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Abstract: Chiral and cyclic nitrones were synthesized by TBAT-
mediated desilylative cyclization of �-mesyloxy-O-tert-butyl-
diphenylsilyloximes, readily prepared from sugar derivatives by a
consecutive treatment with O-tert-butyldiphenylsilylhydroxyl-
amine and with mesyl chloride. The method was applied to sequen-
tial nitrone formation and intramolecular cycloaddition.
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Chiral and cyclic nitrones are recognized as attractive syn-
thetic intermediates, especially for optically active alka-
loids and amino sugars.1 Therefore, there have been
intensive studies on the syntheses of such nitrones: oxida-
tion of secondary amines or hydroxylamines,1b,d,2 in-
tramolecular condensation of aldehydes with
hydroxylamines,1i,j intramolecular Michael addition of ni-
trogen-atom of oximes,3 and intramolecular N-alkylation
of oximes having leaving groups in the molecule.1a,c,1e–g

Among them, the N-alkylation of oximes is the most at-
tractive because of the regio- and stereospecificity. In this
context, synthesis of (3R,4S)-3,4-isopropylidenedioxy-
pyrroline 1-oxide from 3,4-isopropylidene-D-erythrose
via 3,4-isopropylidene-4-mesyloxy-D-erythrose O-trime-
thylsilyloxime has recently been described.4 This report
prompted us to present results of our own work on a gen-
eral method for synthesis of chiral and cyclic nitrones us-
ing TBAT-mediated cyclization of �-mesyloxy-O-tert-
butyldiphenylsilyloximes, readily prepared from chiral
hemiacetals such as sugars.5

Our investigation was initiated by preparation of intramo-
lecular-alkylation precursors 3a–d from the hemiacetals
1a–d (Table 1). Treatment of lactol 1a6 derived from
D-erythrose with O-tert-butyldiphenylsilylhydroxylamine
(H2NOTBDPS)7 in boiling toluene in the presence of 0.05
equiv. of PPTS and excess MgSO4 gave �-hydroxyl-O-
tert-butyldiphenylsilyloxime 2a.8 The latent hydroxyl
group of the oxime group of 2a is effectively differentiat-
ed from the primary �-hydroxyl group, and hence the �-
hydroxyl group can be easily transformed into a leaving
group. Thus, treatment of 2a with mesyl chloride and
Et3N in CH2Cl2 at 0 °C afforded �-mesyloxyoxime 3a in
98% yield from 1a (entry 1).9 Similar reactions of lactols

1b,10 1c, and 1d afforded �-mesyloxyoximes 3b, 3c, and
3d in 89%, 92%, and 59% yields, respectively.

With four mesylates 3a–d in hand, a fluoride ion-mediat-
ed nitrone formation reaction was next examined (Table
2). When compound 3a was treated with CsF in boiling
THF, desilylative cyclization occurred to give nitrone 4a
in 42% yield (entry 1). The use of TBAF as a fluoride ion-
source again gave low yields of 4a, probably due to the in-
stability of 4a under the basic conditions arising from
TBAF (entries 2 and 3). The most satisfactory result was
obtained by employing tetrabutylammonium triphenyldi-
fluorosiliconate (TBAT),11 known as a non-basic fluoride

Table 1 Formation of �-Mesyloxy-O-tert-butyldiphenyl-
silyl oximes 3.

Entry Sugar Derivative 1 O-TBDPS Oxime 2 Yield 
(%)
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O
OH H2NOTBDPS

PPTS, MgSO4
toluene, reflux1RO

RO

RO

MsCl, Et3N
CH2Cl2, 0 °C

2: X = OH
3: X = OMs

X

RO

RO

RO

NOTBDPS

O

O O

OH

O O

NOTBDPSMsO

O

O O

OH

O

O

H
OMs

O O

NOTBDPS

O

O

H

O

OBn

OH

OBn

BnO

OBn

OBnBnO

NOTBDPSMsO

O

OTBDPS

OH

O
O

Ph

OTBDPS

NOTBDPSMsO

O
O

Ph

D
ow

nl
oa

de
d 

by
: C

ol
le

ct
io

ns
 a

nd
 T

ec
hn

ic
al

 S
er

vi
ce

s 
D

ep
ar

tm
en

t. 
C

op
yr

ig
ht

ed
 m

at
er

ia
l.



LETTER Formation of �-Mesyloxy-O-tert-butyldiphenylsilyloximes 1345

Synlett 2002, No. 8, 1344–1346 ISSN 0936-5214 © Thieme Stuttgart · New York

source. Thus, heating 3a with TBAT (1.0–1.05 equiv) and
MS 4Å in boiling THF rapidly caused desilylative cy-
clization to afford 4a in 70% yield (entry 4).12,13 Secon-
dary mesylate 3b and homologated mesylate 3c also
underwent nitrone-formation reactions under similar con-
ditions to give ��-substituted nitrone 4b and six-mem-
bered nitrone 4c in 67% and 71% yields, respectively
(entries 5 and 6). Since the present conditions are very
mild, an O-TBDPS group can be compatible through the
nitrone formation (entries 7 and 8).

The nitrones obtained here were found to be very useful.
For example, nitrone 4a underwent 1,3-dipolar cycload-
dition with styrene to afford cycloadduct 5a in a highly
stereoselective manner, along with a small amount of 5b
(Scheme 1).

We next turned our attention to the application of the
present nitrone-formation reaction to a sequential nitrone
formation and intramolecular cycloaddition. The requisite

hemiacetal 9 was prepared from readily available L-
glutamate derivative 6 in 67% overall yield (Scheme 2).

Hemiacetal 9 was treated with NH2OTBDPS in the pres-
ence of MgSO4 and PPTS in boiling Et2O followed by ex-
posure to mesyl chloride and Et3N to give mesylate 10 in
96% yield (Scheme 3). Treatment of 10 with TBAT in the
presence of MS 4A in refluxing THF afforded cycload-
duct 11 in 84% yield via desilylation and intramolecular
cycloaddition of the resulting nitrone A. Hydrogenolysis
of the N-O bond of cycloadduct 11 followed by treatment
with benzyl chloroformate gave bicyclic alcohol 12. The
present sequence would be useful for synthesis of an alka-
loid laccarin (13) possessing phosphodiesterase inhibitory
activity.14

Scheme 3 a) NH2OTBDPS, cat. PPTS, MgSO4, Et2O, reflux;
b) MsCl, Et3N, CH2Cl2, 96% from 9; c) TBAT, MS 4A, THF, reflux,
30 min, 84%; d) Pd(OH)2, H2, MeOH; e) CbzCl, aq NaHCO3, 91%
from 11

Table 2 Desilylative Cyclization of �-Mesyloxy-O-tert-butyldi-
phenylsilyloximes 3.

Entry Oxime Conditions Nitrone Yield 
(%)
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Scheme 2 a) 5% Pd/C, H2, MeOH; b) p-anisaldehyde, NaBH3CN,
EtOH, AcOH, H2O; c) (E)-ClCOCH=CHMe, aq NaHCO3, CH2Cl2,
92% from 6; d) TFA, CH2Cl2; e) i-BuOCOCl, Et3N; f) Zn(BH4)2,
THF, 78% from 7; g) TsOH, benzene, reflux; h) DIBAL-H, Et2O–
CH2Cl2, –78 °C, 93% from 8
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In conclusion, we have developed a general method for
synthesis of chiral and cyclic nitrones from hemiacetals
such as sugar derivatives using TBAT-mediated desilyla-
tive cyclization of �-mesyloxy-O-tert-butyldiphenylsilyl-
oximes. This synthetic sequence would be useful for poly-
hydroxylated alkaloids and aza-sugars.
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