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Abstract: Epoxidation of 1-tolylthio-1-nitroalkenes containing an
allylic Z- or Fmoc-protected amino group yields the corresponding
syn-epoxides which, although they cannot be isolated, can be
trapped with aqueous ammonia to give stereoisomerically pure anti-
�,�-diamino acid derivatives.
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�,�-Diamino acids 1 and 2 are of interest as components
of natural products,1,2 pharmaceutical leads3 and as metal-
complexing agents. Routes for the synthesis of 2,3-diami-
nobutanoic acid derivatives have used threonine or allo-
threonine.4,5 More general methods that rely on the use of
the chiral pool,6-11 chiral reagents12,13 or asymmetric
catalysts14-16 have extended the range of targets that are
accessible. A useful summary of other routes has been as-
sembled.11 One route that does not appear to have been
widely applied is the Strecker reaction in which an amino
aldehyde is converted into the corresponding homologous
�,�-diamino acid. Two examples that proceed with mod-
est stereoselectivity have been described.3,17 We now re-
port such a route which allows the synthesis of a variety
of stereoisomerically pure anti-�,�-diamino acid deriva-
tives.

We have reported that it is possible to prepare anti-�-hy-
droxy-�-amino acid derivatives as the cis-oxazolidinones
3 by nucleophilic epoxidation of the Boc-protected �-ami-
no (tolylthio)nitroalkenes 4,18 via the inferred intermedia-
cy of the corresponding syn-epoxides 5. Attempts to
isolate and characterise the syn-epoxides 5 were unsuc-
cessful. Although this process provided convenient access
to anti-�-hydroxy-�-amino acid derivatives, the instabili-
ty of the epoxides 5 appeared to prohibit their use in a
ring-opening reaction with aqueous ammonia, a process
that we had previously developed for the synthesis of
�-amino-�-hydroxy acid derivatives.19

Results and Discussion

We judged that the instability of the syn-epoxides 5 was
principally due to the ease of cyclisation of the tert-butyl
carbamate, either as a result of steric factors, or the intrin-
sically greater nucleophilicity of this group due to the sta-
bility of the electrofugal tert-butyl cation. It seemed
appropriate to choose Z-protection for the amino group,
and we therefore prepared the alkene 6 from (p-tolylth-
io)nitromethane and the corresponding protected alaninal
derivative 7 (Scheme 1). Treatment of the alkene 6 in tol-
uene with lithium tert-butylperoxide,20 followed by work-
up and treatment with aqueous ammonia,19 gave the
monoprotected diamino thioester as a single diastereoiso-
mer 8, which could be converted into the corresponding
diprotected derivative 9. The by-product isolated in the re-
action with ammonia was the oxazoline 10. There was no
evidence for the formation of the other diastereoisomer in
this process, but the moderate yield means that we cannot
exclude its formation to a minor extent.

The relative stereochemistry of the diamino thioester 8
was established by conversion into the corresponding cy-
clic urea 11 using bis(trichloromethyl)carbonate. The
magnitude (9.0 Hz) of the coupling constant between the
two ring protons allowed us to establish that the cyclic
urea was cis-fused, and therefore that the precursor pro-
tected �,�-diamino acid derivative 8 was anti. The enanti-
omeric purity of the diamino acid derivative 9 was
established by hydrolysis of the thioester to the carboxylic
acid 12, which exhibited a melting point and specific ro-
tation that compared well with literature values.21
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The encouraging results obtained for the Z-protected ami-
no aldehyde, encouraged us to apply the same process to
the Fmoc-protected analogue, 13a. This compound was
converted into the corresponding alkene 14a, and epoxi-
dation followed by treatment with ammonia gave the cor-
responding monoprotected diamino thioester anti 15a
(along with the corresponding oxazoline 16a). Protection
then gave the doubly protected derivative 17a, which
could be converted into the corresponding acid 18a
(Scheme 2).22 Treatment of 15a with bis(trichlorometh-
yl)carbonate gave the cis-cyclic urea 19, whose stere-
ochemistry was again inferred from the large coupling
constant (9.0 Hz) between the two ring protons (Scheme
2). We were pleased to find that the overall yields were
higher, and the reaction less sensitive to the speed with
which the crude epoxide was subjected to ammonia treat-

ment. This encouraged us to explore the further applica-
tion of this process, and we have therefore carried out an
analogous series of reactions on the Fmoc-protected alde-
hydes 13b and 13c derived from phenylalanine and leu-
cine, respectively, to give the protected diamino acids 18b
and 18c.22,23 The results were broadly comparable, al-
though the yield for the formation of the amino thioester
15b derived from phenylalanine was lower than for the
other two examples (Table).
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In conclusion, we have shown that an appropriate choice
of N-protecting group allows �-amino aldehydes to be
converted into stereoisomerically pure anti-�,�-diamino
acid derivatives 12 and 18 in which the two amino groups
are orthogonally protected as a natural conseqeunce of the
reaction sequence.
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