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Abstract This work provides an in-depth investigation of the Pd(ll)-
catalyzed oxidative cyclization of various alkenoic acids bearing differ-
ent tethers between the carboxylic acid moiety and the olefin function,
showcasing how different mechanistic pathways (oxypalladation or al-
lylic C-H activation) can be operative. The factors biasing toward one or
the other of these reactivities are rationally discussed and compared
with our recent studies on the Pd(ll)-catalyzed intramolecular amina-
tion.

Key words palladium(ll), C-H activation, oxypalladation, reaction
mechanisms, alkenoic acids

Pd(II)-catalyzed addition of nucleophiles to olefins has
emerged as an attractive research domain in the past de-
cades.? However, the mechanism of these transformations
is not always clear, since nucleopalladation? and allylic C-H
activation* are two competing pathways sharing the same
substrate type as well as reaction conditions. Therefore, we
started a study aiming at understanding the detailed mech-
anisms of Pd(II)-catalyzed oxidative cyclizations.> We re-
cently studied the behavior of unsaturated amine deriva-
tives such as N-sulfonyl carbamates and carboxamides un-
der oxidative Pd(II) catalysis [Pd(OAc),, White’s disulfoxide
ligand® and a terminal oxidant such as phenylbenzoquinone
(PhBQ) or PhI(OAc), in AcOH’] (Scheme 1).

This study indicated that after activation of the unsatu-
ration, two main mechanistic pathways can be operative:
namely, aminopalladation, which affords the corresponding
cyclic aminopalladated intermediate (AmPI). This latter can
either evolve along diverse pathways such as distocyclic®
B-H elimination,® oxidation by a strong oxidant like
PhI(OAc),,!° and carbopalladation (Scheme 1, top), or lay
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Scheme 1 ‘Dormant’ versus ‘evolving’ aminopalladated intermediates
AmPI (previous work)

‘dormant’. In this latter case, being the AmPI in equilibrium
with the substrate,!' C-H allylic activation followed by in-
tramolecular trapping of the transiently generated m-allyl-
Pd(Il) intermediate* can alternatively become the only ob-
served reactivity (Scheme 1, bottom).

To verify if such dichotomous behavior is common to a
broader range of substrates, we decided to extend the above
investigation to unsaturated alkenoic acids. Our results are
reported in this letter (Scheme 2).
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Scheme 2 Possible paths for the Pd(ll)-catalyzed intramolecular
acyloxylation (this work)
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We began our study by using our previous standard re-
action conditions, namely: 10 mol% of Pd(OAc),, 15 mol% of
PhS(O)(CH,),S(0)Ph as the ligand and 1.07 equivalents of
PhBQ (conditions A) or 2.1 equivalents of PhI(OAc), (condi-
tions B) as the oxidant. The influence of the nature of the
solvent (AcOH, CH,Cl,) and of a base (NaOAc) was first in-
vestigated in preliminary experiments (see supporting in-
formation), the best results being obtained [for both PhBQ
and PhI(OAc),], in CH,Cl, with one equivalent of NaOAc.
Various alkenoic acids were then reacted under these con-
ditions and the results are summarized in Table 1 according
to the terminal oxidant used.

Table 1 Pd(ll)-Catalyzed Intramolecular Acyloxylation of Alkenes

First, following conditions A (PhBQ as oxidant), pent-4-
enoic acid (1a) did not react (Table 1, entry 1), whereas
hex-5-enoic acid (1b), hept-6-enoic acid (1c¢) and oct-7-
enoic acid (1d) gave the corresponding vinyl lactones 2b-d
with moderate yields!? (Table 1, entries 2-4). These results
indicate that, under such reaction conditions, a direct allylic
acyloxylation occurred.!® Carboxylic acids bearing internal
alkenes were then tested. (E)-Hex-4-enoic acid (1e) led to
vinyl lactone 2b in a moderate 49% yield (Table 1, entry 5).
However, under the same conditions, (E)-pent-3-enoic acid
(1f) only led to degradation (Table 1, entry 6). Conditions B
[PhI(OAc),] were next tested. Acetoxylated lactones 3a,b.f,
and 3f" were obtained starting from carboxylic acids 1a,b,
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4 Compounds 2b, 3e and 3e’ were obtained as inseparable mixtures.
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and 1f (Table 1, entries 1-2 and 6),'*'> whereas acids 1c¢ and
1d only gave intractable material in CH,Cl, (Table 1, entries
3 and 4) or, in the case of 1c, diacetoxylated product 3c in
AcOH.'® Finally, carboxylic acid 1e gave a mixture of 5-vi-
nyl- (2b), 5-styryl- (3e) and 5-(1-iodoethyl)- (3e") y-butyro-
lactone (Table 1, entry 5).

Similarly to the Pd(Il)-catalyzed intramolecular amina-
tion, the above results become coherent if we consider the
existence of a rapid equilibrium between the substrate and
the corresponding cyclic oxypalladated intermediate (OxPI),
which can be off-cycle (dormant) or in-cycle (evolving), de-
pending on several factors. Thus, under the reaction condi-
tions of conditions A, due to the impossibility of B-H elimi-
nation (forbidden proxicyclic, no external B-H available for
distocyclic), the substrates 1b-d are slowly but irreversibly
consumed through an allylic C-H activation path, leading to
the corresponding vinyl lactones 2b-d (Scheme 3).413 The
formation of the four-membered lactone appears highly
disfavored, especially if the transient B-allyl intermediate
takes place via an inner-sphere mechanism,!” thus account-
ing for the absence of reactivity of acid 1a.

Further information came from the experiments carried
out in the presence of PhI(OAc),. Indeed, the ‘dormant’ OxPI
intermediate could be ‘awakened’ by this oxidant, which al-
lowed obtaining the acetoxylated lactones 3a,b through a
double bond oxypalladation-reductive elimination se-
quence likely involving a Pd(IV)'® [or dimeric Pd(II)]'° in-
termediate (Scheme 4).2° However, only five- or six-mem-
bered acetoxylated lactones were isolated, while medium-
rings were not obtained. These results lead us to assume
that the oxypalladation-reductive elimination process is
much faster than the previously observed C-H activation
reactivity, and reversibility of the oxypalladation step is
lost, be it Pd(I)- or Pd(IV)-catalyzed.

Let us consider now the results obtained for the carbox-
ylic acids, 1e,f, having an internal double bond. Under con-
ditions A, substrate 1e provided uneventfully the vinyl lac-

Na oxy-
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/ rapid n
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Scheme 4 ‘Waking-up’ the cyclic OxPl with PhI(OAc),

tone 2b. In this case, both the competing paths (allylic C-H
activation-nucleophilic trapping and oxypalladation) may
in principle lead to the same product. However, as the di-
sulfoxide ligand is not expected to induce the C-H activa-
tion of an internal allylic position in a linear alkene, it fol-
lows that the reaction transits through the cyclic OxPI inter-
mediate, which in turn evolves to the final product via a
distocylic B-H elimination (Scheme 5).2! The same lactone
2b is formed from 1e when using PhI(OAc), as oxidant, too.
However, in this case, 2b is accompanied by 5-styryl- (3e)
and 5-(1-iodoethyl)- (3e’) B-butyrolactone. While 3e is like-
ly to derive from carbopalladation of 2b with in situ gener-
ated PhPdl,?> 3e' may result from a (non Pd-catalyzed)
PhI(OAc),/I- mediated direct iodolactonization of 1e.% As to
the evolution of the cyclic OxPI, the distocyclic B-H elimina-
tion appears in this case to be faster than the alternative Pd
oxidation step.

Finally, treatment of 1f under conditions A only gave
degradation products, whereas under conditions B, two
separable diastereoisomers 3f (trans) and 3f' (cis) could be
isolated. The formation of these compounds is in agreement
with an oxidative cyclization passing through a nonselec-
tive (trans or cis) oxypalladation?* and/or a nonselective
(reductive elimination type or nucleophilic substitution
type)? oxylation (Scheme 6).26
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Scheme 6 Behavior of carboxylic acid 1f under conditions B

To further confirm the involvement of a cyclic OxPI, and
by analogy with our previous work on the nitrogen series,>
we reasoned that an appropriately placed unsaturation in
the substrate could ‘awaken’ the OxPI without relying on an
exogenous parameter such as the replacement of the oxi-
dant. Accordingly, the dienic carboxylic acid 4 was planned
as ideal candidate.?’ Indeed, when 4 was submitted to con-
ditions A, the predicted domino sequence?® took place,
leading to bicyclic y-lactone 5 together with the some dienic
6-lactone 6 (Scheme 7),%° the latter product coming from a
oxypalladation-distocyclic dehydropalladation shunt path
(Scheme 5). These results are in full accord with the forma-
tion of a latent cyclic OxPI, thereby validating our specula-
tion.

In summary, the present study on oxidative Pd(II)-cata-
lyzed intramolecular acyloxylation well complements our
previous work on the intramolecular amination,®> providing
an unified mechanistic picture of the behavior of a broad
range of unsaturated nucleophiles, spanning from alkenoic
acids, to N-sulfonyl carbamates and carboxamides, as a
function of the starting material and the operating condi-
tions (Scheme 8). Thus, after activation of the unsaturation
by a Pd(II) or Pd(IV) complex, to give intermediate I, a rapid
nucleopalladation occurs, leading to a cyclic c-alkyl-palla-
dium(Il) or o-alkyl-palladium(IV) intermediate II (AmPI or
OxPI). On the one hand, if possible, evolution via distocyclic
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7 OH F‘hBQ (1.07 equiv)
4 NaOAc (1 equiv)

CH,Cly, 45 °C, 24 h
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Scheme 7 ‘Waking-up’ the cyclic OxPI via intramolecular carbopalla-
dation

B-H elimination takes place affording the final unsaturated
product A (right, top), or via a carbopalladation-dehy-
dropalladation sequence, leading to bicyclic product B (bot-
tom right). Both paths involve the reduction of Pd(Il) to
Pd(0), whose oxidation by a terminal oxidant (such as a qui-
none derivative) closes the catalytic cycles. Alternatively, in
the presence of a hypervalent iodine(Ill) reagent a pre- or
post-nucleopalladative Pd(II)-to-Pd(IV) oxidation can take
place, whose evolution affords the acetoxylated product C
(right, bottom). On the other hand, if II cannot evolve via
one of the above paths, I is slowly but irreversibly depleted
through an allylic C-H activation, and nucleophilic trapping
of the thus generated m-allyl-Pd(Il) intermediate IV leads to
the allylated product D (left). In this case, due to the revers-
ibility of the nucleopalladation step, intermediate II re-
mains an off-cycle species. These studies further confirm
the existence of the reversible formation of cyclic nucleo-
palladated Pd(Il) intermediates, which can evolve or lay
‘dormant’ depending on the reaction conditions and the na-
ture of the substrate.?®
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(29) Given the complexity of the crude 'H NMR spectrum, we were
not able to determinate the diastereomeric ratios for com-
pounds 5 and 6. Although we did not optimize this domino
sequence, the results still confirm our conclusions concerning
the involvement of the cyclic OxPI intermediate.

(30) (a) General Procedures; Conditions A: In a sealed tube, under
an argon atmosphere, were added the carboxylic acid (1.0
equiv), Pd(0Ac), (0.1 equiv), bis-sulfoxide ligand (0.15 equiv),
p-phenylbenzoquinone (1.07 equiv), NaOAc (1.0 equiv) and CH,Cl,
(0.5 M). The tube was sealed and the reaction was allowed to
stir at 45 °C. After 24 h, the reaction mixture was filtered on a
plug of celite. The filtrate was treated with a sat. aq solution of
5% K,CO3 and the aqueous layer was extracted with CH,Cl, (3 x).
The combined organic layers were dried over anhyd MgSQ,, fil-
tered and concentrated under reduced pressure. Purification by
flash silica gel column chromatography afforded the desired
vinyl lactone. Analytical Data for 2b: Yield: 59%; colorless oil.
'H NMR (300 MHz, CDCl;): & = 5.86 (ddd, J=17.1, 10.5, 6.0 Hz,
1H),533(dt,J=17.2,1.2Hz, 1 H),5.22 (dt,J=10.5, 1.1 Hz, 1 H),
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