d) Köpf, H.; Block, B. Chem. Ber. 1969, 102, 1504. (e)
Köpf, H.; Hazari, S. K. S.; Leitner, M. Z. Naturforsch., B: Anorg.
Chem., Org. Chem. 1978, 33B, 1398. (f) Steudel, R.; Strauss, R. J.
Chem. Soc., Dalton Trans. 1984, 1775.
(3) (a) Köpf, H.; Wirl, A.; Kahl, W. Angew. Chem., Int. Ed. Engl.
1971, 10, 137. (b) Müller, E. G.; Petersen, J. L.; Dahl, L. F. J.
Organomet. Chem. 1976, 111, 91.

Organomet. Chem. 1976, 111, 91.

 ^{(4) (}a) Köpf, H. Angew. Chem., Int. Ed. Engl. 1969, 8, 375. (b) Köpf,
 H.; Hazari, S. K. S. Z. Anorg. Allg. Chem. 1976, 426, 49.
 (5) Köpf, H.; Kahl, W.; Wirl, A. Angew. Chem., Int. Ed. Engl. 1970,

^{9,801.}

⁽⁶⁾ Bird, P. H.; McCall, J. M.; Shaver, A.; Siriwardane, U. Angew. Chem., Int. Ed. Engl. 1982, 21, 384.

⁽⁷⁾ Tokitoh, N.; Suzuki, H.; Matsumoto, T.; Matsuhashi, Y.; Okazaki, R.; Goto, M. J. Am. Chem. Soc. 1991, 113, 7047.

⁽⁸⁾ Matsuhashi, Y.; Tokitoh, N.; Okazaki, R. Organometallics 1993, 12. 1351.

⁽⁹⁾ Although the 2,4,6-tris[bis(trimethylsilyl)methyl]phenyl group has been denoted as Tb in our previous papers, we change this acronym to Tbt in order to avoid confusion with the symbol of an element (terbium). (a) Okazaki, R.; Unno, M.; Inamoto, N. Chem. Lett. **1987**, 2293. (b) Okazaki, R.; Unno, M.; Inamoto, N.; Yamamoto, G. Chem. Lett. **1989**, 493. (c) Okazaki, R.; Unno, M.; Inamoto, N. Chem. Lett. 1989, 791.

^{(10) (}a) Albertsen, J.; Steudel, R. Phosphorus, Sulfur Silicon Relat. Elem. 1992, 65, 165. (b) Steudel, R. In The Chemistry of Inorganic Ring Systems; Steudel, R., Ed.; Elsevier: Amsterdam, 1992; pp 233-253

⁽¹¹⁾ Preliminary reports: Tokitoh, N.; Matsumoto, T.; Okazaki, R. Tetrahedron Lett. 1991, 32, 6143. See also ref 7.

⁽¹²⁾ The structure of 2 was established by mass spectroscopy and elemental analysis.

Treatment of 2 with $LiAlH_4$ gave dihydrogermanes 3 in good yields. Dibromogermanes 4 could be obtained by bromination of 3 using 2 equiv of N-bromosuccinimide.

Synthesis of Tetrathiagermolanes. Hydrogermanes are known to be sulfurized by elemental sulfur at elevated temperatures.¹³ Reaction of a mixture of diarylgermanes **3** and elemental sulfur at 160 °C gave 1,2,3,4,5-tetrathiagermolanes **5** as pale yellow crystals in good yields with concomitant generation of gaseous hydrogen sulfide. Compounds **5** are novel cyclic polysulfides containing a germanium atom (Scheme 2).

Recently Steudel et al. reported the synthesis of the same type of polysulfide, Ph_2GeS_4 , by the reaction of $Cp_2TiS_2GePh_2$ with S_2Cl_2 .¹⁰ While Ph_2GeS_4 is unstable to decompose above -20 °C, tetrathiagermolanes **5** are remarkably stable under ambient conditions because of sterically bulky groups on germanium. Their thermal stability is also shown in their high decomposition points (**5a**, 171-173 °C; **5b**, 222-224 °C; **5c**, 211-212 °C).

Some years ago, Satgé and his co-workers reported the preparation of (diarylgermyl)lithiums Ar_2GeHLi (Ar = Ph, Mes) by treatment of Ar_2GeH_2 with *t*-BuLi in THF.¹⁴ Although lithiation of diarylgermane **3a**, bearing bulkier groups, did not proceed under their conditions, addition of HMPA was found to be effective for the lithiation of **3a**. In the case of **3c**, a high concentra-

Figure 1. ORTEP drawing of 1,2,3,4,5-tetrathiagermolane 5a. Selected bond lengths (Å) and angles (deg): Ge(1)–S(1), 2.320(2); S(1)–S(2), 2.046(3); S(2)–S(3), 2.052(5); S(3)–S(4), 2.048(3); S(4)–Ge(1), 2.257(2); Ge(1)–C(1), 1.960-(6); Ge(1)–C(2), 1.996(8); S(1)–Ge(1)–S(4), 98.4(1); Ge(1)–S(1)–S(2), 102.2(2); S(1)–S(2)–S(3), 100.4(2); S(2)–S(3)–S(4), 98.3(2); S(3)–S(4)–Ge(1), 99.7(2); C(1)–Ge(1)–S(1), 119.4(2); C(1)–Ge(1)–S(4), 104.2(2); C(2)–Ge(1)–S(1), 96.0-(2); C(2)–Ge(1)–S(4), 118.2(2); C(1)–Ge(1)–C(2), 119.4(3).

tion of 3c and HMPA was necessary. The formation of germyllithium 6 was confirmed by quenching with deuterated water (Scheme 3).

Germyllithium **6a**, thus prepared in situ, was allowed to react with elemental sulfur in refluxing THF to give **5a** in high yield. In the synthesis of **5c**, bearing bulkier groups, DME was used as solvent instead of THF, because a higher temperature was necessary for the reaction to proceed.

Tetrathiagermolanes 5 were also synthesized via treatment of dihalogermanes 2 with t-BuLi, followed by addition of elemental sulfur.

Structure of 1,2,3,4,5-Tetrathiagermolanes 5. Compounds 5 showed satisfactory spectral and analytical data. The molecular structure of 5a was definitively determined by X-ray crystallographic analysis, and an ORTEP drawing is shown in Figure 1. Of particular note is the preferred distorted half-chair conformation of nearly envelope type in the GeS₄ five-membered ring. The distances between the two germanium-sulfur bonds are different (2.32 and 2.26 Å), whereas there is no distinct alternation in S-S bond lengths of the sulfur chain.

It should be noted that all of the reactions gave only five-membered polysulfides selectively, as in the case of polysulfides containing Si or Sn (8 and 9).^{7,8} As was discussed in a previous paper concerning tetrathiastannolanes,⁸ the isolation of only five-membered-ring compounds is probably due to the steric repulsion between the bulky Tbt and Ar (Mes, Dep or Tip) groups substituted on the Ge atom. It enlarges the bond angle of C-Ge-C and hence narrows the angle S-Ge-S, thus

 ⁽¹³⁾ For example, see: Vyazankin, N. S.; Bochkarev, M. N.; Sanina,
 L. P. Zh. Obshch. Khim. 1966, 36, 166.

⁽¹⁴⁾ Castel, A.; Riviere, P.; Satgé, J.; Ko, H. Y. Organometallics **1990**, 9, 205.

^{*a*} Values in parentheses denote conversion yields.

favoring the selective formation of the five-membered ring.

Reactions of Tetrathiagermolanes 5 with Diphenyldiazomethane.¹¹ Novel polysulfides 5 have two types of S-S bonds in their five-membered-ring systems. We became interested in the reactions of 5 with diphenyldiazomethane, because they would not only provide information on the reactivity of these S-S bonds but also lead to the formation of new germaniumcontaining heterocycles. When 5a was treated with a large excess of diphenyldiazomethane in refluxing benzene for 2.5 h, two isomeric products, i.e. 1,2,3,5tetrathia-4-germacyclohexane 10a and 1,2,4,5-tetrathia-3-germacyclohexane 11a were isolated in 38 and 18% yields, respectively, along with 1,2,4-trithia-3-germacyclopentane 12a (14%) (Scheme 4). The structures of the two isomers 10a and 11a were determined by their chemical reactivity and an X-ray structural analysis of 10a (vide infra).

Diazomethanes are known to generate the corresponding carbene in the presence of catalytic amount of Cu salts.¹⁵ Reaction of **5a** with diphenyldiazomethane in benzene in the presence of CuCl at room temperature proceeded very slowly to give **10a** and **11a** in a 1:1 ratio along with a small amount of **12a** and the recovered starting material **5a**.

To clarify the mechanism, reactions of isolated 10a and 11a with diphenyldiazomethane were carried out in refluxing benzene. No reaction took place for 10a even after 4 h (longer than the reaction time in reaction 1 of Scheme 4), whereas refluxing for 14 h resulted in 14% of 12a with 78% recovery of 10a. Similar results were obtained for 11a (Scheme 5). These results show

that **12a** is generated directly from the reaction of **5a** and diphenyldiazomethane.

A plausible mechanism is shown in Scheme 5. In reaction 2 of Scheme 4, an electrophilic attack occurs on the sulfur atom at the kinetically favorable 2-position, followed by ring expansion of the intermediary sulfonium ylide 13 (paths c and f of Scheme 5) to give 10a and 11a. Trithiagermacyclopentane 12a is probably produced by further reaction of diphenylcarbene with trithiagermacyclobutane 14 formed via path d or e. This mechanism can account for the 1:1 ratio of 10a and 11a, because there seems to be neither kinetic nor thermodynamic preference between paths a and b.

On the other hand, a reaction at higher temperature (reaction 1 of Scheme 4) would make possible an attack also on the sulfur atom at the 1-position (Scheme 6), thus enhancing the yield of 10a (reaction 1). Path k is thought to be impossible because of unfavorable steric hindrance.

Reaction of 5c, bearing a bulkier Tip group on germanium, gave only the two isomeric six-memberedring compounds 10c and 11c (Scheme 7). However, trithiagermacyclopentane 12c could be synthesized by desulfurization of 10c with hexamethylphosphorous triamide. We previously reported a similar reaction with

⁽¹⁵⁾ Helquist, P. In *Comprehensive Organic Synthesis*; Trost, B. M., Fleming, I., Eds.; Pergamon Press: Oxford, U.K., 1991; Vol. 4, pp 951– 998, and references cited therein.

11a <u>P(NMe₂)₃</u> THF / reflux 12a (5%) + 11a (91%)

Scheme 9

diphenyldiazomethane using the tin analog 9 (Ar = Tip), where three products corresponding to 10-12 were obtained.¹⁶ The formation of a trithiastannacyclopentane derivative in the reaction of 9 is considered to result from the reduced congestion around the tin atom which favors an electrophilic attack on the sulfur at the 1-position, leading to a trithiastannacyclobutane, a possible precursor of the trithiastannacyclopentane.

Structures of 10 and 11. (1) Desulfurization **Reactions.** Although there are three possible isomers for a $GeCS_4$ ring system, i.e., 10, 11, and 1,2,3,4tetrathia-5-germacyclohexane, the last isomer is reasonably excluded as a reaction product of 5 with diphenyldiazomethane because of its severe steric congestion. In order to determine the structure of 10 and 11, they were subjected to a desulfurization reaction. Reaction of 10a with hexamethylphosphorous triamide in THF at room temperature gave 12a in 83% yield, whereas a similar reaction of 11a in refluxing THF afforded 12a only in 5% yield with 91% of 11a being recovered (Scheme 8). This fact clearly indicates that 10a has a 1,2,3,5tetrathia-4-germacyclohexane skeleton, because in this structure sulfur at the 2-position is exposed to an attack by the phosphorus reagent while both sulfurs in 11 are sterically protected.

Interesting thermal isomerization was observed for 10a in $CDCl_3$ at 100 °C to give the isomer 11a (37%) along with the two types of ring-contraction products 5a (17%) and 12a (9%) and recovered 10a (37%). A possible mechanism is shown in Scheme 9. The first step would be a heterolytic cleavage of the Ge-S bond due to steric repulsion between aryl groups on Ge and C atoms. Path *m* would give the sulfonium ylide 13, which would further react as shown in Scheme 6. Path *n* would give intermediate 14, which eventually affords 12a. Neither thermal decomposition nor isomerization was observed below 80 °C.

Figure 2. ORTEP drawing of 1,2,3,5-tetrathia-4-germacyclohexane 10a. Selected bond lengths (Å) and angles (deg): Ge(1)-S(1), 2.290(2); S(1)-C(3), 1.864(6); C(3)-S(2), 1.851(6); S(2)-S(3), 2.012(3); S(3)-S(4), 2.045(3); S(4)-Ge-(1), 2.251(2); Ge(1)-C(1), 1.997(5); Ge(1)-C(2), 1.977(6); C(1)-Ge(1)-C(2), 113.7(2); C(1)-Ge(1)-S(1), 114.1(2); C(1)-Ge(1)-S(4), 102.0(2); C(2)-Ge(1)-S(1), 103.3(2); C(2)-Ge-(1)-S(4), 121.0(2); Ge(1)-S(1)-C(3), 111.8(2); S(1)-C(3)-S(2), 110.9(3); C(3)-S(2)-S(3), 103.3(2); S(2)-S(3)-S(4),106.5(1); S(3)-S(4)-Ge(1), 104.3(1); S(1)-C(3)-C(4), 103.6(4); S(1)-C(3)-C(5), 114.0(4); S(2)-C(3)-C(4), 102.9-(4); S(2)-C(3)-C(5), 111.9(4); C(4)-C(3)-C(5), 112.8(5).

Figure 3. Torsion angles of 10a.

(2) X-ray Structural Analysis. To distinguish 10a from 11a, the molecular structure of 10a was definitively determined by X-ray crystallographic analysis, as shown in Figure 2. The molecular geometry of 10a is of great interest as the first example of tetrathiager-macyclohexane. As in the case of known examples of saturated six-membered rings containing sulfurs such as 1,3,5-trithiacyclohexane,¹⁷ 1,2,3,4-tetrathiacyclohexane,¹⁸ and cyclohexathiane,¹⁹ 10a adopts a chair conformation. Torsional angles shown in Figure 3 indicate that the germanium atom-containing moiety is significantly flatter than the carbon-containing moiety, though 10a shows an average torsional angle of 65.3°, which is comparable to that of 1,3,5-trithiacyclohexane (ca. 64°).¹⁷

Concluding Remarks

We have succeeded in the syntheses of novel cyclic polysulfides containing germanium, such as Tbt(Ar)-

⁽¹⁶⁾ Matsuhashi, Y.; Tokitoh, N.; Okazaki, R.; Goto, M. Organometallics 1993, 12, 2573.

⁽¹⁷⁾ Valle, G.; Carazzolo, G.; Mammi, M. Ric. Sci., Parte 2: Sez. A
1965, 8, 1469; Chem. Abstr. 1966, 65, 1514.
(18) Fehér, F.; Klaeren, A.; Linke, K.-H. Acta Crystallogr., Sect. B

⁽¹⁸⁾ Feher, F.; Klaeren, A.; Linke, K.-H. Acta Crystallogr., Sect. B 1972, 28, 534.

⁽¹⁹⁾ Donohue, J.; Caron, A.; Goldish, E. J. Am. Chem. Soc. 1961, 83, 3748.

 GeS_4 (5), $Tbt(Ar)GeS_4CPh_2$ (two isomers) (10 and 11), and $Tbt(Ar)GeS_3CPh_2$ (12), by taking advantage of the bulky groups Tbt and Ar (Mes, Dep, Tip), and two of the polysulfides have been crystallographically analyzed. It is noteworthy that our tetrathiagermolanes 5 are much more stable than the recently reported Ph₂-GeS₄,¹⁰ indicating the importance of the bulky group Tbt in stabilizing the tetrathiagermolane skeleton, which is otherwise highly susceptible to hydrolysis. The polysulfides synthesized in the present work are considered to be useful precursors of novel low-coordinated germanium species which are of much current interest. We have preliminarily reported the synthesis of the first stable diarylgermanethione, Tbt(Tip)Ge=S, by desulfurization of Tbt(Tip)GeS₄.²⁰ Further investigation along this line is now under way.

Experimental Section

General Procedure. All melting points were uncorrected. All solvents used in the reactions were purified by the reported methods. THF was purified by distillation from benzophenone ketyl before use. All reactions were carried out under an argon atmosphere unless otherwise noted. Preparative gel permeation liquid chromatography (GPLC) was performed by LC-908 with JAI gel 1H and 2H columns (Japan Analytical Industry) with chloroform as solvent. Dry column chromatography (DCC) was performed with ISN silica DCC 60A. Preparative thin-layer chromatography was carried out with Merck Kieselgel 60 PF254 (Art. No. 7747). The ¹H NMR (500 MHz) and ¹³C NMR spectra (125 MHz) were measured in CDCl₃ with a Bruker AM-500 spectrometer using CHCl₃ as internal standard.

Preparation of {2,4,6-Tris[bis(trimethylsilyl)methyl]phenyl}bromochloro(mesityl)germane (2a). To a solution of 1-bromo-2,4,6-tris[bis(trimethylsilyl)methyl]benzene9a (Tbt-Br; 10.0 g, 15.9 mmol) in THF (150 mL) was added t-BuLi (1.61 M in pentane, 22 mL, 35 mmol) at -78 °C. After the mixture was stirred for 10 min, GeCl₄ (1.9 mL, 17.4 mmol) was added at -78 °C. The reaction mixture was warmed to room temperature within 10 h to give a solution of TbtGeCl₃, to which MesMgBr (0.9 M in THF, 34 mL, 31 mmol) prepared from Mg and MesBr was added at room temperature. After this solution was stirred for 10 h, a few drops of aqueous NH₄-Cl was added and almost all of the THF was removed under reduced pressure. Chloroform and diluted HCl were added to the residue, which was extracted by CHCl₃ several times. The organic layer was dried over MgSO4, and the solvent was removed under reduced pressure. The white solid thus obtained was dissolved into CH₂Cl₂, and to the solution was added approximately the same volume of ethanol to afford a precipitate of Tbt(Mes)GeBrCl (2a; 9.5 g, 70%) as white crystals by the evaporation of CH₂Cl₂ at room temperature under reduced pressure. 2a: white crystals; mp 225-227 °C; ¹H NMR (CDCl₃, 500 MHz) δ -0.02 (s, 9H), 0.009 (s, 9H), 0.014 (s, 9H), 0.05 (s, 9H), 0.06 (s, 18H), 1.35 (s, 1H), 2.26 (s, 3H), 2.57 (br s, 1H), 2.61 (s, 6H), 2.73 (br s, 1H), 6.30 (br s, 1H), 6.44 (br s, 1H), 6.84 (s, 2H); $^{13}\mathrm{C}$ NMR (CDCl₃, 125 MHz) δ 0.81 (q), 0.87 (q), 1.03 (q), 1.30 (q), 1.32 (q), 1.57 (q), 20.91 (q), 25.49 (q), 27.49 (d), 27.64 (d), 30.81 (d), 123.44 (d), 128.43 (d), 130.25 (s), 130.55 (d), 137.59 (s), 140.69 (s), 141.44 (s), 146.63 (s), 150.40 (s), 150.77 (s); high-resolution FAB-MS observed m/z 858.2031, calcd for C₃₆H₇₀⁷⁹Br³⁵Cl⁷⁴GeSi₆ 858.2177.

Preparation of {2,4,6-Tris[bis(trimethylsilyl)methyl]phenyl}bromochloro(2,6-diethylphenyl)germane (2b). Compound **2b** was synthesized by the same procedure as that for **2a**, except that the reaction with DepMgBr (Dep = 2,6diethylphenyl) was performed under reflux. TbtBr (5.0 g, 7.9 mmol), GeCl₄ (0.9 mL, 8.7 mmol), and DepMgBr (1.1 M in THF, 12 mL, 13 mmol) gave Tbt(Dep)GeBrCl (**2b**; 4.5 g, 65%). **2b**: white crystals; mp 215–216 °C; ¹H NMR (CDCl₃, 500 MHz) δ –0.05 (s, 9H), -0.005 (s, 9H), 0.003 (s, 9H), 0.02 (s, 9H), 0.05 (s, 18H), 1.31 (t, J = 7.3 Hz, 6H), 1.34 (s, 1H), 2.58 (br s, 1H), 2.73 (br s, 1H), 2.93 (br s, 2H), 3.01 (br s, 2H), 6.28 (s, 1H), 6.42 (s, 1H), 7.10 (d, J = 7.7 Hz, 2H), 7.32 (t, J = 7.7 Hz, 1H); ¹³C NMR (CDCl₃, 125 MHz) δ 0.80 (q), 0.89 (q), 1.03 (q), 1.32 (q), 1.41 (q), 1.65 (q), 16.22 (q), 27.30 (d), 27.55 (d), 29.99 (t), 30.74 (d), 123.42 (d), 127.82 (d), 128.44 (d), 130.93 (d), 131.10 (s), 140.32 (s), 146.48 (s), 147.64 (s), 150.00 (s), 150.38 (s); high-resolution FAB-MS observed *m*/*z* 872.2130; calcd for C₃₇H₇₂⁷⁹Br³⁵Cl⁷⁴GeSi₆ 872.2334. Anal. Found: C, 54.93; H, 9.42; Br, 9.03; Cl, 4.01. Calcd for C₃₇H₇₂BrClGeSi₆: C, 50.88; H, 8.31; Br, 9.15; Cl, 4.06.

Preparation of {2,4,6-Tris[bis(trimethylsilyl)methyl]phenyl}bromochloro(2,4,6-triisopropylphenyl)germane (2c). Compound 2c was synthesized by the same procedure as that for 2a, except that the reaction with TipMgBr was performed under reflux. The use of TbtBr (5.0 g, 8.0 mmol), GeCl₄ (0.9 mL, 8.7 mmol), and TipMgBr (1.8 M in THF, 8.5 mL, 15 mmol) gave Tbt(Tip)GeBrCl (2c; 5.0 g, 66%). 2c: white crystals; mp 232–233 °C; ¹H NMR (CDCl₃, 500 MHz) δ -0.07 (s, 9H), -0.02 (s, 9H), 0.045 (s, 9H), 0.048 (s, 9H), 0.08 (s, 9H), 0.10 (s, 9H), 1.04 (br s, 3H), 1.16 (br s, 3H), 1.20 (d, J = 6.9 Hz, 6H), 1.28 (d, J = 6.9 Hz, 6H), 1.33 (s, J = 6.9 Hz, 6H1H), 2.49 (br s, 1H), 2.63 (br s, 1H), 2.84 (sept, J = 6.9 Hz, 1H), 3.28 (br s, 1H), 4.09 (br s, 1H), 6.31 (br s, 1H), 6.43 (br s, 1H), 7.03 (s, 2H); $^{13}\mathrm{C}$ NMR (CDCl₃, 125 MHz) δ 0.82 (q), 0.87 (q), 0.96 (q), 1.55 (q), 1.85 (q), 2.12 (q), 22.70 (q \times 2), 23.73 (q), 23.77 (q), 24.50 (q \times 2), 26.67 (d), 26.97 (d), 27.47 (d), 28.13 (d), 30.72 (d), 34.28 (d), 122.66 (d), 123.39 (d), 123.84 (d), 128.96 (d), 131.49 (s), 136.31 (s), 145.83 (s), 149.44 (s), 149.92 (s), 151.59 (s), 152.50 (s); high-resolution FAB-MS observed m/z942.3298, calcd for $C_{42}H_{82}^{79}Br^{35}Cl^{74}GeSi_6$ 942.3116.

Preparation of {2,4,6-Tris[bis(trimethylsilyl)methyl]phenyl (mesityl) germane (3a). To a THF solution (20 mL) of 2a (298 mg, 0.347 mmol) was added $LiAlH_4$ (29 mg, 0.73 mmol) at 0 °C, and the mixture was refluxed for 10 h. After quenching by aqueous NH₄Cl, the organic layer was washed with diluted HCl. The water layer was extracted with CHCl₃ several times. The organic layer was dried over MgSO4, and all of the solvent was removed under reduced pressure. The residue was dissolved into CH₂Cl₂, and approximately the same volume of ethanol was added to give precipitates of 3a (185 mg, 72%) as white crystals by the evaporation of CH_2Cl_2 at room temperature under reduced pressure. 3a: mp 162-163 °C dec; ¹H NMR (CDCl₃, 500 MHz) δ -0.04 (s, 18H), 0.00 (s,18H), 0.05 (s, 18H), 1.31 (s, 1H), 2.01 (s, 1H), 2.22 (s, 1H), 2.26 (s, 3H), 2.42 (s, 6H), 5.14 (s, 2H), 6.29 (s, 1H), 6.44 (s, 1H), 6.83 (s, 2H); ¹³C NMR (CDCl₃, 125 MHz) δ 0.59 (q), 0.79 (q), 0.93 (q), 21.01 (q), 24.69 (q), 28.93 (d \times 2), 30.27 (d), 122.26(d), 127.08 (d), 128.14 (s), 128.44 (d), 133.00 (s), 138.51 (s), 143.24 (s), 143.29 (s), 150.28 (s), 150.38 (s); IR (KBr) 2070 cm⁻¹ (Ge-H); high-resolution EI-MS observed m/z 746.3484; calcd for C₃₆H₇₂⁷⁴GeSi₆ 746.3454. Anal. Found: C, 54.93; H, 9.42. Calcd for C₃₆H₇₂GeSi₆·2H₂O: C, 55.28; H, 9.79.

Preparation of {2,4,6-Tris[bis(trimethylsilyl)methyl]phenyl}(2,6-diethylphenyl)germane (3b). Using the same procedure as that for **3a**, **3b** (3.7 g, 96%) was obtained from **2b** (4.5 g, 5.2 mmol). **3b**: white crystals; mp 189–190 °C dec; ¹H NMR (CDCl₃, 500 MHz) δ –0.07 (s, 18H), 0.02 (s, 18H), 0.04 (s, 18H), 1.23 (t, J = 7.3 Hz, 6H), 1.29 (s, 1H), 1.99 (s, 1H), 2.19 (s, 1H), 2.76 (q, J = 7.3 Hz, 4H), 5.13 (s, 2H), 6.27 (s, 1H), 6.42 (s, 1H), 7.05 (d, J = 7.7 Hz, 2H), 7.25 (t, J = 7.7 Hz, 1H); ¹³C NMR (CDCl₃, 125 MHz) δ 0.56 (q), 0.77 (q), 0.89 (q), 16.14 (q), 28.90 (d), 29.01 (d), 30.25 (d), 30.92 (t), 122.20 (d), 125.84 (d), 127.06 (d), 128.53 (s), 129.26 (d), 135.82 (s), 143.31 (s), 149.56 (s), 150.20 (s), 150.31 (s); IR (KBr) 2058 cm⁻¹ (Ge–H). Anal. Found: C, 58.46; H, 9.53. Calcd for C₃₇H₇₄-GeSi₆: C, 58.46; H, 9.81.

⁽²⁰⁾ Tokitoh, N.; Matsumoto, T.; Manmaru, K.; Okazaki, R. J. Am. Chem. Soc. 1993, 115, 8855.

Preparation of {2,4,6-Tris[bis(trimethylsilyl)methyl]phenyl}(2,4,6-triisopropylphenyl)germane (3c). Using the same procedure as that for **3a**, **3c** (277 mg, 99%) was obtained from **2c** (315 mg, 0.334 mmol). **3c**: white crystals; mp 162–164 °C dec; ¹H NMR (CDCl₃, 500 MHz) δ –0.08 (s, 18H), 0.00 (s, 18H), 0.03 (s, 18H), 1.21 (d, J = 6.9 Hz, 6H), 1.23 (d, J = 6.9 Hz, 12H), 1.27 (s, 1H), 1.96 (br s, 1H), 2.24 (br s, 1H), 2.84 (sept, J = 6.9 Hz, 1H), 3.22 (sept, J = 6.9 Hz, 2H), 5.16 (s, 2H), 6.25 (s, 1H), 6.43 (s, 1H), 7.00 (s, 2H); ¹³C NMR (CDCl₃, 125 MHz) δ 0.78 (q), 1.09 (q), 23.98 (q), 24.67 (q), 28.84 (d), 28.93 (d), 30.22 (d), 33.80 (d), 34.41 (d), 120.66 (d), 122.32 (d), 127.24 (d), 129.77 (s), 132.17 (s), 142.97 (s), ⁷149.69 (s), 149.93 (s), 150.01 (s), 153.83 (s); IR (KBr) 2065 cm⁻¹ (Ge-H). Anal. Found: C, 58.70; H, 9.84. Calcd for C₄₂H₈₄GeSi₆• 1.5H₂O: C, 58.84; H, 10.23.

Preparation of {2,4,6-Tris[bis(trimethylsilyl)methyl]phenyl}dibromo(mesityl)germane (4a). To a benzene solution (100 mL) of diarylgermane **3a** (6.6 g, 8.8 mmol) was added N-bromosuccinimide (3.6 g, 20 mmol) at room temperature. While the solution was stirred, N-bromosuccinimide (0.33 g, 1.9 mmol) was added to it over a period of 10 h, until all of the 3a was consumed. The crude reaction mixture was chromatographed with column chromatography (SiO₂/benzene) to give a fraction containing 4a, which was dissolved into $CHCl_3$ and reprecipitated as mentioned for 2a. 4a (7.3 g. 91%): white crystals; mp 225-227 °C; ¹H NMR (CDCl₃, 500 MHz) δ -0.001 (s, 18H), 0.04 (s, 18H), 0.06 (s, 18H), 1.34 (s, 1H), 2.26 (s, 3H), 2.63 (br s, 1H), 2.64 (s, 6H), 2.81 (br s, 1H), 6.29 (br s, 1H), 6.43 (br s, 1H), 6.82 (s, 2H); ¹³C NMR (CDCl₃, 125 MHz) $\delta 0.84 (q)$, 1.30 (q), 1.58 (q), 20.88 (q), 25.71 (q), 27.42(d), 27.57 (d), 30.78 (d), 123.48 (d), 128.48 (d), 130.06 (s), 130.61 (d), 137.62 (s), 140.59 (s), 141.27 (s), 146.56 (s), 150.24 (s), 150.65 (s). Anal. Found: C, 47.67; H, 7.84; Br, 18.05. Calcd for C₃₆H₇₀Br₂GeSi₆: C, 47.83; H, 7.80; Br, 17.68.

Preparation of {2,4,6-Tris[bis(trimethylsily1)methyl]phenyl}dibromo(2,4,6-triisopropylphenyl)germane (4c). Using the same procedure as that for **4a**, **4c** (8.8 g, 88%) was obtained from **3c** (8.4 g, 10 mmol). **4c**: white crystals; mp 232–233 °C; ¹H NMR (CDCl₃, 500 MHz) δ 0.02 (br s, 18H), 0.04 (br s, 18H), 0.05 (s, 18H), 1.15 (br s, 6H), 1.20 (d, J = 6.9Hz, 6H), 1.28 (br s, 6H), 1.33 (s, 1H), 2.13 (br s, 1H), 2.29 (br s, 1H), 2.84 (sept, J = 6.9 Hz, 1H), 3.78 (sept, J = 6.9 Hz, 2H), 6.32 (br s, 1H), 6.44 (br s, 1H), 7.02 (s, 2H); ¹³C NMR (CDCl₃, 125 MHz) δ 0.85 (q), 1.93 (q), 2.20 (q), 23.64 (q), 23.72 (q), 27.01 (d), 27.49 (d), 30.70 (d), 32.92 (d), 34.24 (d), 123.38 (d), 123.88 (d), 128.97 (d), 131.66 (s), 136.05 (s), 145.78 (s), 149.40 (s), 149.98 (s), 151.46 (s), 152.29 (s). Anal. Found: C, 50.78; H, 8.42; Br, 16.59. Calcd for C₄₂H₈₂Br₂GeSi₆: C, 51.05; H, 8.37; Br, 16.17.

Synthesis of 5-{2,4,6-Tris[bis(trimethylsilyl)methyl]phenyl}-5-mesityl-1,2,3,4,5-tetrathiagermolane (5a). Method 1. Diarylgermane 3a (1.13 g, 1.15 mmol) was mixed with S_8 (4.1 g, 16 mmol as S_8) and heated to 160 °C for 10 min. Most of the excess sulfur was removed by recrystallization from chloroform. The residue was separated with DCC (SiO₂/hexane) and GPLC. The solid material thus obtained was dissolved into CH₂Cl₂, to which was added approximately the same volume of ethanol. Evaporation of CH₂Cl₂ at room temperature under reduced pressure gave 5a (0.75 g, 57%) as pale yellow crystals.

Method 2. To a THF solution (10 mL) of **3a** (177 mg, 0.237 mmol) was added at -78 °C *t*-BuLi (1.54 M in pentane, 0.24 mL, 0.38 mmol) and then hexamethylphosphoric triamide (0.20 mL, 1.2 mmol). The solution was warmed to -25 °C over 2 h, and to it was added a THF (10 mL) suspension of elemental sulfur (0.12 g, 0.47 mmol as S₈). The mixture was warmed to room temperature and then refluxed for 10 h. Solvent was removed under reduced pressure, and the residue was separated as was mentioned in method 1, to afford **5a** (150.8 mg, 73%).

Method 3. To a THF solution (15 mL) of bromochlorogermane 2a (241 mg, 0.296 mmol) was added at -78 °C *t*-BuLi

(1.54 M in pentane, 0.39 mL, 0.59 mmol). The solution was stirred for 5 min at -78 °C, and to it was added a THF (10 mL) suspension of elemental sulfur $(0.15 \text{ g}, 0.60 \text{ mmol as } S_8)$. The mixture was warmed to room temperature over 2 h and then refluxed for 10 h. The solvent was removed under reduced pressure, and the residue was separated as was mentioned in method 1 to give 5a (204.1 mg, 79%). 5a: pale yellow crystals; mp 171-173 °C dec; ¹H NMR (CDCl₃, 500 MHz) $\delta = -0.022$ (br s, 18H), -0.018 (br s, 18H), 0.06 (s, 18H), 1.35 (s, 1H), 1.97 (s, 1H), 2.04 (s, 1H), 2.21 (s, 3H), 2.51 (s, 6H), 6.34 (s, 1H), 6.46 (s, 1H), 6.80 (s, 2H); $^{13}\mathrm{C}$ NMR (CDCl_3, 125 MHz) & 0.82 (q), 1.30 (q), 1.59 (q), 20.86 (q), 25.70 (q), 28.48 (d), 28.87 (d), 30.79 (d), 123.18 (d), 128.32 (d), 128.68 (s), 130.13 (d), 139.43 (s), 139.82 (s), 140.74 (s), 146.25 (s), 151.72 (s), 151.88 (s); UV (CHCl₃) λ_{max} 273 (sh, ϵ 9800), 318 (sh, 3000) nm. Anal. Found: C, 49.42; H, 7.82; S, 14.30. Calcd for C₃₆-H₇₀GeS₄Si₆: C, 49.56; H, 8.09; S, 14.71.

Synthesis of 5-{2.4.6-Tris[bis(trimethylsilyl)methyl]phenyl}-5-(2,6-diethylphenyl)-1,2,3,4,5-tetrathiagermolane (5b). Diarylgermane 3b (252 mg, 0.332 mmol) was mixed with S_8 (2.0 g, 7.8 mmol as S_8) and heated to 160 °C for 1 h. Most of the excess sulfur was removed by recrystallization from chloroform. The residue was separated with DCC (SiO₂/ hexane) follwed by GPLC. The solid material thus obtained was recrystallized from ethanol to afford 5b (206 mg, 70%) as pale yellow crystals. 5b: mp 222-224 °C dec; ¹H NMR (CDCl₃, 500 MHz) δ -0.02 (s, 18H), -0.01 (s, 18H), 0.05 (s, 18H), 1.24 (t, J = 7.3 Hz, 6H), 1.34 (s, 1H), 1.97 (s, 1H), 2.01 (s, 1H), 2.99 (q, J = 7.3 Hz, 4H), 6.33 (s, 1H), 6.46 (s, 1H), 7.10 (d, J = 7.7 Hz, 2H), 7.28 (t, J = 7.7 Hz, 1H); ¹³C NMR (CDCl₃, 125 MHz) & 0.84 (q), 1.39 (q), 1.68 (q), 14.58 (q), 28.37 (d), 28.76 (d), 30.77 (d), 31.08 (t), 123.18 (d), 126.45 (d), 128.45 (d), 129.97 (s + d), 142.34 (s), 146.13 (s), 146.43 (s), 151.31 (s), 151.57 (s). Anal. Found: C, 50.11; H, 8.03; S, 14.19. Calcd for C₃₇H₇₂GeS₄Si₆: C, 50.13; H, 8.19; S, 14.47.

Synthesis of 5-{2,4,6-Tris[bis(trimethylsilyl)methyl]phenyl}-5-(2,4,6-triisopropylphenyl)-1,2,3,4,5-tetrathiagermolane (5c). Method 1. Diarylgermane 3c (515 mg, 0.620 mmol) was mixed with S_8 (2.0 g, 8.0 mmol as S_8) and heated to 160 °C for 30 min. Most of the excess sulfur was removed by recrystallization from chloroform. The residue was separated with DCC (SiO₂/hexane) and GPLC. The solid material thus obtained was recrystallized from ethanol to afford 5c (386 mg, 65%) as pale yellow crystals.

Method 2. To a DME (3 mL) solution of **3c** (625 mg, 0.753 mmol) were added at -78 °C *t*-BuLi (1.61 M in pentane, 1.40 mL, 2.25 mmol) and hexamethylphosphoric triamide (0.66 mL, 3.8 mmol). The solution was warmed to -12 °C over 3 h, and elemental sulfur (0.58 g, 2.27 mmol as S₈) was added. After the mixture was warmed to room temperature, DME (10 mL) was added, and this solution was refluxed for 10 h. Solvent was removed under reduced pressure, and the residue was separated as was mentioned in method 1, giving **5c** (324 mg, 45%).

Method 3. To a DME (15 mL) solution of bromochlorogermane 2c (205 mg, 0.229 mmol) was added t-BuLi (1.61 M in pentane, 0.28 mL, 0.46 mmol) at -78 °C. The solution was stirred for 5 min at -78 °C, and then elemental sulfur (160 mg, 46 mmol as S_8) was added. The mixture was warmed to room temperature over 2 h and refluxed for 10 h. Solvent was removed under reduced pressure, and the residue was separated as was mentioned in method 1 to give 5c (177 mg, 81%). 5c: pale yellow crystals; mp 211-212 °C dec; ¹H NMR (CDCl₃, 500 MHz, 340 K) δ 0.03 (s, 36H), 0.07 (s, 18H), 1.16 (d, J = 6.9 Hz, 12H), 1.21 (d, J = 6.9 Hz, 6H), 1.35 (s, 1H), 2.07 (br s, 2H), 2.83 (sept, J = 6.9Hz, 1H), 3.78 (br s, 2H), 6.41 (br s, 2H), 7.03 (s, 2H); ¹³C NMR (CDCl₃, 125 MHz) δ 1.01 (q), 2.33 (q), 23.73 (q), 24.39 (q), 28.74 (d), 30.96 (d), 34.27 (d), 35.79 (d), 123.41 (d), 123.63 (d), 129.27 (d), 132.74 (s), 137.40 (s), 145.57 (s), 150.67 (s), 151.19 (s), 151.71 (s), 152.55 (s). Anal. Found: C, 52.68; H, 8.48; S, 12.96. Calcd for C₄₂H₈₂GeS₄Si₆: C, 52.73; H, 8.64; S, 13.40.

Reaction of 1,2,3,4,5-Tetrathiagermolane 5a with Diphenyldiazomethane. To a benzene solution (15 mL) of 5a (252 mg, 0.289 mmol) was added diphenyldiazomethane (530 mg, 2.9 mmol), and the purple mixture was refluxed for 2.5 h. Solvent was removed under reduced pressure, and tetraphenylethylene and tetraphenylazine were removed from the residue with HPLC. Separation with DCC and PTLC $(\mathrm{SiO}_2$ with 5/1 hexane/ CH_2Cl_2) gave 4-{2,4,6-tris[bis(trimethylsily])methyl]phenyl}-4-mesityl-1,2,3,5-tetrathia-4-germacyclohexane (10a; 113 mg, 38%), 3-{2,4,6-tris[bis(trimethylsilyl)methyl]phenyl}-3-mesityl-1,2,4,5-tetrathia-3-germacyclohexane (11a; 54.5 mg, 18%), and 3-{2,4,6-tris[bis(trimethylsilyl)methyl]phenyl}-3-mesityl-1,2,4-trithia-3-germacyclopentane (12a; 39.5 mg, 14%). 10a: white crystals; mp 208-209 °C; ¹H NMR (CDCl₃, 500 MHz) δ -0.04 (br s, 18H), 0.04 (s, 9H), 0.05 (s, 9H), 0.07 (s, 9H), 0.09 (s, 9H), 1.30 (s, 1H), 2.26 (s, 3H), 2.41 (s, 3H), 2.60 (s, 3H), 6.26 (br s, 1H), 6.39 (br s, 1H), 6.55 (s, 1H), 6.65 (s, 1H), 6.84-7.29 (m, 10H), the two o-benzyl protons of the Tbt group appeared at δ 2.48 as a broad singlet at 370 K; $^{13}\mathrm{C}$ NMR (CDCl₃, 125 MHz) δ 0.80 (q), 0.94 (q), 1.14 (q), 1.49 (q), 1.87 (q), 2.08 (q), 20.82 (q), 22.69 (q), 25.48 (q), 28.30 (d), 28.79 (d), 30.38 (d), 74.21 (s), 123.36 (d), 126.16 (d), 127.21 (d), 127.99 (d), 128.29 (d), 128.31 (d), 128.44 (d), 129.67 (d), 130.35 (d), 130.47 (d), 132.56 (s), 137.70 (s), 139.27 (s), 139.51 (s), 142.31 (s), 142.44 (s), 145.23 (s), 146.97 (s), 150.51 (s), 150.80 (s). Anal. Found: C, 56.36; H, 7.65; S, 11.88. Calcd for C49H80GeS4Si6: C, 56.66; H, 7.76; S, 12.35. 11a: white crystals; mp 278–279 °C; ¹H NMR (CDCl₃, 500 MHz) δ –0.19 (br s, 18H), 0.02 (br s, 36H), 1.30 (s, 1H), 2.18 (br s, 1H), 2.20 $(s, 3H), 2.23 (br \, s, 1H), 2.51 (br \, s, 6H), 6.32 (br \, s, 1H), 6.41 (br \, s, 2H), 6.$ s, 1H), 6.75 (s, 2H), 7.22-7.54 (m, 10H); ¹³C NMR (CDCl₃, 125 MHz) δ 0.82 (q), 1.12 (br q), 1.47 (br q), 20.85 (q), 25.89 (q), 29.39~(d),~29.45~(d),~30.64~(d),~75.72~(s),~122.96~(d),~127.82~(d),128.14 (d), 128.18 (d), 128.22 (d \times 2), 128.29 (d), 128.33 (d), 130.12 (d), 133.16 (s), 137.96 (s), 139.18 (s), 141.56 (s), 141.59 (s), 141.93 (s), 145.35 (s), 150.92 (s), 151.01 (s). Anal. Found: C, 56.38; H, 7.55; S, 12.50. Calcd for C49H80GeS4Si6: C, 56.66; H, 7.76; S, 12.35. 12a: white crystals; mp 203.5-205 °C; ¹H NMR (CDCl₃, 500 MHz) δ -0.09 (s, 18H), -0.06 (s, 18H), 0.03 (s, 18H), 1.31 (s, 1H), 2.20 (s, 3H), 2.37 (s, 2H), 2.44 (s, 6H), 6.31 (br s, 1H), 6.42 (br s, 1H), 6.69 (s, 2H), 7.03-7.64 (m, 10H); ¹³C NMR (CDCl₃, 125 MHz) δ 0.83 (q), 0.86 (q), 1.13 (q), 1.37 (q), 1.38 (q), 20.82 (q), 25.05 (q), 28.61 (d), 29.23 (d), 30.60 (d), 82.56 (s), 123.18 (d), 127.20 (d), 127.25 (d), 127.51 (d), 127.92 (d), 128.36 (d), 128.63 (d), 129.24 (d), 129.58 (d), 131.60 (s), $% \left(\frac{1}{2} \right) = 0$ 138.82 (s), 139.11 (s), 141.66 (s), 143.48 (s), 143.98 (s), 146.99 (s), 151.02 (s), 151.11 (s). Anal. Found: C, 58.23; H, 7.88; S, 9.44. Calcd for C₄₉H₈₀GeS₃Si₆: C, 58.47; H, 8.01; S, 9.56.

Reaction of 1,2,3,4,5-Tetrathiagermolane 5a with Diphenyldiazomethane in the Presence of CuCl. To a benzene solution (8 mL) of **5a** (309 mg, 0.354 mmol) with a catalytic amount of CuCl was added diphenyldiazomethane (65 mg, 36 mmol) at 0 °C, and the mixture was stirred for 1 h at room temperature. Since **5a** still remained, an excess of diphenyldiazomethane was added and the solution was stirred for 1 h. After the solvent was evaporated under reduced pressure, tetraphenylethylene and tetraphenylazine were removed from the residue with HPLC. Separation with DCC and PTLC (SiO₂ with 5/1 hexane/CH₂Cl₂) gave **10a** (93 mg, 25%), **11a** (101 mg, 27%), and **12a** (8 mg, 2%) with recovery of **5a** (138 mg, 45%).

Reaction of 1,2,3,5-Tetrathia-4-germacyclohexane 10a with Diphenyldiazomethane. To a benzene solution (3 mL) of 10a (50.8 mg, 0.042 mmol) was added diphenyldiazomethane (190 mg, 24 mmol), and the purple mixture was refluxed for 14 h. Workup similar to that above gave 12a (6.8 mg, 14%) with recovery of 10a (39.6 mg, 78%).

Reaction of 1,2,4,5-Tetrathia-3-germacyclohexane 11a with Diphenyldiazomethane. To a benzene solution (3 mL) of 11a (43.5 mg, 0.042 mmol) was added diphenyldiazomethane (180 mg, 22 mmol), and the purple mixture was refluxed for 14 h. Workup similar to that above gave 12a (3.3 mg, 8%) with recovery of 10a (39.5 mg, 91%).

Reaction of 1,2,3,4,5-Tetrathiagermolane 5c with Diphenyldiazomethane. To a benzene solution (15 mL) of 5c (116 mg, 0.121 mmol) was added diphenyldiazomethane (230 mg, 1.20 mmol), and the purple mixture was refluxed for 10 h. Workup similar to that above gave 4-{2,4,6-tris[bis-(trimethylsilyl)methyl]phenyl}-4-(2,4,6-triisopropylphenyl)-1,2,3,5-tetrathia-4-germacyclohexane (10c; 67.6 mg, 50%) and 3-{2,4,6-tris[bis(trimethylsilyl)methyl]phenyl}-3-(2,4,6-triisopropylphenyl)-1,2,4,5-tetrathia-3-germacyclohexane (11c; 16.8 mg, 13%). 10c: white crystals; mp 210-210.5 °C; ¹H NMR $(CDCl_3, 500 \text{ MHz}, 340 \text{ K}) \delta -0.26 \text{ (br s, 9H)}, 0.04 \text{ (br s, 18H)},$ 0.06 (br s, 9H), 0.08 (s, 9H), 0.30 (br s, 9H), 0.60 (br s, 3H), 0.81 (d, J = 7 Hz, 3H), 1.03 (d, J = 7 Hz, 3H), 1.24 (s, 1H),1.31 (d, J = 7 Hz, 6H), 1.36 (br s, 3H), 1.82 (br s, 1H), 2.91 (sept, J = 7 Hz, 1H), 2.97 (br s, 1H), 4.13 (br s, 1H), 4.32 (br s, 1H), 4.33 (br s, 1H), 4.34 (br s, 1H),s, 1H), 6.38 (br s, 1H), 6.47 (br s, 1H), 6.82 (br s, 2H), 6.93 (s, 1H), 7.01 (m, 1H), 7.11 (s, 1H), 7.16-7.29 (m, 7H). Anal. Found: C, 58.97; H, 8.23; S, 11.80. Calcd for $C_{55}H_{92}GeS_4Si_6$: C, 58.83; H, 8.26; S, 11.43. 11c: white crystals; mp 160-164 °C dec; ¹H NMR (CDCl₃, 500 MHz) δ -0.10 (br s, 9H), -0.07 (br s, 9H), -0.03 (br s, 9H), 0.03 (s, 18H), 0.04 (br s, 9H), 1.01 (br s, 3H), 1.09 (br s, 3H), 1.14 (br s, 3H), 1.18 (d, J = 6.9 Hz)6H), 1.24 (br s, 3H), 1.29 (s, 1H), 2.21 (br s, 1H), 2.38 (br s, 1H), 2.80 (sept, J = 6.9 Hz, 1H), 2.95 (br s, 1H), 3.85 (br s, 1H), 6.31 (br s, 1H), 6.45 (br s, 1H), 6.94 (br s, 1H), 7.02 (br s, 1H), 7.22–7.59 (m, 10H); $^{13}\mathrm{C}$ NMR (CDCl₃, 125 MHz) δ 0.94 (q), 2.09 (q), 2.25 (q), 2.39 (q), 23.72 (q), 24.81 (q), 28.10 (q), 28.76 (q), 29.53 (d), 30.54 (d), 33.97 (d), 34.12 (d), 36.15 (d), 76.34 (s), 123.40 (d \times 2), 123.68 (d), 127.99 (d), 128.08 (d \times 2), 128.17 (d), 128.21 (d), 128.32 (d), 128.98 (d), 135.34 (s), 135.89 (s), 141.47 (s), 141.53 (s), 144.62 (s), 150.12 (s), 150.26 (s), 150.94 (s), 152.83 (s), 153.57 (s). Anal. Found: C, 58.92; H, 8.53; S, 11.21. Calcd for $C_{55}H_{92}GeS_4Si_6$: C, 58.83; H, 8.26; S, 11.43.

Synthesis of 1,2,4-Trithia-3-germacyclopentane 12c. To a THF solution (40 mL) of 10c (750 mg, 0.668 mmol) was added at -78 °C hexamethylphosphorous triamide (0.38 mL, 2.0 mmol). After the solution was warmed to room temperature over 10 h, the solvent was removed under reduced pressure. Separation with DCC (SiO2 with 25/1 hexane/CH2-Cl₂) afforded 3-{2,4,6-tris[bis(trimethylsilyl)methyl]phenyl}-3-(2,4,6-triisopropylphenyl)-1,2,4-trithia-3-germacyclopen-37%) and {2,4,6-(12c: 272mg, tane tris[bis(trimethylsilyl)methyl]phenyl}hydroxy(2,4,6triisopropylphenyl)mercaptogermane (16c; 278 mg, 47%). 12c: white crystals; mp 160-165 °C dec; ¹H NMR (CDCl₃, 500 MHz) δ -0.17 (s, 18H), 0.055 (s, 9H), 0.062 (s, 9H), 0.09 (s, 9H), 0.13 (s, 9H), 0.50 (br s, 3H), 0.93 (br s, 3H), 1.09 (br s, 3H), 1.19 (br s, 3H), 1.19 (d, J = 6.9 Hz, 6H), 1.32 (s, 1H), 2.14 (br s, 1H), 2.46 (br s, 1H), 2.81 (sept, J = 6.9 Hz, 1H), 3.71 (br s, 1H), 3.99 (br s, 1H), 6.31 (br s, 1H), 6.47 (br s, 1H), 6.95 (s, 2H), 7.12–7.73 (m, 10H); $^{13}\mathrm{C}$ NMR (CDCl₃, 125 MHz) δ 0.90 $(q),\,1.12\,(q),\,1.97\,(q),\,2.25\,(q),\,2.31\,(q\times2),\,23.64\,(q),\,23.83\,(q),$ 24.71 (q), 25.10 (q), 25.80 (q), 27.28 (q), 28.56 (d), 29.05 (d), 30.46 (d), 32.44 (d), 34.08 (d), 35.07 (d), 83.16 (s), 123.53 (d), 123.71 (d), 126.94 (d), 127.14 (d), 128.06 (d), 128.07 (d), 128.15 (d), 128.74 (d \times 2), 129.23 (d), 134.11 (s), 137.66 (s), 144.52 (s), 144.74 (s), 145.01 (s), 149.64 (s), 150.40 (s), 151.17 (s), 151.42 (s), 153.59 (s). Anal. Found: C, 59.19; H, 8.50; S, 8.81. Calcd for C55H92GeS3Si6: C, 60.57; H, 8.50; S, 8.82. 16c: white crystals; mp 160–165 °C dec; ¹H NMR (CDCl₃, 500 MHz) δ -0.12 (s, 9H), -0.05 (s, 9H), 0.05 (s, 9H), 0.06 (s, 9H), 0.11 (s, 9H), 0.15 (s, 9H), 1.01 (br s, 3H), 1.05 (s, 1H, Ge-SH), 1.15 (d, J = 6.9 Hz, 6H), 1.25 (br s, 3H), 1.32 (s, 1H), 1.33 (br s, 6H), 1.71 (s, 1H, Ge-OH), 2.48 (br s, 1H), 2.65 (br s, 1H), 2.85 (sept, J = 6.9 Hz, 1H), 2.96 (br s, 1H), 4.43 (br s, 1H), 6.30 (br s, 1H), 6.43 (br s, 1H), 7.02 (s, 2H), 7.12–7.73 (m, 10H); $^{\rm 13}{\rm C}$ NMR (CDCl₃, 125 MHz) δ 0.81 (q), 1.00 (q), 1.20 (q), 1.44 (q), 1.66 (q), 1.94 (q), 22.35 (q \times 2), 23.63 (q), 23.89 (q), 24.72 (q \times 2), 26.70 (d), 27.19 (d), 27.50 (d), 28.23 (d), 30.53 (d), 34.34 (d), 121.66 (d), 122.84 (d), 123.38 (d), 128.46 (d), 132.09 (s), 137.27 (s), 144.72 (s), 149.48 (s), 149.74 (s), 150.81 (s), 152.80 (s), 152.94 (s). Anal. Found: C, 57.50; H, 9.44; S, 4.09. Calcd for $C_{42}H_{84}GeOSSi_6$: C, 57.43; H, 9.64; S, 3.65.

Desulfurization of 1,2,3,5-tetrathia-4-germacyclohexane 10a. To a THF solution (10 mL) of 10a (115 mg, 0.111 mmol) was added at -78 °C hexamethylphosphorous triamide (85 mL, 0.45 mmol). After the solution was warmed to room temperature over 10 h, the solvent was removed under reduced pressure. Separation with DCC (SiO2 with 10/1 hexane/CH2-Cl₂) afforded 12a (92.6 mg, 83%) and {2,4,6-tris[bis(trimethy]silyl)methyl]phenyl}hydroxy(mercapto)(mesityl)germane (16a; (10.6 mg, 12%). 16a: white crystals; mp 131-135 °C; ¹H NMR $(CDCl_3, 500 \text{ MHz}) \delta -0.11 (s, 9H), -0.06 (s, 9H), 0.04 (s, 18H),$ 0.06 (s, 18H), 0.91 (s, 1H, Ge-SH), 1.31 (s, 1H), 1.50 (s, 1H, Ge-OH), 2.23 (s, 3H), 2.36 (br s, 1H), 2.50 (br s, 1H), 2.52 (s, 6H), 6.27 (br s, 1H), 6.40 (br s, 1H), 6.79 (s, 2H); ¹³C NMR (CDCl₃, 125 MHz) δ 0.75 (q), 0.85 (q), 1.26 (q), 1.54 (q), 20.92 (d), 24.52 (q), 27.60 (d), 27.62 (d), 30.50 (q), 122.99 (d), 127.93 (d), 129.70 (d), 130.98 (s), 138.30 (s), 139.72 (s), 141.94 (s), 145.29 (s), 150.01 (s), 150.25 (s). Anal. Found: C, 53.25; H, 8.82; S, 3.94. Calcd for C₃₆H₇₂GeOSSi₆·H₂O: C, 53.23; H, 9.18; S, 3.95.

Thiomethylation of 16a. To a mixture of 16a (95.0 mg, 0.12 mmol) and sodium hydride (60% in mineral oil, 25 mg, 0.60 mmol) in THF (12 mL) was added methyl iodide at room temperature for 3 h. Insoluble salts were removed by filteration under argon, and the solvent was removed under reduced pressure. The residue was separated by PTLC (SiO₂ with 3/1hexane/CH2Cl2) to afford {2,4,6-tris[bis(trimethylsilyl)methyl]phenyl}hydroxy(mesityl)(methylthio)germane (17a; (87.4 mg, 90%). 17a: white crystals; mp 202-205 °C; ¹H NMR (CDCl₃, 500 MHz) δ -0.15 (s, 9H), -0.09 (s, 9H), 0.037 (s, 9H), 0.040 $(s, \ 9H), \ 0.08 \ (s, \ 9H), \ 0.10 \ (s, \ 9H), \ 1.31 \ (s, \ 1H), \ 1.84 \ (s, \ 3H),$ $2.19\,(s,\,1H),\,2.23\,(s,\,3H),\,2.24\,(s,\,1H),\,2.52\,(br\,\,s,\,6H),\,6.27\,(br\,\,s,\,6H),\,6.24$ s, 1H), 6.40 (br s, 1H), 6.78 (s, 2H); ¹³C NMR (CDCl₃, 125 MHz) δ 0.39 (q), 0.73 (q), 0.78 (q), 0.88 (q), 1.41 (q), 1.69 (q), 11.55 (q), 20.96 (d), 24.16 (q), 27.96 (d), 28.37 (d), 30.46 (q), 122.82 (d), 127.80 (d), 129.43 (d), 131.89 (s), 133.01 (s), 139.42 (s), 143.31 (s), 145.02 (s), 149.84 (s), 150.01 (s). Anal. Found: C, 55.11; H, 9.00; S, 4.45. Calcd for C₃₇H₇₄GeOSSi₆: C, 54.98; H. 9.23: S. 3.97.

Desulfurization of 1,2,4,5-Tetrathia-3-germacyclohexane 11a. A THF solution (5 mL) of 11a (23.0 mg, 0.022 mmol) and hexamethylphosphorous triamide (4.3 mL, 0.023 mmol) was refluxed for 10 h. The solvent was removed under reduced pressure, and the residue was chromatographed with DCC (SiO₂ with 10/1 hexane/CH₂Cl₂) to afford 12a (1.6 mg, 5%) with recovery of 11a (21.7 mg, 91%).

Thermal Reaction of 1,2,3,5-Tetrathia-4-germacyclohexane 10a. A CDCl₃ solution (0.5 mL) of 10a (38.6 mg, 0.0368 mmol) was sealed in a 5 mm i.d. NMR tube and heated to 100 °C for 40 h while being monitored by ¹H NMR. The solvent was removed, and the residue was separated with PTLC (SiO₂ with 10/1 hexane/CH₂Cl₂) to afford 10a (14.9 mg, 37%), 11a (14.8 mg, 37%), 5a (5.8 mg, 17%), and 12a (4.2 mg, 9%).

Crystal and Experimental Data for 5a and 10a. 5a: $C_{36}H_{70}S_4S_{16}Ge$ -CHCl₃, fw = 989.64, crystal size (mm) 0.2 × 0.2 × 0.5, monoclinic, space group P_{21}/n , a = 12.299(2) Å, b = 13.069(2) Å, c = 33.612(5) Å, $\beta = 91.58(1)^\circ$, V = 5401(2) Å³, Z $= 4, D_{c} = 1.221 \text{ g cm}^{-3}, R = 0.089 (R_{w} = 0.093), w = 1/\{A|F_{o}|2\}$ $+B|F_{o}|+C$, A = 1086.4, B = -985.5, C = 227.1. Data were collected through a capillary glass tube with Cu Ka radiation $(\lambda = 1.5418 \text{ Å})$ on an Enraf-Nonius CAD-4 diifractometer; $\mu =$ 49.95 cm⁻¹. A total of 5609 unique reflections $(|F_0| > 3\sigma |F_0|)$ were observed ($2^{\circ} < 2\theta < 120^{\circ}$). Empirical absorption correction was not applied due to the noticeable decay of reflections. The structure was solved by direct methods (MULTAN 78)²¹ using the program system UNICS III.22 All hydrogen atoms were located by calculation. Refinement was performed by full-matrix least-squares method (anisotropic thermal parameters for non-hydrogen atoms), where the positions and thermal parameters for hydrogen atoms were not refined. Atomic coordinates, bond lengths and angles, and thermal parameters have been deposited at the Cambridge Crystallographic Data Centre.⁷

10a: $C_{49}H_{80}GeS_4Si_6$, fw = 1038.51, crystal size (mm) 0.2 × 0.3×0.4 , triclinic, a = 13.329(2) Å, b = 20.803(3) Å, c = 12.325-(2) Å, $\alpha = 105.37(1)^\circ$, $\beta = 116.93(1)^\circ$, $\gamma = 77.31(1)^\circ$, V = 2918.0-(8) Å³, Z = 2, space group $P\overline{1}$, $D_c = 1.182$ g cm⁻³, $\mu = 8.05$ cm⁻¹. The intensity data ($2\theta \le 55^{\circ}$) were collected on a Rigaku AFC5R diffractometer with graphite-monochromated Mo Ka radiation ($\lambda = 0.710$ 69 Å), and the structure was solved by direct methods.²³ All calculations were performed using the TEXSAN²⁴ crystallographic software package of Molecular Structure Corp. The non-hydrogen atoms were refined anisotropically, and all the hydrogen atoms were located by calculation. The final cycle of full-matrix least-squares refinement was based on 3881 observed reflections $(I > 3\sigma(I))$ and 541 variable parameters with $R(R_w) = 0.039$ (0.044). Atomic coordinates, bond lengths and angles, and thermal parameters have been deposited at the Cambridge Crystallographic Data Centre.¹¹

Acknowledgment. This work was partially supported by a Grant-in-Aid for Scientific Research on Priority Area (No. 05236102) from the Ministry of Education, Science and Culture of Japan. We are grateful to ASAI Germanium Research Institute, Shinetsu Chemical Co., Ltd., and Tosoh Akzo Co., Ltd., for the generous gifts of tetrachlorogermane, chlorosilanes, and alkyllithiums, respectively.

Supplementary Material Available: Tables giving crystallographic data, atomic coordinates, temperature factors, and bond lengths and angles, for **5a** and **10a** and a table of torsion angles for **10a** (31 pages). Ordering information is given on any current masthead page.

OM940763T

(23) Gilmore, C. J. MITHRIL. An integrated direct method computer program. J. Appl. Crystallogr. 1984, 17, 42 (University of Glasgow, Glasgow, Scotland).

(24) TEXSAN: TEXRAY Structural Analysis Package; Molecular Structure Corp., The Woodlands, TX, 1985.

⁽²¹⁾ Main, P.; Hull, S. E.; Lessinger, L.; Germain, G.; Declercg, J.-P.; Woolfson, M. H. MULTAN 78: A system of computer programs for automatic solution of crystal structures from X-ray diffraction data; University of York, York, England, and University of Louvain, Louvain, Belgium, 1978.
(22) Sakurai, T.; Kobayashi, K. Rikagaku Kenkyusho Houkoku 1979,

⁽²²⁾ Sakurai, T.; Kobayashi, K. Rikagaku Kenkyusho Houkoku **1979**, 55, 69.