Brief Communications Synthesis of 2'-bromo-8-methylspiro(4H-3,1-benzooxazine-4,1'-cyclopentan)-2(1H)-one and 2-amino-2'-bromo-8-methylspiro(4H-3,1-benzooxazine-4,1'-cyclopentane) from 6-(cyclopent-1-enyl)-2-methylaniline R. R. Gataullin, * I. S. Afon'kin, A. A. Fatykhov, L. V. Spirikhin, and I. B. Abdrakhmanov Institute of Organic Chemistry, Ufa Research Center of the Russian Academy of Sciences, 71 prosp. Oktyabrya, 450054 Ufa, Russian Federation. Fax: +7 (347 2) 35 6066. E-mail: chemorg@anrb.ru The reaction of 6-(cyclopent-1-enyl)-N-ethoxycarbonyl-2-methylaniline with Br_2 or its reaction with NH_3 followed by the reaction with Br_2 afforded 2'-bromo-8-methyl-spiro(4H-3,1-benzooxazine-4,1'-cyclopentan)-2(1H)-one and 2-amino-2'-bromo-8-methyl-spiro(4H-3,1-benzooxazine-4,1'-cyclopentane), respectively. **Key words:** alkenylanilines, ureas, halocyclization, 3,1-benzooxazines. Some compounds of the 3,1-benzooxazine series exhibit high activities in inhibition of chymase 1 or HIV-1 reverse transcriptase. 2 As a continuation of our studies on the synthesis of 3,1-benzooxazines, $^{3-5}$ we examined the reactions of Br₂ with N-substituted urethane (1) and urea (2) with the aim of preparing their 2-oxo and 2-amino analogs. #### **Results and Discussion** The reaction of amine 3^3 with ethyl chloroformate in CH_2Cl_2 in the presence of K_2CO_3 afforded urethane 1 in 95% yield (Scheme 1). Heating of the latter in a methanolic solution of ammonia in an autoclave at 100 °C gave rise to arylurea 2 in 65% yield. The reaction of compound 1 with Br_2 in CCl_4 produced benzo-oxazinone 4 in high yield. The reaction of urea 2 with Br_2 in MeOH at 20 °C afforded hydrobromide 5, which yielded aminobenzooxazine 6 upon treatment with Na_2CO_3 . The structures of the resulting compounds were established based on the data from spectroscopy and el- emental analysis. The 13 C NMR spectra of benzooxazines **4–6** have a signal of the spiro-C(4) atom at δ 91–97, which is virtually identical with the values obtained by us previously for analogous structures.^{3–5} ### **Experimental** The ¹H and ¹³C NMR spectra were recorded on a Bruker AM-300 instrument (300.13 MHz for ¹H; 75.47 MHz for ¹³C; Me₄Si as the internal standard). The IR spectra were measured on a UR-20 spectrometer (Nujol mulls). The purities of the products were monitored by chromatography on Silufol UV-254 plates (CH₂Cl₂ as the eluent). **6-(Cyclopent-1-enyl)-***N***-ethoxycarbonyl-2-methylaniline (1).** Potassium carbonate (10 g) was added to a solution of amine **3** (1.75 g, 10 mmol) in CH₂Cl₂ (20 mL). Then a solution of EtCO₂Cl (1.6 g, 15 mmol) in CH₂Cl₂ (15 mL) was added dropwise with stirring at 20 °C. The reaction mixture was stirred for 2 h and kept at 20 °C for 18 h. The inorganic precipitate that formed was filtered off and washed with CH₂Cl₂ (2×10 mL). The filtrate was successively washed with a 10% aqueous solution of NaHCO₃ until liberation of CO₂ ceased and then with water and dried with MgSO₄. The solvent was evaporated and the residue was extracted with hot hexane. Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 12, pp. 2355—2356, December, 2001. ## Scheme 1 EtCO2CI K2CO3 **NHCOEt** ö Ме Ме 3 NH₃/MeOH | 100 °C Br₂ CCI₄ NHCNH₂ ö Н Ме Me 2 4 MeOH Brin Brıı Na₂CO₃ CH₂Cl₂ NH_2 HBr Me Me 5 6 After evaporation of the hexane, carbamate **1** was obtained in a yield of 2.34 g (95%), m.p. 51-53 °C. Found (%): C, 73.19; H, 7.15; N, 5.43. $C_{15}H_{19}NO_2$. Calculated (%): C, 73.47; H, 7.76; N, 5.71. IR, v/cm^{-1} : 3290 (NH). ¹H NMR (CDCl₃), δ : 1.30 (t, 3 H, CH₃, J = 7.31 Hz); 1.90–2.70 (m, 6 H, 3 CH₂); 2.30 (s, 3 H, CH₃); 4.15 (m, 2 H, CH₂); 5.90 (s, 1 H, CH); 6.35 (s, 1 H, NH); 7.10 (m, 3 H, Ar). ¹³C NMR (CDCl₃), δ : 14.7 (Me); 18.3 (Me); 23.7 (C(4')); 33.5 (C(3')); 35.9 (C(5')); 61.1 ((OCH₂); 126.1 (C(5)); 126.7 ((C(4)); 129.2 (C(2)); 130.9 (C(3)); 133.8 ((C(6)); 136.4 (C(2')); 138.4 (C(1)); 141.3 (C(1')); 154.6 (C=O). *N*-[6-(Cyclopent-1-enyl)-2-methylphenyl]urea (2). A solution of urethane 1 (2.4 g, 10 mmol) in a saturated methanolic solution of ammonia (17 mL) was heated in a metallic autoclave at 100 °C for 25 h. Then the reaction mixture was cooled and the precipitate that formed was filtered off, washed with a methanolic solution of ammonia (3 mL), and dried *in vacuo*. Urea 2 was obtained in a yield of 1.37 g (65%), m.p. 218 °C (MeOH/NH₃). Found (%): C, 72.07; H, 7.15; N, 12.85. C₁₃H₁₆N₂O. Calculated (%): C, 72.22; H, 7.41; N, 12.96. IR, v/cm^{-1} : 3392, 3440 (NH, NH₂). ¹H NMR (DMSO-d₆), δ: 1.90−2.70 (m, 6 H, 3 CH₂); 2.20 (s, 3 H, Me); 5.70 (br.s, 1 H, NH₂); 5.90 (s, 1 H, CH); 7.10 (m, 3 H, Ar); 8.50 (br.s, 1 H, NH). ¹³C NMR (DMSO-d₆), δ: 18.4 (Me); 23.3, 33.2, 35.3 (C(3'), C(4'), C(5')); 125.8 (C(5)); 125.9 (C(4)); 128.8 (C(2)); 129.0 (C(3)); 134.6 (C(6)); 135.9 (C(2')); 137.1 (C(1)); 141.8 (C(1')); 157.0 (C=O). **2'-Bromo-8-methylspiro(4H-3,1-benzooxazine-4,1'-cyclopentan)-2(1H)-one (4).** A solution of Br_2 (0.5 g, 3.12 mmol) in CCl_4 (3 mL) was added dropwise with stirring to a solution of urethane **1** (0.4 g, 1.63 mmol) in CCl_4 (10 mL). The reaction mixture was kept at 20 °C for 1 h, the solvent was evaporated, and the residue was recrystallized from hexane. Benzooxazinone **4** was obtained in a yield of 0.42 g (87%), m.p. 171–173 °C. Found (%): C, 52.38; H, 4.41; Br, 26.54; N, 4.32. $C_{13}H_{14}BrNO_2$. Calculated (%): C, 52.72; H, 4.77; Br, 26.98; N, 4.73. ¹H NMR (CDCl₃), δ : 1.10–2.90 (m, 6 H, 3 CH₂); 2.30 (s, 3 H, CH₃); 4.60 (s, 1 H, H(2')); 6.90–7.40 (m, 3 H, Ar); 9.10 (s, 1 H, NH). ¹³C NMR (CDCl₃), δ : 16.9 (CH₃); 20.0 (C(4')); 33.0 (C(5')); 34.4 (C(3')); 55.8 (C(2')); 93.9 (C(4)); 120.2 (C(7)); 122.2 (C(8)); 122.7 (C(5)); 124.1 (C(6)); 131.1 (C(8a)); 133.0 (C(4a)); 152.3 (C(2)). **2-Amino-2'-bromo-8-methylspiro(***4H***-3,1-benzooxazine-4,1'-cyclopentane) hydrobromide (5).** A solution of Br₂ (0.05 mL, 1 mmol) in MeOH (1 mL) was added dropwise with stirring to a solution of urea **2** (0.22 g, 1 mmol) in MeOH (5 mL) at 20 °C. The solvent was evaporated *in vacuo*. Hydrobromide **5** was obtained in a yield of 0.37 g (100%), m.p. 113—115 °C (CH₂Cl₂). Found (%): C, 41.28; H, 4.11; Br, 42.04; N, 7.02. C₁₃H₁₆Br₂N₂O. Calculated (%): C, 41.51; H, 4.30; Br, 42.49; N, 7.44. ¹H NMR (CDCl₃), δ : 1.10—2.90 (m, 6 H, 3 CH₂); 2.40 (s, 3 H, CH₃); 4.50 (s, 1 H, H(2')); 6.90—7.30 (m, 3 H, Ar); 9.00 (br.s, 2 H, NH₂); 11.00 (s, 1 H, HBr). ¹³C NMR (CDCl₃), δ : 18.4 (CH₃); 20.3 (C(4')); 33.5 (C(5')); 34.7 (C(3')); 54.7 (C(2')); 97.2 (C(4)); 120.3 (C(4a); 124.6 (C(5)); 125.1 (C(8)); 125.2 (C(6)); 128.6 (C(7)); 132.3 (C(8a)); 157.3 (C(2)). 2-Amino-2'-bromo-8-methylspiro(4H-3,1-benzooxazine-**4,1'-cyclopentane) (6).** A solution of compound **5** (0.38 g, 1 mmol) in CH₂Cl₂ (10 mL) was stirred with a 10% aqueous solution of Na₂CO₃ (10 mL) at 20 °C for 30 min. The organic phase was separated, washed with water (5 mL), dried with MgSO₄, and filtered. The solvent was evaporated in vacuo. Benzooxazine 6 was obtained as an amorphous compound in a yield of 0.27 g (93%), R_f 0.4 (CH₂Cl₂). Found (%): C, 52.58; H, 4.81; Br, 26.64; N, 9.12. $C_{13}H_{15}BrN_2O$. Calculated (%): C, 52.89; H, 5.13; Br, 27.07; N, 9.49. ¹H NMR (CDCl₃), δ: 1.10-2.90 (m, 6 H, 3 CH₂); 2.20 (s, 3 H, CH₃); 4.50 (s, 1 H, H(2')); 5.00 (br.s, 2 H, NH₂); 6.90–7.30 (m, 3 H, Ar). ¹³C NMR (CDCl₃), δ : 17.9 (CH₃); 20.2 (C(4')); 33.0 (C(5')); 34.5 (C(3')); 55.7 (C(2')); 91.7 (C(4)); 121.4 (C(6)); 122.7 (C(8)); 123.5 (C(7)); 129.3 (C(4a)); 130.7 (C(7)); 140.1 (C(8a)); 153.8 (C(2)). #### References 1. M. Gütschow, Sci. Pharm., 1999, 67, 524. M. E. Pierce, R. L. Parsons, L. A. Radesca, Y. S. Lo, St. Silverman, J. R. Moore, Q. Islam, A. Choudhury, J. M. D. Fortunak, D. Nguyen, C. Luo, S. G. Morgan, W. P. Davis, P. N. Confalone, C. Chen, R. D. Tillyer, L. Frey, L. Tan, F. Xu, D. Zhao, A. S. Thomson, E. G. Corley, E. G. G. Grabowski, R. Robert, and P. P. Reider, J. Org. Chem., 1998, 63, 8536. 3. R. R. Gataullin, I. S. Afon'kin, I. V. Pavlova, A. A. Fatykhov, I. B. Abdrakhmanov, and G. A. Tolstikov, *Izv. Akad. Nauk, Ser. Khim.*, 1999, 398 [*Russ. Chem. Bull.*, 1999, 48, 396 (Engl. Transl.)]. R. R. Gataullin, I. S. Afon'kin, A. A. Fatykhov, L. V. Spirikhin, and I. B. Abdrakhmanov, Izv. Akad. Nauk, Ser. Khim., 2000, 118 [Russ. Chem. Bull., Int. Ed., 2000, 49, 122]. R. R. Gataullin, I. S. Afon'kin, A. A. Fatykhov, L. V. Spirikhin, E. V. Tal'vinskii, and I. B. Abdrakhmanov, *Izv. Akad. Nauk, Ser. Khim.*, 2001, 633 [Russ. Chem. Bull., Int. Ed., 2001, 50, 659]. Received February 15, 2001; in revised form July 24, 2001