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In 1987, Hashimoto and co-workers isolated an unprece-
dented compact diterpene, vinigrol (1, Scheme 1), from the
fungal strain Virgaria nigra F-5408, found at the foot of Mount
Aso in the Kumamoto Prefecture in Japan.[1] The relative

stereochemistry of the natural product was established by
NMR and X-ray crystallographic analysis of the oxidized
derivative 2. Its tricyclic core is comprised of a cis-fused [4.4.0]
system with a four-carbon bridge between C1 and C5 and
features eight contiguous stereocenters. The rare boat half
chair conformation of the eight-membered ring (highlighted
in Scheme 1 in bold) makes vinigrol a unique structure among
diterpenoids.

Biological testing of vinigrol (1) has revealed a number of
interesting properties, including an influence on platelet
aggregation[2] and tumor necrosis factor (TNF) antagonism.[3]

These results prompted investigations into the application of
vinigrol in medicine.[4, 5] Not surprisingly, the impressive
biological activities of vinigrol (1), combined with its unique
and synthetically challenging structure, have resulted in
considerable attention from the synthetic community.[6, 7]

In 1993, Hanna et al. unveiled the first synthesis of the
tricyclic core of vinigrol featuring an anionic oxy-Cope ring
expansion.[6a] Subsequent investigations by our group and
others,[6d,e,h,l–n] focused on a direct cyclization of the eight-
membered ring (the ansa belt) of vinigrol from functionalized
decalin precursors. Unfortunately, all such approaches were
thwarted by an inability to find reaction conditions for the
cyclization. The failure of these approaches can be attributed

to an inability of the substrates to adopt the requisite
conformation for direct cyclization to form the ansa belt.

We realized that an approach involving the generation of
two rings in one step would avoid this fundamental cyclization
problem. Specifically, we envisaged the formation of the
vinigrol carbocyclic core 4 by a type 2 intramolecular Diels–
Alder reaction[8] of triene 3 (Scheme 2), which should favor
the less-strained transition state A over B, thus leading to the
preferential formation of cycloadduct 4. In early 2007, we

reported a highly regioselective IMDA reaction of 3 to give 4
in high yield, thus validating our idea.[6p] Subsequent work
from Baran and co-workers[6r] confirmed the effectiveness of
the intramolecular Diels–Alder approach by converting
triene 6 into tetracycle 7, which was converted into the core
of vinigrol (8) through a subsequent Grob fragmentation. In
2009, the same group extended the IMDA–Grob approach to
the first total synthesis of vinigrol.[6w]

Herein, we report a sterecontrolled formal total synthesis
of vinigrol that exploits the synthetic efficiency of our direct
type 2 IMDA approach. Our retrosynthetic analysis, depicted
in Scheme 3, takes advantage of the compact and conforma-
tionally restricted nature of IMDA adduct 11 to install the
requisite functionalities of the natural product. Tricycle 11 is
the result of an IMDA reaction of triene 12. The latter could
be readily prepared from ketone 13, which in turn could be
efficiently assembled through a Claisen rearrangement of 14,
which could be generated in situ from alcohol 15 and ketal 16.
A chair-like transition state would secure the correct relative
stereochemistry at C1 and C12 in 13.

Scheme 1. Structure of vinigrol (1).

Scheme 2. IMDA approaches to synthesize the vinigrol core. LA = Le-
wis Acid, TBS= tert-butyldimethylsilyl.
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The synthesis began with a thermal Claisen rearrange-
ment[9] of alcohol 15[10] and ketal 16[11] in the presence of
propionic acid to give ketone 13 in 62 % yield. The product
possessed the required relative stereochemistry at C1 and C12
and was a 50:50 epimeric mixture at C3 (Scheme 4).[12] After
PtO2-catalyzed hydrogenation of the isopropenyl group, the
ketone was converted into the enol triflate 17. Next,
a Kumada–Negishi coupling reaction with vinyl magnesium
bromide[13] afforded the diene 18 in 93 % yield.[14] Removal of
the DPS group was achieved using TBAF to provide a 50:50
mixture of epimeric alcohols 19 in 68% yield. At this point,
the epimers were separated and carried independently
through the following steps. A sequence of oxidation,
nucleophilic addition with vinyl magnesium bromide, and
oxidation led to unstable enones 20a and 20 b in 72 % and
82% yields respectively. Enones 20a and 20 b underwent
a SnCl4-mediated IMDA reaction in dichloromethane at

�78 8C to give the desired vinigrol cores 21 a and 21 b as the
sole isomers in 79% and 67 % yield respectively.

Wittig olefination of ketones 21 a and 21b using Conia�s
conditions[15] afforded olefins 22a and 22b in 72% and 74%
yield, respectively (Scheme 5). At this point, we envisaged
a chemo- and diastereoselective hydrogenation of the exocy-

clic alkene to establish the C9 stereocenter and its associated
methyl group. We had apprehensions about this transforma-
tion because poor stereoselectivity was reported in a similar
reduction by Hanna et al.[6i] To our delight, the hydrogenation
of epimer 22 a gave the desired product 23 a as the sole
diastereomer (d.r.> 25:1) in quantitative yield. In contrast, an
inseparable mixture of diastereomers at C9 was obtained for
22b, with the desired isomer still being favored (d.r. = 3:1).
Single-crystal X-ray analysis was employed to secure the
stereochemistry of products in this sequence (Scheme 5). A
crown conformation is adopted by the eight-membered ring
in both 21a and 21 b.

With tricycle 23 a in hand, an overall trans hydration of the
olefin to give diol 26 was necessary to place the C8 methyl and
the C8a hydroxy groups in a syn orientation [Eq. (1)].

Frustratingly, our many attempts to bring about this trans-
formation have thus far been unsuccessful.[16] The problem
was solved through the synthesis of the des-methyl analogue
of 23 a, tricycle 27 (Scheme 6), which would be the precursor
for a regio- and stereoselective introduction of the C8 methyl

Scheme 3. Retrosynthetic analysis of vinigrol (1). DPS= tert-butyldiphe-
nylsilyl, Piv = trimethylacetyl.

Scheme 5. Synthesis of vinigrol core 23.[19] a) Ph3PCH3I, KOtBu, PhMe;
b) PtO2, H2, EtOAc; c) Dibal-H, CH2Cl2, �78 8C; d) p-NO2C6H4COCl,
Et3N, CH2Cl2, RT, 56 % over three steps. Dibal-H = diisobutylaluminum
hydride.

Scheme 4. Synthesis of the vinigrol skeleton (21). a) propionic acid,
neat, 135 8C, 62 %, (d.r. at C1–C12 >25:1); b) PtO2, H2, EtOAc, 76%;
c) KHMDS, THF, �78 8C then PhNTf2, 99%; d) CH2=C(Me)MgBr,
ZnBr2, Pd(OAc)2, DPPB, THF, RT to 60 8C, 93%; e) nBu4NF, THF,
68%; f) (COCl)2, Me2SO, CH2Cl2, �78 8C then Et3N, �78 8C to RT;
g) CH2=CHMgBr, PhMe, �78 8C; h) (COCl)2, Me2SO, CH2Cl2, �78 8C
then Et3N, �78 8C to RT; i) SnCl4, CH2Cl2, �78 8C. DPPB =diphenyl-
phosphinobutane, KHMDS = potassium hexamethylsilazide, Tf = tri-
fluoromethanesulfonyl, THF = tetrahydrofuran.
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and the C8a hydroxy groups. Specifically, a cycloaddition
reaction between 27 and a suitable dipole would give
cycloadduct 28. The latter intermediate could be then
converted into diol 9 through reductive ring opening and
functional-group removal.

In the event, a Stille reaction between advanced inter-
mediate 17 and vinyltributylstannane gave a mixture dienes
29 and 30 in 80% yield. The material was consolidated as
a single diastereomer at this stage through conversion of a-
epimer 29 into b-epimer diene 30 by a Mitsunobu reaction. By
a similar synthetic route to that described earlier (Scheme 4),
a sizeable quantity (> 2 g) of tricycle 31 was readily prepared
in six steps from diene 30. Drawing inspiration from the work
of Baran and co-workers,[6w] the pivaloyl ester 31 was

transformed into the benzyl ether 32 in readiness for an
overall syn addition of methyl and hydroxy moieties to the
trisubstituted olefin. Thus, the tricyclic alkene 32 was
converted into isocyanate 33 by a [3+2] cycloaddition of
bromonitrile oxide and subsequent hydride reduction.[17] A
Saegusa deamination[18] and removal of the benzyl group
revealed diol 26 in 76% yield over two steps. TEMPO
oxidation of the secondary alcohol to ketone 34 was achieved
in 94 % yield. As expected, the conformationally restricted
nature of 34 favored the regioselective a-oxygenation at C4 to
afford diol 9 in 40 % yield (65 % based on recovered starting
material). The manipulation of the ketone functionality of 9
into the allylic alcohol of vinigrol (1) has been realized in two
steps by Baran and co-workers.[6w] The interception of a late-
stage intermediate in the Baran synthesis thus completes the
formal total synthesis of the natural product.

In conclusion, a formal synthesis of vinigrol (1) was
achieved in 24 steps from commercially available starting
materials. A unique strategic feature of our synthesis involves
the construction of the vinigrol carbocyclic core in only 12
steps through a sequence involving a sterecontrolled Claisen
rearrangement and an intramolecular Diels–Alder reaction as
key steps. This work serves as a platform for further synthetic
and biological studies with this unique and important natural
product.[19]
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