X-RAY DIFFRACTION PATTERNS OF DINITROPHENYL DERIVATIVES OF AMINO COMPOUNDS¹

By H. M. RICE AND F. J. SOWDEN

ABSTRACT

The 2,4-dinitrophenyl derivatives of a number of amino compounds have been prepared and their X-ray powder diffraction measurements made. This appears to be the first time this information has been obtained and it is submitted as a method of identification.

INTRODUCTION

In recent years the reaction of 1-fluoro-2,4-dinitrobenzene with proteins and protein derivatives has been used a great deal in work on the structure of proteins and in similar problems (2, 6, 7, 8, 9, 10, 11). The free amino groups react with the reagent to form dinitrophenyl derivatives and identification of the derivatives formed shows which amino groups were free in the intact protein. X-ray powder diffraction patterns are being used to an increasing degree in the identification of organic compounds (3, 5) and are very useful since a high degree of purity is not required. The 2,4-dinitrophenyl derivatives of a number of amino acids were prepared by the methods described by Abderhalden and Blumberg (1), Sanger (8), and Porter and Sanger (7) as standards of reference for work on the free amino groups of soil organic matter and their X-ray powder diffraction patterns determined.

X-RAY EXAMINATION

Diffraction patterns of the 2,4-dinitrophenyl derivatives of the amino acids were obtained with a Philips Norelco X-ray spectrometer (1950 model). The samples were ground to pass a 350-mesh sieve and placed in spectrometer frames. Considerable difficulty was encountered in sieving the samples and in preparing nonoriented material for the spectrometer examination.

Preliminary investigation showed that Cu Ka radiation was too strong for satisfactory spectrometer patterns. Consequently Fe Ka radiation ($\lambda = 1.93597$ Å) with manganese filter at 45 kv., 20 ma., and a rate meter setting of 2-06-8 was used. While this was satisfactory for the most prominent lines, it was felt that powder photographs would be better for the weaker lines. Powder samples therefore were made with the material that had been prepared for the spectrometer, using fine glass tubes of 0.2 mm. bore. Philips 114.5 mm. diameter cameras were used with an exposure time of 18 hr.

RESULTS AND DISCUSSION

The analyses of the dinitrophenyl derivatives are reported in Table I. The determinations for carbon, hydrogen, and nitrogen were made in the microanalytical laboratory of Dr. R. Dietrich, Zurich, Switzerland. The nitrogen content was also measured in this laboratory by the Friedrich-Kjeldahl method.

Manuscript received April 8, 1952.

Scientific Contribution No. 222, Division of Chemistry, Science Service, Department of Agriculture, Ottawa.

	Composition (%)						Melting point (°C.)	
Compound	Found			Calculated				Dens to d
	С	H	N	C	H	N	Found	Reported
2,4-dinitroaniline dnp ¹ -glycine dnp-dl-a-alanine dnp-dl-a-alanine dnp-dl-valine dnp-dl-serine dnp-dl-leucine dnp-dl-leucine dnp-dl-leucine dnp-dl-leucine dnp-l-lysine.HCl.H ₂ O bis-dnp-lysine dnp-l-istidine dnp-l-asparagine	$\begin{array}{c} 39.5\\ 39.7\\ 41.2\\ 42.5\\ 40.5\\ 40.1\\ 48.6\\ 40.3\\ 38.9\\ 45.1\\ 44.5\\ 39.9 \end{array}$	$\begin{array}{c} 2.68\\ 2.82\\ 3.61\\ 3.52\\ 4.56\\ 3.40\\ 5.19\\ 3.16\\ 5.37\\ 3.68\\ 2.85\\ 3.35\end{array}$	$\begin{array}{c} 22.8\\ 17.4\\ 16.2\\ 16.6\\ 14.8\\ 15.6\\ 14.1\\ 15.4\\ 17.4\\ 20.0\\ 18.7 \end{array}$	$\begin{array}{c} 39.3\\ 39.8\\ 42.3\\ 42.3\\ 46.6\\ 39.9\\ 48.5\\ 40.2\\ 39.5\\ 45.1\\ 44.4\\ 40.2 \end{array}$	$\begin{array}{c} 2.\ 70\\ 2.\ 90\\ 3.\ 53\\ 3.\ 53\\ 4.\ 60\\ 3.\ 30\\ 5.\ 10\\ 3.\ 00\\ 5.\ 20\\ 3.\ 77\\ 2.\ 67\\ 3.\ 40 \end{array}$	$\begin{array}{c} 22.9\\ 17.4\\ 16.5\\ 14.8\\ 15.5\\ 14.1\\ 14.0\\ 15.4\\ 17.6\\ 20.1\\ 18.8 \end{array}$	$\begin{array}{c} 179\\ 206\\ 178\\ 121-5\\ 185\\ 200\\ 126\\ 190\\ 189\\ 174\\ 228\\ 185\\ \end{array}$	$\begin{array}{c} \hline 176 \ (188) \ (4)^3 \\ 205 \ (1) \\ 178 \ (1) \\ \hline \\ 185 \ (1) \\ 199 \ (7) \\ 203 \ (1) \\ 196 \ (7) \\ 186 \ (8) \\ 146 \ (7) \\ 250 \ (1) \\ . \ 191 \ (1) \end{array}$

TABLE I Composition and melting points of dinitrophenyl derivatives

.

¹dnp—dinitrophenyl. ²Small numbers in brackets indicate literature references.

. J. Chem. Downloaded from www.nrcresearchpress.com by NORTHEASTERN UNIVERSITY on 11/11/14 For personal use only.	
an	

PLATE I

Typical powder diagrams of dinitrophenyl derivatives with Fe Ka radiation. *a.* dnp-*dl*-aspartic acid. *b.* dnp-*dl*-leucine. *c.* dnp-*dl*-serine. *d.* dnp-*dl*-valine. Fig. 1.

Can. J. Chem. Downloaded from www.nrcresearchpress.com by NORTHEASTERN UNIVERSITY on 11/11/14 For personal use only.

•

4

•

TABLE	П	

DIFFRACTION DATA*

1. 2,4-dinitro- aniline		2. dnp-glycine		3. dnp- dl - α -alanine		4. dnp- β -alanine	
$d(\text{\AA})$		$d(\text{\AA})$	I/I ₀	d(Å)	I/I ₀	$d(\text{\AA})$	I/I ₀
$\begin{array}{c} 7.78\\ 7.00\\ 6.40\\ 6.26\\ 5.24\\ 4.79\\ 4.55\\ 4.32\\ 3.75\\ 3.58\\ 3.40\\ 2.98\\ 2.98\\ 2.98\\ 2.98\\ 2.74\\ 2.68\\ 2.56\\ 2.51\\ 2.46\\ 2.33\\ 2.28\\ 2.24\\ 2.33\\ 2.28\\ 2.24\\ 2.33\\ 2.28\\ 2.24\\ 1.91\\ 1.88\\ 1.83\\ 1.75\\ 1.75\\ 1.68\\ 1.50\\ \end{array}$	$1 \\ 1 \\ 1 \\ 7 \\ 3 \\ 1 \\ 1 \\ 8(3) \\ 8(2) \\ 6 \\ 6 \\ 1 \\ 2 \\ 2 \\ 1 \\ 10(1) \\ 7 \\ 1 \\ 2 \\ 2 \\ 1 \\ 1 \\ 2 \\ 1 \\ 1 \\ 2 \\ 1 \\ 1$	$\begin{array}{c} 9.\ 68\\ 7.\ 39\\ 6.\ 36\\ 5.\ 91\\ 4.\ 73\\ 4.\ 57\\ 4.\ 36\\ 4.\ 21\\ 10\\ 3.\ 98\\ 3.\ 75\\ 3.\ 66\\ 3.\ 75\\ 3.\ 66\\ 3.\ 75\\ 3.\ 66\\ 3.\ 75\\ 3.\ 66\\ 3.\ 26\\ 3.\ 18\\ 3.\ 12\\ 3.\ 98\\ 2.\ 84\\ 2.\ 76\\ 2.\ 55\\ 2.\ 51\\ 2.\ 44\\ 2.\ 40\\ 2.\ 28\\ 2.\ 18\\ 2.\ 15\\ 2.\ 13\\ 2.\ 09\\ 2.\ 06\\ 2.\ 03\\ 2.\ 00\\ 1.\ 92\\ 1.\ 87\\ 1.\ 83\\ 1.\ 81\\ 1.\ 79\\ 1.\ 75\\ 1.\ 60\\ 1.\ 37\\ \end{array}$	$\begin{array}{c} 3\\ 3\\ 1\\ 4\\ 1\\ 1\\ 9\\ 3\\ 1\\ 2\\ 5\\ 10(1)\\ 10(2)\\ 3\\ 4\\ 4\\ 2\\ 10(3)\\ 1\\ 1\\ 1\\ 3\\ 1\\ 1\\ 1\\ 2\\ 4\\ d\\ 1\\ 1\\ 2\\ 1\\ 2\\ 3\\ 1\\ 1\\ 1\\ 1\\ 2\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\$	10.4 9.83 7.99 6.63 5.99 5.39 5.14 4.98 4.66 4.22 4.10 3.92 3.75 3.67 3.46 3.33 3.29 3.20 3.12 3.06 2.97 2.90 2.75 2.64 2.58 2.50 2.41 2.32 2.05 1.97 1.72	$7 \\ 10(1) \\ 2 \\ 1 \\ 2 \\ 4 \\ 1 \\ 9(2) \\ 1 \\ 3 \\ 5 \\ 1 \\ 1 \\ 3 \\ 5 \\ 1 \\ 1 \\ 1 \\ 7 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1$	$\begin{array}{c} 15.1\\ 9.79\\ 7.60\\ 7.24\\ 6.37\\ 5.85\\ 5.41\\ 5.05\\ 4.92\\ 4.21\\ 4.29\\ 4.221\\ 4.29\\ 4.221\\ 4.221\\ 4.29\\ 3.87\\ 3.551\\ 3.39\\ 3.27\\ 3.551\\ 3.39\\ 3.27\\ 3.236\\ 2.64\\ 2.34\\ 2.27\\ 2.20\\ 2.15\\ 2.03\\ 1.99\\ 1.94\\ 1.85\\ 1.80\\ 1.63\\ \end{array}$	$\begin{array}{c} 3\\ 2\\ 4\\ 2\\ 2\\ 3\\ 1\\ 3\\ 4\\ 2\\ 8(2)\\ 4\\ 3\\ 6\\ 10(1)\\ 4\\ 3\\ 5\\ 7(3)\\ 1\\ 4\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\$

 $*d(\text{\AA}) = interplanar spacings in \text{\AA}ngstroms; I/I_0 = estimated relative intensity; (1) = strongest line; (2) = second strongest line; (3) = third strongest line; d = diffuse; dnp = dinitrophenyl.$

.

5. dnp- <i>dl</i> - valine		6. dn seri	p- <i>dl</i> -	7. dn leuc	p- <i>dl</i> - ine	8. dnp- <i>dl-</i> aspartic acid	
<i>d</i> (Å)	I/Io	$d(\text{\AA})$		$d(\text{\AA})$	I/Io	d(Å)	I/I.0
$12.0 \\ 8.09 \\ 6.85 \\ 6.19 \\ 5.96 \\ 5.48 \\ 5.17 \\ 4.97 \\ 4.75 \\ 4.47 \\ 4.34 \\ 4.06 \\ 3.87 \\ 3.80 \\ 3.65 \\ 3.44 \\ 3.35 \\ 3.21 \\ 3.99 \\ 2.84 \\ 2.76 \\ 2.51 \\ 2.47 \\ 2.33 \\ 2.19 \\ 2.10 \\ 1.92 \\ 1.86 \\ 1.92 \\ 1.92 \\ 1.86 \\ 1.92 \\ 1.92 \\ 1.86 \\ 1.92 \\ 1.92 \\ 1.86 \\ 1.92 \\ 1.92 \\ 1.86 \\ 1.92 \\ $	$9(2) \\ 5 \\ 3 \\ 1 \\ 1 \\ 10(1) \\ 1 \\ 7 \\ 2 \\ 1 \\ 1 \\ 2 \\ 5 \\ 2 \\ 1 \\ 1 \\ 1 \\ 2 \\ 1 \\ 2 \\ 1 \\ 2 \\ 1 \\ 2 \\ 1 \\ 2 \\ 1 \\ 2 \\ 1 \\ 2 \\ 1 \\ 2 \\ 1 \\ 2 \\ 1 \\ 2 \\ 1 \\ 2 \\ 1 \\ 2 \\ 1 \\ 2 \\ 1 \\ 2 \\ 1 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2$	$\begin{array}{c} 9.42\\ 8.38\\ 7.10\\ 6.17\\ 5.61\\ 5.28\\ 4.92\\ 4.686\\ 4.38\\ 7.55\\ 1.3.37\\ 5.28\\ 2.33\\ 1.3.3.11\\ 3.000\\ 2.98\\ 22.73\\ 2.62\\ 2.52\\ 2.39\\ 2.23\\ 2.27\\ 2.23\\ 2.21\\ 2.21\\ 2.02\\ 1.99\\ 1.80\\ 1.756\\ 1.53\\ 1.50\\ 1.458\\ 1.17\\ 1.11\\ 1.12\\ 1.$	$\begin{matrix} 3 \\ 4 \\ 5 \\ 2 \\ 5 \\ 4 \\ 3 \\ 5 \\ 5 \\ 10(1) \\ 5 \\ 1 \\ 6(3) \\ 3 \\ 3 \\ 4 \\ 8(2) \\ 2 \\ 2 \\ 2 \\ 5 \\ 1 \\ 4 \\ 3 \\ 1 \\ 1 \\ 3 \\ 3 \\ 2 \\ 2 \\ 1 \\ 1 \\ 2 \\ 3 \\ 2 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1$	$\begin{array}{c} 13.9\\ 10.0\\ 9.58\\ 7.18\\ 6.91\\ 5.23\\ 5.03\\ 4.87\\ 4.75\\ 4.32\\ 4.32\\ 4.18\\ 4.04\\ 3.85\\ 3.77\\ 3.67\\ 3.52\\ 3.46\\ 3.34\\ 3.23\\ 3.10\\ 3.04\\ 2.91\\ 2.88\\ 2.62\\ 2.53\\ 2.41\\ 2.33\\ 2.27\\ 2.15\\ 1.09\\ 1.96\\ 1.91\\ 1.87\\ 1.84\\ 1.39\\ 1.159\end{array}$	$10(1) \\ 2 \\ 6 \\ 1 \\ 7(2) \\ 6 \\ 1 \\ 7(3) \\ 5 \\ 6 \\ 1 \\ 1 \\ 2 \\ 2 \\ 3 \\ 3 \\ 1 \\ 5 \\ 2 \\ 2 \\ 1 \\ 1 \\ 2 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1$	$\begin{array}{c} 8.34\\ 6.59\\ 5.75\\ 5.55\\ 5.38\\ 4.44\\ 4.27\\ 4.16\\ 4.93\\ 3.75\\ 6.57\\ 3.30\\ 3.04\\ 3.75\\ 6.57\\ 3.30\\ 3.04\\ 2.87\\ 2.60\\ 2.54\\ 4.21\\ 9.3\\ 3.04\\ 1.93\\ 1.88\\ 9.1\\ 1.60\\ 1$	$\begin{array}{c} 2 \\ 1 \\ 10(1) \\ 2 \\ 5 \\ 1 \\ 2 \\ 3 \\ 4 \\ 3 \\ 5 \\ 5 \\ 3 \\ 1 \\ 9^{\frac{1}{2}}(2) \\ 1 \\ 9(3) \\ 1 \\ 2 \\ 1 \\ 2 \\ 1 \\ 2 \\ 1 \\ 2 \\ 1 \\ 2 \\ 2$

TABLE II (Continued)

Can. J. Chem. Downloaded from www.nrcresearchpress.com by NORTHEASTERN UNIVERSITY on 11/11/14 For personal use only.

9. € -dnp- <i>l</i> - lysine.HCl.H₂O		10. <i>bis-</i> dnp- lysine		11. dnp-l- histidine		12. dnp- <i>l</i> -asparagine	
$d(\text{\AA})$	I/I_0	$d(\text{\AA})$	I/Io	$d(\text{\AA})$	I/I_0	$d(\text{\AA})$	I/I ₀
$\begin{array}{c} 17.5\\ 9.50\\ 8.75\\ 7.76\\ 6.65\\ 6.28\\ 5.01\\ 4.87\\ 4.72\\ 4.39\\ 4.25\\ 4.13\\ 3.98\\ 3.68\\ 3.53\\ 3.41\\ 3.29\\ 2.99\\ 2.86\\ 3.17\\ 3.12\\ 2.99\\ 2.86\\ 2.81\\ 2.74\\ 2.63\\ 2.81\\ 2.74\\ 2.63\\ 2.47\\ 3.12\\ 2.99\\ 2.86\\ 2.81\\ 2.74\\ 2.63\\ 2.25\\ 2.30\\ 2.25\\ 2.21\\ 2.14\\ 2.06\\ 2.00\\ 1.93\\ 1.89\\ 1.88\\ 1.83\\ 1.89\\ 1.88\\ 1.83\\ 1.74\\ 1.69\\ 1.57\\ \end{array}$	$5 \\ 10(1) \\ 1 \\ 1 \\ 3 \\ 5 \\ 1 \\ 2 \\ 3 \\ 4 \\ 1 \\ 10(2) \\ 1 \\ 10(3) \\ 2 \\ 3 \\ 2 \\ 1 \\ 5 \\ 8 \\ 3 \\ 1 \\ 1 \\ 1 \\ 3 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1$	$\begin{array}{c} 13.5\\ 11.1\\ 8.55\\ 7.72\\ 6.32\\ 6.05\\ 5.55\\ 5.20\\ 4.90\\ 4.66\\ 4.38\\ 4.29\\ 4.06\\ 3.72\\ 3.61\\ 3.47\\ 3.29\\ 3.13\\ 3.01\\ 2.91\\ 2.83\\ 2.60\\ \end{array}$	2 5 3 1 4 2 10(1) 1 2 8 5 1 5 2 9(2) 8(3) 2 1 1 2 1 1 2 2 2 1 1 2 2 2 1 1 2 2 2 1 1 2 2 2 1 1 2 2 2 2 1 1 2 2 2 2 2 1 1 2 2 2 2 2 2 2 2	$\begin{array}{c} 16.\ 6\\ 15.\ 5\\ 7.\ 72\\ 7.\ 55\\ 7.\ 09\\ 6.\ 24\\ 5.\ 49\\ 5.\ 36\\ 9\\ 5.\ 36\\ 9\\ 5.\ 01\\ 4.\ 83\\ 4.\ 62\\ 4.\ 37\\ 4.\ 24\\ 4.\ 08\\ 4.\ 00\\ 3.\ 88\\ 3.\ 75\\ 3.\ 61\\ 3.\ 50\\ 3.\ 32\\ 3.\ 22\\ 3.\ 15\\ 3.\ 05\\ 2.\ 95\\ 2.\ 74\\ 2.\ 37\\ 2.\ 37\\ 2.\ 17\\ 2.\ 10\\ 2.\ 00\\ 1.\ 39\\ 1.\ 15\\ 1.\ 09\\ \end{array}$	$ \begin{array}{c} 1\\ 4\\ 1\\ 3\\ 7\\ 8\\ 1\\ 1\\ 6\\ 3\\ 7\\ 1\\ 9(2)\\ 4\\ 1\\ 10(1)\\ 4\\ 1\\ 8(3)\\ 2\\ 1\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 4\\ 4\\ 2\\ 4\\ 4\\ 2\\ 4\\ 4\\ 2\\ 4\\ 4\\ 4\\ 2\\ 4\\ 4\\ 4\\ 4\\ 4\\ 4\\ 4\\ 4\\ 4\\ 4\\ 4\\ 4\\ 4\\$	$\begin{array}{c} 10.9\\ 7.70\\ 5.49\\ 5.06\\ 4.85\\ 4.62\\ 4.20\\ 3.91\\ 3.85\\ 3.72\\ 3.46\\ 3.41\\ 3.33\\ 3.16\\ 3.00\\ 2.97\\ 2.84\\ 2.75\\ 2.65\\ 2.58\\ 2.54\\ 2.46\\ 2.41\\ 2.35\\ 2.30\\ 2.24\\ 4.18\\ 2.12\\ 2.08\\ 2.00\\ 1.94\\ 1.84 \end{array}$	275478(3)310(1)11218(3)12141111111111111111

TABLE II (Concluded)

Most of the compounds melted with some decomposition and, in a few instances, the melting points differed considerably from those recorded in the literature. However, the compounds seemed to be pure when tested chromatographically and a second preparation and purification gave compounds melting at the same temperature.

The results of X-ray analysis are given in Table II and four typical powder diagrams are shown in Fig. 1. The I/I_0 values were estimated visually from 1 to 10 and the three strongest lines are indicated as 1, 2, and 3.

It can be seen from Table II and Fig. 1 that all the compounds examined gave distinct powder patterns; even with such similar compounds as α - and β -alanine, the patterns were quite distinct. In work on protein structure, frequently only small samples of somewhat impure material are available. In such cases, X-ray powder patterns are very useful for purposes of identification.

ACKNOWLEDGMENT

The authors wish to thank Mrs. Doreen I. Parker who assisted in the preparation of the compounds and Mr. J. E. Brydon who assisted in the X-ray diffraction study.

REFERENCES

- ABDERHALDEN, E. and BLUMBERG, P. Hoppe-Seyler's Z. physiol. Chemie, 65: 318. 1910.
 BALLEY, K. Biochem. J. 49: 23. 1951.
 CLARK, C. Arch. Biochem. and Biophys. 31: 18. 1951.
 Handbook of Chemistry and Physics. 31st ed. Chemical Rubber Publishing Co., Cleveland, Obio. 1949.
 L. F. and PUPLIPA W. C. Arch. Chem. 22: 600, 1051. Cleveland, Ohio. 1949. HOFFER, L. J. E. and PEEBLES, W. C. Anal. Chem. 23: 690. 1951. LEA, C. H. and HANNAN, R. S. Biochim. et Biophys. Acta, 4: 518. 1950. PORTER, R. R. and SANGER, F. Biochem. J. 42: 287. 1948. SANGER, F. Biochem. J. 39: 507. 1945. SANGER, F. Biochem. J. 40: 261. 1946. SANGER, F. Biochem. J. 45: 563. 1949. WOOLLEY, D. W. J. Biol. Chem. 179: 593. 1949.
- 5.
- 6.
- 7.
- 8.
- 9.

580

- 10.
- 11.