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The use of a bifunctional Cinchona alkaloid catalyst has

provided a new organocatalytic strategy for the enantioselective

addition of diphenylphosphine to a range of nitroalkenes,

affording optically active b-nitrophosphines (up to 99% ee after

crystallization); this organocatalytic approach, providing a

direct route to a new class of potentially useful enantiopure

P,N-ligands, constitutes a bridge between the two complemen-

tary areas of asymmetric catalysis: organo- and metal-catalyzed

transformations.

Chiral phosphines, valuable ligands for metal-catalyzed enantio-

selective transformations,1 are generally prepared by resolution or

by using stoichiometric amounts of chiral auxiliaries.2 Thus, the

development of more efficient catalytic methods for the enantio-

selective synthesis of optically active phosphines is of pressing

current importance.3 Asymmetric hydrophosphination (AHP),4

the stereocontrolled addition of trivalent phosphine compounds,

containing a P–H bond, to electron-deficient olefins, provides

direct, atom-efficient access to potentially useful chiral phosphine

ligands containing different chemical functionalities. These hetero-

functional systems, which enable electronic and steric tuning along

with unique dynamic features such as hemilability,5 facilitate the

optimization of the parameters that engender high stereocontrol in

metal-catalyzed reactions. However, to our knowledge, just one

effective catalytic AHP reaction has been reported recently by the

group of Togni.6

In this context, the direct conjugate additions of secondary

phosphines to nitroalkenes (Scheme 1) would constitute a

particularly attractive strategy for the synthesis of optically active

nitrophosphines, which, due to the synthetic versatility of the nitro

group, can be considered as direct precursors for a wide range of

diverse organic functionalities;7 simple reduction of the nitro

moiety, for example, affords non-proteinogenic amino acid-

derived b-aminophosphines, potentially useful P,N-ligands.8

Surprisingly, to date, no effective methods for the conjugate

addition of phosphines to unsaturated nitro compounds are

available.9,10

Herein, we describe a simple, general and efficient protocol for

the hydrophosphination reaction of nitroalkenes to produce

b-nitrophosphines. Additionally, an asymmetric organocatalytic

version of this process, based on the use of a chiral bifunctional

organocatalyst, affording optically active compounds (up to 99% ee

after a single crystallization), has been disclosed.

Recently, it was reported that hydrophosphination reactions of

activated olefins can be carried out under mild basic conditions.11

On this basis, and considering our interest in the development of

new organocatalytic transformations promoted by chiral tertiary

amines,12 we questioned recently whether the stereocontrolled

conjugate addition of secondary phosphines to nitroalkenes might

be accomplished using a chiral organic base-catalyst (Scheme 2).

Specifically, we proposed that exposure of phosphines13 to a chiral

base would result in the formation of an intermediate ionic species

that would undergo an asymmetric addition to nitroalkenes. This

organocatalytic tactic,14 as compared with a metal-catalyzed

process, would prevent product inhibition arising from the

coordination ability of the phosphorus atom.

To assess the feasibility of such an organocatalytic hydro-

phosphination strategy, we examined the addition of diphenyl-

phosphine 1 to b-nitrostyrene 2 in toluene as the model reaction

(Table 1). The sequential one-pot formation of the air-stable

phosphine–borane complex derivative 3, generated in situ by

employing a trivial procedure,15 facilitates the purification process,

rendering the adduct bench stable for a long time.

Importantly, in the initial studies we noted that, even

performing the model reaction at room temperature (RT) in the

absence of a base-catalyst, complete conversion was achieved after

3 h. This type of uncatalyzed hydrophosphination strategy proved

to be effective for a variety of aromatic and aliphatic nitroalkenes

by using both diphenylphosphine 1 and di-tert-butylphosphine;

detailed results are provided as supporting information{ (yields

ranging from 65% to 94%). Although the intrinsic reactivity of the

process accounts for a direct and operationally simple synthesis of

b-nitrophosphines, this feature constitutes an important hurdle to

overcome in order to accomplish an asymmetric organocatalytic
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Scheme 1 Conjugate addition of secondary phosphines to nitroalkenes.

Scheme 2 Organocatalytic asymmetric hydrophosphination strategy.
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version as the chiral base-catalyzed reaction of 1 with 2 must

proceed at a higher rate than the relatively fast uncatalyzed

background reaction.

With this in mind, we undertook an extensive screen{ of

Cinchona alkaloids derivatives as potential catalysts (20 mol%) for

the model reaction in toluene (0.5 M, 16 h) at 240 uC; under these

conditions, a minimal rate of background reaction was observed

(entry 1, Table 1).

The asymmetric induction observed when using (DHQ)2PHAL

as the catalyst (entry 3), albeit not satisfactory, was interpreted as

an encouraging clue for a successful development of our

asymmetric organocatalytic approach. We speculated that the

use of thiourea-based bifunctional catalysts capable of a

simultaneous activation of both the electrophilic and nucleophilic

components, might lead to higher catalytic activity and, more

importantly, to better stereocontrol. A survey of chiral thiourea

frameworks (Fig. 1), of established ability to act as efficient

bifunctional organocatalysts in many asymmetric transforma-

tions,16 led to identification of compound D17 as a promising

catalyst (49% ee, entry 7).

Among the standard reaction parameters, solvent choice and

reagent concentration proved particularly important. Examination

of the reaction media with catalyst D revealed that Et2O gave

better selectivity (entry 10). While the use of i-PrOH as the reaction

solvent was less than fruitful, the addition of 10% of i-PrOH as a

cosolvent resulted in improved stereocontrol,{ albeit at the expense

of reactivity (entries 11–12). However, at higher concentration ([2]0
= 1 M) complete conversion was achieved after 16 h (entry 13).

Importantly, under these conditions, lowering the catalyst loading

to 10 mol% did not affect the efficiency of the system (entry 14).18

The synthetic potential of this method was evaluated using a

2 mmol scale reaction (Scheme 3); it is noteworthy that the

possibility to obtain 3 in enantiomerically pure form after a single

crystallization and the reductive manipulation of the nitro group

with concomitant in situ tert-butyloxycarbonyl (Boc) protection,

affording the enantiopure aminophosphine 4, provides a direct

route to a new, potentially useful class of chiral P,N-ligand.8 In a

broader sense, the organocatalytic AHP constitutes a bridge

between the two complementary areas of asymmetric catalysis:

organo- and metal-catalyzed transformations.

Investigation into the reaction scope was carried out under the

optimal reaction conditions (Scheme 4).19 Although the b-nitro-

phosphines 5–8 were obtained in moderate enantioselectivity, the

optical purity can be easily increased (.99% ee) by simple

crystallization, as demonstrated for compounds 6 and 8. The

absolute configuration of compound 8 was established to be (S)20

by X-ray crystallographic analysis.{

In summary, we have developed a direct and very simple

methodology for the hydrophosphination of nitroalkenes that

provides access to useful and synthetically challenging b-nitropho-

sphines. Additionally, newly formed stereocenters can be con-

trolled using a chiral thiourea organocatalyst. This organocatalytic

approach, highlighting the potential of a chiral base organocatalyst

to efficiently activate secondary phosphines toward asymmetric

nucleophilic addition, could pave the way for the development of

new, synthetically useful asymmetric hydrophosphination trans-

formations. Current efforts are directed toward application of this

Table 1 Organocatalytic AHP of 2a

Entry Catalyst Solvent
Conversion
(%)b

ee (%)
of 3c

1 — Toluene 24 —
2 Quinine Toluene 85 0
3 (DHQ)2PHAL Toluene 76 18
4 A Toluene 92 15
5 B Toluene 80 27
6 C Toluene 89 36
7 D Toluene 93 49
8 D CH2Cl2 .95 34
9 D THF 55 24

10 D Et2O 88 60
11 D i-PrOH .95 13
12 D Et2O–i-PrOH 9 : 1 80 65
13d D Et2O–i-PrOH 9 : 1 .95 67
14d,e D Et2O–i-PrOH 9 : 1 92 (86)f 66
a Reactions were carried out at 240 uC under N2 using 20 mol% of
the catalyst on a 0.2 mmol scale (16 h). b Determined by 1H NMR
spectroscopy of the crude mixture. c ee of 3 was determined by
HPLC analysis. d [2]0 = 1 M. e 10 mol% of the catalyst, 24 h.
f Number in parentheses indicates yield of the isolated 3.

Fig. 1 Thiourea bifunctional organocatalysts.

Scheme 3 Preparation of enantiopure N-protected aminophosphine 4.

Scheme 4 Reaction scope for the AHP.
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promising organocatalytic AHP strategy to other alkene acceptors

and fully defining its utility as a new synthetic tool for asymmetric

catalysis.
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