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The Borromean link of three rings connected such that no two are
concatenated is an exceptionally challenging target and any synthetic
approach must address both representative and methodological
aspects of the problem. Methodological advances toward an orthog-
onal two-ring target are detailed by J. S. Siegel et al. on the following
pages.
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The molecular Borromean link is one of the most challenging
synthetic targets generated from molecular graphs[1] of
complex topology.[2, 3] Its structural complexity stems from
the interweaving of three macrocycles such that no two of the
macrocycles are concatenated nor covalently connected, yet
collectively they form an integral molecular unit. The origins
of this link in human culture go back to antiquity[4] and the
novelty of its form has been richly discussed.[5] The design of
molecular targets and retrosyntheses from topological graphs
often correlate with a specific representation (often printed in
two dimensions).[6,7] Three principal representations of the
Borromean link that inspire targets for molecular design and
synthesis are the Venn rings, chain rings, and orthogonal rings
(Figure 1).[8] The Venn rings highlight threefold symmetry
and embellish upon the triskelion[9] or related trefoil knot[10]

precursor. The chain rings betray a rack[11] or grid[12]

substructure from which functionalized end groups close the
macrocycles. The orthogonal rings beseech a single-step
template-driven synthesis[13] but readily succumb to a ring-
by-ring retrosynthesis. From this humble strategy, we begin.

To illustrate a specific strategy, we look to an orthogonal-
ring representation using metal coordination as the template
method, built up by a kinetically selective reaction sequence
(Figure 2). Two key structural intermediates along this
synthetic route are the assembly of a principal base macro-
cycle with endo- or exo-oriented metal-binding sites and the
completion of a threaded two-ring structure, in which the two
rings are orthogonal and at least one of the two rings
possesses a second set of metal-binding sites, compatible with
the threading and knitting together of the third ring.

Macrocycles, abstracted as form e (cf. Figure 2), have
substantial precedence in the literature;[14] however, the

relatively simple conceptual extension to a bismacrocycle of
form c (cf. Figure 2) represents a curious threaded-ring
structure of which there are few examples.[15,16] Our

Figure 1. Three retrosynthetic representations of the Borromean link
(Venn rings, chain rings, orthogonal rings).

Figure 2. Retrosynthesis of a Borromean link from the orthogonal-ring
representation.
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strategy focuses on those macrocycles with polypyridine
units,[15, 17] which would suit a metal-template-based retrosyn-
thesis.

The macrocycle 6 can be synthesized in a multistep
procedure from the previously reported terpyridine 2[18]

(Scheme 1). Elaboration of 2 into a related terpyridine 4
with alkyne-terminated side chains, proceeds by standard
demethylation and realkylation methods. Terpyridine 4 forms
an intermediate homoleptic copper(ii) complex[19] with four
dangling arms, terminating in alkynes. These arms are too
short for the ends to form a [2]catanane, as seen in related
work,[20] but are optimal to form the so-called “figure-eight”
complex.[21] The combined one-pot operation of forming 5
from 4 and copper ions followed by addition of excess copper
ion, under modified Eglinton conditions in ethanol without
pyridine, leads directly to the 66-membered macrocycle 6 in
over 90% yield. Hydrogenation of the diynes in 6 affords
macrocycle 7, which bears two endo-oriented terpyridines and
saturated bridging arms. Preformation of the ruthenium
complex 10 by standard methods[22] provides the reagent
necessary to complex two 4,4’’-diarylterpyridyl–Ru units
(LRu) to macrocycle 7, thus forming 11. These LRu units
serve as exo-oriented precursors of ring 2 threaded within
ring 1. The ends of the 4,4’’-aryl units are juxtaposed with each
other and macrocyclization to form the threaded two-ring
architecture 1 is effected by Williamson ether synthesis with
the known biselectrophile 6,6’-bisbromomethyl-2,2’-bipyri-
dine.[23] The bridging bipyridine units represent the endo-
oriented portions of a tetrahedral or trigonal bipyramidal
metal-binding site through which the third ring would
ultimately be threaded, oriented, and cyclized.

Crystals of 1were grown from acetone/diethyl ether as the
PF6 salt, and the crystal structure was elucidated in space
group P1̄ with molecules residing on Ci special positions
(Figure 3).[24] The two rings are clearly threaded within one
another in an orthogonal orientation. The largest dimension
of the complex is roughly 29 B from the hydrogen atoms in
the saturated arm of ring 1 to their symmetry-related
partners. The Ru–Ru span is 16.4 B; on the outer ring
(ring 1) the span from the para-hydrogen atom of the central
ring of the terpyridine to its symmetry partner is approx-
imately 27 B. The dimensions of ring 2 are slightly smaller,
with a long diagonal of 26.1 Bmeasured between manisyl aryl
hydrogen atoms. The conformation of ring 1 is not planar and
bows into a chair form. The two endo-oriented terpyridines of
ring 1 sit in parallel planes, offset by about 5 B. One might
anticipate considerable uncertainty about the exact confor-
mation of the saturated arms and this is supported by residual
disorder, which required a two-conformation model for these
arms in the crystal structure analysis. The conformation of
ring 2 is also readily likened to a macrocyclic chair. The exo-
oriented terpyridines sit in planes parallel to one another but
shifted by roughly 6.5 B. The bridging bipyridines, adopt the
expected anti conformation in the absence of a metal. The
idealized symmetry of ring 2 would be C2h, with the twofold
axis bisecting each of the 2,2’ bonds of each bipyridine, and
the horizontal mirror plane bisecting the exo-oriented terpyr-
idines. The structure shows that there is ample space for the
arms of the third ring to be threaded inside of ring 2 and
outside of ring 1. The dimensions of this third ring will again
need to be over 20 B to span even the smallest region of
ring 1.

Scheme 1. Reaction conditions: a) molten py·HCl, 185 8C, 4 h, 97%; b) Cs2CO3, TsOCH2CH2OCH2CCH (2.2 equiv), DMF, 80 8C, 10 h, 69%;
c) Cu(OAc)2·H2O (0.5 equiv), ethanol, room temperature, 1 h; d) 1) Cu(OAc)2·H2O (10.0 equiv), ethanol, high dilution, reflux, 72 h; 2) KCN (aq),
CH2Cl2, 91%; e) H2 80 psi, Pd/C (10%), ethanol/CH2Cl2 (1:1), 6 h, 91%; f) 10 (2.0 equiv), CH2Cl2/EtOH/ethylene glycol (2:2:1), reflux, 12 h, 65%;
g) 6,6’-bisbromomethyl-2,2’-bipyridine (2.0 equiv), Cs2CO3, acetonitrile, reflux, 72 h, 49%.
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The photophysical and electrochemical properties of 1,
relative to its parent mono ruthenium heteroleptic complex
12, indicate that the ruthenium centers behave independently
of one another (Table 1). Excitation near 312 nm results in

what appears to be a ligand-centered emission at 407 and
419 nm for 1 and 12, respectively. These values coincide with
the emission wavelength range of the free ligands.[18] Excita-
tion at 480 nm results in no detectable emission for either.
Cyclic voltametry (CV) shows only quasi-reversible behavior,
and electrodeposition occurs on the electrodes after multiple
scans for both 1 and 12.

The synthesis of the two-ring intermediate en route to a
Borromean link in the orthogonal-ring representation marks
a milestone. The challenge of this target lead to a highly
efficient strategy for the synthesis of macrocycle 7, which in
turn made 100 mg quantities of 1 readily accessible. The
elucidation of the structure of 1 provides evidence that the
molecule adopts a structure close to the idealized scheme and,
more importantly, gives insight into the stereochemistry and
structural dimensions necessary to assemble the last ring of
the Borromean link. Beyond the mere technical details, these
studies illustrate an important aspect of the pursuit of
chemistry: the human conception of molecular structure.[31]
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