

Synthesis and Biological Evaluation of Some New Indolizine Derivatives as Antitumoral Agents

Liliana Lucescu^a, Elena Bîcu^a, Dalila Belei^a, Joëlle Dubois^b and Alina Ghinet^{a,c,d,*}

^aDepartment of Organic Chemistry, Faculty of Chemistry, 'Al. I. Cuza' University of Iasi, B-dul Carol I, Nr. 11, Corp A, 700506 Iasi, Romania

^bInstitut de Chimie des Substances Naturelles, UPR2301 CNRS, Centre de Recherche de Gif, Avenue de la Terrasse, F-91198 Gif-sur-Yvette Cedex, France

^cInserm U995, LIRIC, CHRU de Lille, Faculté de Médecine-Pôle Recherche Université Lille 2, Place Verdun, F-59045 Lille Cedex, France

^dEcole des Hautes Etudes d'Ingénieur (HEI), Laboratoire de pharmacochimie, HEI, 13 rue de Toul, F-59046 Lille Cedex, France

Abstract: A new series of indolizine derivatives were synthesized and screened for the antiproliferative potential against NCI 60 tumor cell line panel. The results of the study revealed a selective and good antitumor growth inhibitory activity against SNB-75 CNS cancer cell line for 1-cyanoindolizine derivative **10b**. Moreover, a supplementary *in vitro* biological evaluation showed that compound **9d** exhibited a significant farnesyltransferase inhibition activity (IC₅₀ = $1.07 \pm 0.34 \mu$ M) and could represent a lead for the development of new antitumoral chemical entities.

Keywords: Indolizine, farnesyltransferase, anticancer agent.

Received: June 02, 2015

Revised: October 16, 2015

Accepted: October 22, 2015

1. INTRODUCTION

The indolizine ring system is an important structural moiety frequently found in valuable biologically active compounds. Synthetic indolizine derivatives have been found to have a variety of biological potencies such as antitumoral [1-4], antitubercular [5-7], antioxidant [8, 9], anti-inflammatory [10] and antibacterial [11, 12] activities. Our research group is interested in the study of substituted indolizin-3-yl (phenyl /heteroaryl) methanones with anticancer properties. Related structural indolizines were described as phosphatase inhibitors (e.g. compound I) [13] or apoptosis inducers (e.g. compound **II**) [14] (Fig. 1). In this light, we reported new microtubuleinteracting agents with indolizine skeleton (III [15] and IV [16]) and we have also described for the first time indolizinecontaining inhibitors of human protein farnesyltransferase (FTase) (V) [17]. As part of our ongoing research focused on the synthesis of novel antitumoral compounds with indolizine skeleton, we report here the design, synthesis and in vitro evaluation for antiproliferative, farnesyltransferase inhibition and antitubulin activity of some new 3-(p-bromobenzoyl) substituted indolizine derivatives (Fig. 1).

2. RESULTS AND DISCUSSION

2.1. Synthesis

The target indolizine derivatives were synthesized as presented in Scheme (1). The key intermediates, the pyridinium

salts **3a-g** were prepared in good yields, by refluxing a solution of 2,4'-dibromoacetophenone 1 and an appropriate pyridine derivative **2a-g** in ethyl acetate. The construction of the indolizine unit in products 6a-g, 9a-e and 10a,b was then achieved by [3+2] cycloaddition reaction of the corresponding ylide 4a-g, generated in situ by base treatment of pyridinium salts 3a-g, with ethyl propiolate, acrylonitrile, dimethylacetylenedicarboxylate (DMAD), followed by spontaneous aromatization of intermediates (Scheme 1). The target 1carboxyethylindolizines 6a-g and 1,2-dicarboxymethyl indolizines 9a-e were isolated in good to moderate yields (Scheme 1 and Table 1). The use of acrylonitrile as dipolarophile provided the 1-cyanoindolizines 10a, b in lower yields (Scheme 1 and Table 1). After cycloaddition reaction of ylide 4f with dimethylacetylenedicarboxylate as dipolarophile, besides indolizine 9e, we were able to separate by column chromatography, the partial aromatized intermediate 11. Another exception was observed for the reaction of 4methoxy-pyridine substituted cycloimonium salt 3e with acrylonitrile, when only a tricyclic derivative 12 was isolated, in place of the expected indolizine (Scheme 1). This type of double dipolar cycloaddition product has been observed and described previously by our research group by reacting olefinic dipolarophiles with p-dimethylamino pyridinium ylides [18]. We were then interested to study the influence on bioactivity of free carboxylic acids analogues of indolizines 6c and 6f. In this light, saponification of the ethyl ester group of the title compounds was accomplished and straightforwardly furnished corresponding acids 7a and 7b in very good yields (Scheme 1 and Table 1).

The structures of the newly synthesized compounds were confirmed on the basis of IR, ¹H-NMR, and ¹³C-NMR spectra. In the IR spectra of the synthesized indolizines, the characteristic C=O stretching bands due to the ketone group were

^{*}Address correspondence to this author at the Department of Organic Chemistry, Faculty of Chemistry, 'Al. I. Cuza' University of Iasi, B-dul Carol I, Nr. 11, Corp A, 700506 Iasi, Romania; Tel: +33(3)28384858; Fax: +33(3)28384804; E-mail: alina.ghinet@hei.fr

Fig. (1). Structure of some biologically active indolizine derivatives and of target compounds 6, 7, 9 and 10.

observed at about 1615-1644 cm⁻¹. The characteristic C=O stretching bands due to the ester group of compounds 6a-g were observed at about 1697-1716 cm⁻¹ and, as expected, these bands do not appear in the IR spectra of carboxylic compounds 7a,b. For the dicarboxymethyl derivatives 9a-e two characteristic C=O stretching bands due to the ester group were observed at about 1697-1745, and 1732-1745 cm^{-1} respectively. The characteristic C=N stretching bands due to the nitrile group of compounds 10a,b and 12 appear in the IR spectra at about 2225-2235 cm⁻¹. In the ¹H-NMR spectra, depending on the structure, the characteristic H₅ of indolizine cycle were observed as a doublet signal at about 9.20-9.93 ppm. This signal disappears in the ¹H-NMR of 5substituted indolizines. Another characteristic signal attributed to H₂ proton of the indolizine cycle, appears in the ¹H-NMR at about 7.70-8.14 ppm for compounds 6a-g, 7a,b and 10a,b, while for the dicarboxymethyl derivatives this signal is not observed. The characteristic chemical shifts of the pbromophenyl ring were found in the aromatic region, at about 7.53-8.10 ppm. The ¹³C-NMR spectra were in accordance with the proposed structures, and the most significant chemical shifts were attributed to the quaternary carbon from ketone group at 183-186 ppm. Some physicochemical properties of the synthesized compounds are presented in Table 1.

2.2. Biological Activity

Seven of the synthesized indolizines **6c**, **g**, **f**, **7a**,**b** and **10a**,**b** were selected by the National Cancer Institute (NCI) for screening against 60 human tumor cell lines. The most significant results are summarized in Table **2**. As it can be observed, the best antiproliferative potential was registered for compound **10a** on the SNB-75 CNS cancer cell line, with 52% cell growth inhibition at a 10 μ M dose. Similar cellular inhibition profile was observed for the other 1-cyanoindolizine derivative **10b**. The replacement of the nitrile group with a carboxyethyl unit in compounds **6f**, **g**, lead to complete loss of antiproliferative activity. However,

the 1-carboxyethyl substituted indolizine 6c, showed a moderate activity, with the best cell growth inhibition on HT29 colon cancer cell line. The saponification of the ester group in compounds 7a and 7b resulted in diminished inhibitory activity.

In order to identify the biological target of our synthesized indolizines, compounds **6a-g**, **7a,b**, **9a-e** and **10a,b** were evaluated for their inhibitory potential on human farnesyltransferase (FTase) protein. Surprisingly, only indolizine derivative **6d** presented a strong inhibitory potential, with a value of IC₅₀ (FTase) = 1.07 ± 0.34 µM, while the other tested compounds were completely inactive.

These preliminary results showed that the cellular target of the compounds 10a and 10b with the best antiproliferative potential is different from FTase. Our previous results concerning the ability of indolizine derivatives as tubulin polymerization inhibitors [15, 16], encouraged us to test the newly synthesized compounds for this type of inhibitory activity and the results are described in Table 3. Again, the results were modest, compound 10b showed a lower inhibitory activity, while compound 10a was inactive. The most significant inhibitory profile of the series, with an inhibition ratio of 31%, was registered for compound 9c, a 7-methyl substituted indolizine, with two ester functional groups in the structure. Any other modification realized on this structure as the position change of the methyl group on the indolizine unit in compound 9b, a 6,8-dimethyl substitution in compound 9d, the absence of substituents in compound 9a or replacement by a pyrrolo [2,1-a]quinoline in compound 9e lead to a lower or a completely loss of inhibitory activity.

3. EXPERIMENTAL

3.1. Materials and Methods

The material and methods utilized are described in a precedent publication [19].

Scheme (1). Reagents and conditions: (i) EtOAc, reflux, 24h; (ii) TEA (1.5 equiv), acetonitrile, dipolarophile (acrylonitrile, ethyl propiolate, DMAD) (1.3 equiv), rt, 24 h; (iii) 2N aqueous NaOH (29-32 equiv), MeOH, reflux, 4-8 h.

1 able 1. Filysicochemical properties of synthesized compounds 0 – 1	abl	le	1.	Phy	sico	chem	ical	pro	perties	of	synthesi	ized	com	pounds	6 –	12	2.
--	-----	----	----	-----	------	------	------	-----	---------	----	----------	------	-----	--------	-----	----	----

Compound	Molecular Formula	Molecular Weight (g/mol)	Yield ^a (%)	mp (°C) ^b	R _f Value ^c
6a	C ₁₈ H ₁₄ BrNO ₃	372.21	29	122-125	0.74
6b	C ₁₉ H ₁₆ BrNO ₃	386.24	36	120-122	0.56
6c	C ₁₉ H ₁₆ BrNO ₃	386.24	37	118-121	0.55
6d	C ₂₀ H ₁₈ BrNO ₃	400.27	28	129-130	0.8
6e	C ₁₉ H ₁₆ BrNO ₄	402.24	52	180-183	0.86
6f	C ₂₂ H ₁₆ BrNO ₃	422.27	54	199-202	0.72
6g	C ₂₂ H ₁₆ BrNO ₃	422.27	53	195-197	0.72

Compound	Molecular Formula	Molecular Weight (g/mol)	Yield ^a (%)	mp (°C) ^b	R _f Value ^c
7a	$C_{17}H_{12}BrNO_3$	358.19	76	257-277	0.0
7b	$C_{20}H_{12}BrNO_3$	394.22	97	267-269	0.0
9a	C ₁₉ H ₁₄ BrNO ₅	416.22	52	146-150	0.39
9b	C ₂₀ H ₁₆ BrNO ₅	430.25	28	210-213	0.84
9c	C ₂₀ H ₁₆ BrNO ₅	430.25	28	151-154	0.7
9d	$C_{21}H_{18}BrNO_5$	444.28	44	126-128	0.8
9e	C ₂₃ H ₁₆ BrNO ₅	466.28	22	193-196	0.78
11	C ₂₃ H ₁₈ BrNO ₅	468.3	44	121-125	0.84
10a	$C_{20}H_{11}BrN_2O$	375.22	14	282-284	0.8
10b	$C_{20}H_{11}BrN_2O$	375.22	11	282-285	0.78
12	$C_{20}H_{18}BrN_3O_2$	412.28	12	268-269	0.36

Table 1. contd...

^aSolvent used for recrystallization: ethanol.

^bMelting point. ^cRetention factor; eluting system – n-hexane:ethyl acetate (1:1).

Table 2. In vitro percentage growth inhibition (GI%) caused by the compounds 6c, 6f, 6g, 10a, 10b, 7a and 7b against some tumor cell lines in the single-dose assay.

	Compound	6c	7a	7b	10a	10b	
Panel	Cell line	Cell growth inhibition, GI% (10 ⁻⁵ M) ^a					
Tli-	K-562	20	-	-	_b	-	
Leukemia	SR	20	-	11	12	-	
	НОР-62	-	-	-	20	29	
Non-Small Cell Lung	НОР-92	-	21	22	-	-	
Cancer	NCI-H322M	-	-	13	-	-	
	NCI-H522	31	-	-	29	14	
Colon Cancer	HCT-116	14	-	11	-	-	
	HCT-15	18	-	12	-	-	
	HT29	35	-	-	-	-	
CNS Cancer	SNB-75	-		-	43	52	
	U251	17	10	-	-		
	MALME-3M	-	-	-	-	17	
	UACC-62	14	-	-	-		
Melanoma	SK-OV-3	-	-	-	16	16	
	A498	-	16	-	-		
	ACHN	-	-	-	-	15	
Overien Concer	MDA-MB-231/ATCC	12	-	-	12	-	
Ovarian Cancer	T-47D	24	11	-	13	-	

*Data obtained from NCI's in vitro disease-oriented human tumor cell screen at 10 μM concentration ^bG1% (10 ^5 M) $\!<\!10$

Table 3. Inhibitory activities on tubulin polymerization.

^aInhibition of tubulin polymerization at a 100 µM concentration.

^bValues represent mean of two experiments.

General Procedure for the Synthesis of Pyridinium Salts 3a-g

The pyridine derivative 2a-g (1.5 equiv) was added to a solution of 2,4'-dibromoacetophenone 1 (1 equiv) in ethyl acetate. The resulting mixture was stirred at reflux for 24 h. After cooling the reaction medium to room temperature, the obtained precipitate was filtered, washed with ethyl acetate to give the corresponding pure salt which was used further in cycloaddition reactions.

1-[2-(4-Bromophenyl)-2-oxoethyl]pyridinium bromide (3a)

The general procedure was followed using 2,4'dibromoacetophenone 1 (15.0 g, 54.0 mmol, 1 equiv), pyridine 2a (6.5 mL, 80.9 mmol, 1.5 equiv) and ethyl acetate (60 mL) to provide pure salt 3a as a white solid with the same physico-chemical properties as described in the literature [20]; 99% yield; mp>250 °C.

1-[2-(4-Bromophenyl)-2-oxoethyl]-2-methylpyridinium bromide (3b)

The general procedure was followed using 2,4'dibromoacetophenone **1** (0.7 g, 2.52 mmol, 1 equiv), 2methylpyridine **2b** (0.33 mL, 3.76 mmol, 1.5 equiv) and ethyl acetate (20 mL) to provide pure salt **3b** as a white solid with the same physico-chemical properties as described in the literature [21]; 89% yield; mp 179-182°C.

1-[2-(4-Bromophenyl)-2-oxoethyl]-4-methylpyridinium bromide (3c)

The general procedure was followed using 2,4'dibromoacetophenone **1** (0.7 g, 2.52 mmol, 1 equiv), 4methylpyridine **2c** (0.37 mL, 3.76 mmol, 1.5 equiv) and ethyl acetate (20 mL) to provide pure salt **3c** as a white solid with the same physico-chemical properties as described in the literature [22]; 97% yield; mp 272-274°C.

1-[2-(4-Bromophenyl)-2-oxoethyl]-3,5-dimethylpyridinium bromide (3d)

The general procedure was followed using 2,4'dibromoacetophenone **1** (1.5 g, 5.39 mmol, 1 equiv), 3,5dimethylpyridine **2** (1.16 mL, 8.12 mmol, 1.5 equiv) and ethyl acetate (20 mL). White solid; 96% yield; mp 215-217°C. IR v cm⁻¹: 1696, 1582, 1502, 1486, 1395, 1351, 1323, 1310, 1225, 1203, 1180, 1065, 1008, 985, 939, 843, 829, 720, 668, 614, 578, 535, 495, 456. ¹H NMR (DMSO-*d*₆, 400 MHz): δ (ppm) 2.51 (s, 6H, 2*CH*₃), 6.42 (s, 2H, *CH*₂), 7.90 (d, *J* = 8.4 Hz, 2H, Ar*H*), 8.02 (d, *J* = 8.4 Hz, 2H, Ar*H*), 8.45 (s, 1H, Ar*H*), 8.77 (s, 2H, Ar*H*). ¹³C NMR (DMSO-*d*₆, 100 MHz): δ 17.9 (2CH₃), 65.9 (CH₂), 129.0 (C), 130.3 (2CH), 132.4 (2CH), 132.7 (C), 137.8 (2C), 143.1 (2CH), 147.4 (CH), 190.2 (C).

1-[2-(4-Bromophenyl)-2-oxoethyl]-4-methoxypyridinium bromide (3e)

The general procedure was followed using 2,4'dibromoacetophenone **1** (1.0 g, 3.60 mmol, 1 equiv), 4methoxypyridine **2f** (0.55 mL, 5.38 mmol, 1.5 equiv) and ethyl acetate (25 mL) to provide pure salt **3e** as a white solid; 97% yield; mp 204-206°C. IR v cm⁻¹: 1695, 1642, 1586, 1569, 1518, 1396, 1352, 1297, 1239, 1205, 1177, 1070, 1001, 867, 849, 816, 767. ¹H RMN (DMSO-*d*₆, 400 MHz): δ (ppm) 4.16 (s, 3H, OCH₃), 6.29 (s, 2H, CH₂), 7.76 (d, *J* = 7.6 Hz, 2H; ArH), 7.90 (d, *J* = 8.4 Hz, 2H; ArH), 7.99 (d, *J* = 8.4 Hz, 2H; ArH), 8.79 (d, *J* = 7.6 Hz, 2H, ArH). ¹³C RMN (DMSO-*d*₆, 100 MHz): δ 58.2 (CH₃), 66.0 (CH₂), 113.2 (2CH), 128.7 (C), 130.1 (2CH), 130.3 (2CH), 132.7 (C), 145.5 (2CH), 171.1 (C), 190.8 (C).

1-[2-(4-Bromophenyl)-2-oxoethyl]quinolinium bromide (3f)

The general procedure was followed using 2,4'dibromoacetophenone 1 (1.5 g, 5.40 mmol, 1 equiv), quinoline 5g (0.96 mL, 8.09 mmol, 1.5 equiv) and ethyl acetate (25 mL) to provide pure salt 3f as a white solid with the same physico-chemical properties as described in the literature [23]; 97% yield; mp 260-263°C.

2-[2-(4-Bromophenyl)-2-oxoethyl]isoquinolinium bromide (3g)

The general procedure was followed using 2,4'dibromoacetophenone 1 (1.0 g, 2.52 mmol, 1 equiv), isoquinoline **5h** (0.43 mL, 3.78 mmol, 1.5 equiv) and ethyl acetate (20 mL) to provide pure salt **3g** as a white solid with the same physico-chemical properties as described in the literature [23]; 89% yield; mp 255-257°C.

General Procedure for the Preparation of Indolizines 6a-g, 9a-e, 11, 10a,b and 12

Triethylamine (1.5 equiv) was added to a suspension of cycloimonium salt **3a-g** (1 equiv) in acetonitrile. The dipolarophile (ethyl propiolate, DMAD or acrylonitrile) (1.3 equiv) was then added, after the formation of the intermediate ylide

4a-g in situ (yellow coloration of the reaction medium). The resulting mixture was stirred at room temperature for 24 h. The residue obtained upon evaporation was purified by recrystallization from EtOH or by chromatography (EtOAc: *n*-heptane) and then recrystallized from EtOH to give pure indolizines.

Ethyl 3-(4-bromobenzoyl)indolizine-1-carboxylate (6a)

The general procedure was followed using 1-[2-(4bromophenyl)-2-oxoethyl]pyridinium bromide **3a** (0.7 g, 1.96 mmol, 1 equiv), ethyl propiolate (0.26 mL, 2.55 mmol, 1.3 equiv), triethylamine (0.41 mL, 2.94 mmol, 1.5 equiv) and acetonitrile (15 mL) to provide pure indolizine **6a** as a yellow solid with the same physico-chemical properties as described in the literature [17]; 29% yield; mp (EtOH) 122-125°C.

Ethyl 3-(4-bromobenzoyl)-5-methylindolizine-1-carboxylate (6b)

The general procedure was followed using 1-[2-(4bromophenyl)-2-oxoethyl]-2-methylpyridinium bromide **3b** (1.0 g, 2.69 mmol, 1 equiv), ethyl propiolate (0.35 mL, 3.5 mmol, 1.3 equiv), triethylamine (0.56 mL, 4.04 mmol, 1.5 equiv) and acetonitrile (15 mL) to provide pure indolizine **6b** as a yellow solid with the same physico-chemical properties as described in the literature [17]; 36% yield; mp (EtOH) 120-122°C.

Ethyl 3-(4-bromobenzoyl)-7-methylindolizine-1-carboxylate (6c)

The general procedure was followed using 1-[2-(4bromophenyl)-2-oxoethyl]-4-methylpyridinium bromide **3c** (1.0 g, 2.69 mmol, 1 equiv), ethyl propiolate (0.35 mL, 3.5 mmol, 1.3 equiv), triethylamine (0.56 mL, 4.04 mmol, 1.5 equiv) and acetonitrile (15 mL) to provide pure indolizine **6c** as a cream solid with the same physico-chemical properties as described in the literature [17]; 37% yield; mp (EtOH) 118-121°C.

Ethyl 3-(4-bromobenzoyl)-6,8-dimethylindolizine-1-carboxylate (6d)

The general procedure was followed using 1-[2-(4bromophenyl)-2-oxoethyl]-3,5-dimethylpyridinium bromide 3d (0.4 g, 1.04 mmol, 1 equiv), ethyl propiolate (0.13 mL, 1.35 mmol, 1.3 equiv), triethylamine (0.22 mL, 1.55 mmol, 1.5 equiv) and acetonitrile (15 mL). White solid; 28% yield; mp (EtOH) 129-130°C; Rf=0.8 (EtOAc:n-hexane, 1:1). IR v cm⁻¹: 1716, 1622, 1520, 1479, 1351, 1172, 1053, 935, 847, 836, 775, 748, 694, 520, 451, 414. ¹H NMR (CDCl₃, 400 MHz): δ (ppm) 1.36 (t, J = 7.2 Hz, 3H, CH₃), 2.39 (s, 3H, CH₃), 2.78 (s, 3H, CH₃), 4.31 (q, J = 7.2 Hz, 2H, CH₂), 7.09 (s, 1H, ArH), 7.66 (s, 4H, ArH), 7.70 (s, 1H, ArH), 9.74 (s, 1H, ArH). ¹³C NMR (CDCl₃, 100 MHz): δ 14.4 (CH₃), 18.3 (CH₃), 21.8 (CH₃), 60.6 (CH₂), 108.3 (C), 121.2 (C), 125.1 (CH), 125.2 (C), 126.0 (C), 129.2 (C), 130.6 (2CH), 130.7 (CH), 131.6 (2CH), 131.9 (C), 132.3 (CH), 137.8 (C), 139.1 (C), 164.0 (C), 183.8 (C). Anal. calcd for C₂₀ H₁₈ BrNO₃: C, 60.1; H, 4.53; N, 3.50. Found: C, 60.52; H, 5.02; N, 3.96.

Ethyl 3-(4-bromobenzoyl)-7-methoxyindolizine-1-carboxylate (6e)

The general procedure was followed using 1-[2-(4bromophenyl)-2-oxoethyl]-4-methoxypyridinium bromide 3e (0.25 g, 0.65 mmol, 1 equiv), ethyl propiolate (0.09 mL, 0.84 mmol, 1.3 equiv), triethylamine (0.13 mL, 0.97 mmol, 1.5 equiv) and acetonitrile (15 mL). Cream solid; 52% yield; mp (EtOH) 180-183°C. IR v cm⁻¹: 1697. 1648. 1605. 1538. 1524. 1476, 1457, 1344, 1301, 1283, 1252, 1226, 1203, 1171, 1084, 1068, 1041, 1020, 926, 848, 832, 805, 776, 749, 689, 597, 426, 449.¹H NMR (CDCl₃, 400 MHz): δ (ppm) 1.39 (t, J=7.2 Hz, 3H, CH₃), 3.97 (s, 3H, OCH₃), 4.36 (q, J=7.2 Hz, 2H, CH₂), 6.78 (dd, J=7.6, 2.4 Hz, 1H, ArH), 7.63-7.69 (m, 4H, ArH), 7.75 (d, J=2.4 Hz, 1H, ArH), 9.79 (d, J= 7.6 Hz, 1H, ArH).¹³C NMR (CDCl₃, 100 MHz): δ14.6 (CH₃), 55.8 (CH₃), 60.1 (CH₂), 97.6 (CH), 104.9 (C), 109.4 (CH), 121.5 (C), 126.1 (C), 129.7 (CH), 130.4 (2CH), 130.7 (CH), 131.6 (2CH), 138.7 (C), 143.1 (C), 160.1 (C), 164.3 (C), 183.6 (C). Anal. calcd for C₁₉H₁₆BrNO₄: C, 56.73; H, 4.01; N, 3.48. Found: C, 57.64; H, 4.74; N, 3.91.

Ethyl 1-(4-bromobenzoyl)pyrrolo[1,2-a]quinoline-3-carbo-xylate (6f)

The general procedure was followed using 1-[2-(4bromophenyl)-2-oxoethyl]quinolinium bromide **3f** (1.0 g, 2.45 mmol, 1 equiv), ethyl propiolate (0.32 mL, 3.19 mmol, 1.3 equiv), triethylamine (0.51 mL, 3.68 mmol, 1.5 equiv) and acetonitrile (15 mL) to provide pure indolizine **6f** as a cream solid with the same physico-chemical properties as described in the literature [24]; 54% yield; mp (EtOH) 199-202°C.

Ethyl 3-(4-bromobenzoyl)pyrrolo[2,1-a]isoquinoline-1-carboxylate (6g)

The general procedure was followed using 2-[2-(4bromophenyl)-2-oxoethyl]isoquinolinium bromide 3g (1.0 g, 2.45 mmol, 1 equiv), ethyl propiolate (0.32 mL, 3.19 mmol, 1.3 equiv), triethylamine (0.51 mL, 3.68 mmol, 1.5 equiv) and acetonitrile (15 mL) to provide pure indolizine 6g as a pale pink solid with the same physico-chemical properties as described in the literature [24]; 53% yield; mp (EtOH) 195-197°C.

Dimethyl 3-(4-bromobenzoyl)indolizine-1,2-dicarboxylate (9a)

The general procedure was followed using 1-[2-(4bromophenyl)-2-oxoethyl]pyridinium bromide **3a** (1.0 g, 2.8 mmol, 1 equiv), DMAD (0.45 mL, 3.64 mmol, 1.3 equiv), triethylamine (0.58 mL, 4.2 mmol, 1.5 equiv) and acetonitrile (15 mL) to provide pure indolizine **9a** as a yellow solid with the same physico-chemical properties as described in the literature [25]; 52% yield; mp (EtOH) 146-150°C.

Dimethyl 3-(4-bromobenzoyl)-5-methylindolizine-1,2-dicarboxylate (9b)

The general procedure was followed using 1-[2-(4bromophenyl)-2-oxoethyl]-2-methylpyridinium bromide **3b** (1.0 g, 2.69 mmol, 1 equiv), DMAD (0.43 mL, 3.5 mmol, 1.3 equiv), triethylamine (0.56 mL, 4.04 mmol, 1.5 equiv) and acetonitrile (15 mL). Yellow solid; 28% yield; mp (EtOH) 210-213°C. IR v cm⁻¹: 1746, 1689, 1638, 1583, 1542, 1514, 1458, 1370, 1315, 1200, 1164, 1096, 1008, 925, 873, 850, 821, 791, 754, 724, 652, 632, 517, 461. ¹H NMR (CDCl₃, 400 MHz): δ (ppm) 2.42 (s, 3H, CH₃), 3.40 (s, 3H, OCH_3), 3.88 (s, 3H, OCH_3), 6.90 (d, J = 7.2 Hz, 1H, ArH), 7.40 (t, J = 7.2 Hz, 1H, ArH), 7.64 (d, J = 8.4 Hz, 2H, ArH), 7.81 (d, J = 8.4 Hz, 2H, ArH), 8.36 (d, J = 8.8 Hz, 1H, ArH). ¹³C NMR (CDCl₃, 100 MHz): δ 23.2 (CH₃), 51.6 (CH₃), 52.3 (CH₃), 103.0 (C), 117.3 (CH), 117.9 (CH), 122.7 (C), 127.2 (CH), 128.5 (C), 130.2 (C), 131.5 (2CH), 131.7 (2CH), 137.0 (C), 138.4 (C), 139.7 (C), 163.5 (C), 165.5 (C), 184.0 (C). Anal. calcd for C₂₀H₁₆BrNO₅: C, 55.83; H, 3.75; N, 3.26. Found: C, 56.41; H, 4.16; N, 3.88.

Dimethyl 3-(4-bromobenzoyl)-7-methylindolizine-1,2-dicarboxylate (9c)

The general procedure was followed using 1-[2-(4bromophenyl)-2-oxoethyl]-4-methylpyridinium bromide 3c (0.96 g, 2.58 mmol, 1 equiv), DMAD (0.45 mL, 3.36 mmol, 1.3 equiv), triethylamine (0.54 mL, 3.88 mmol, 1.5 equiv) and acetonitrile (20 mL). Orange solid; 28% yield; mp (EtOH) 151-154°C. IR v cm⁻¹: 1746, 1697, 1615, 1582, 1500, 1442, 1375, 1341, 1294, 1253, 1203, 1152, 1094, 1006, 920, 873, 801, 781, 760, 662, 470, 435. ¹H NMR (CDCl₃, 400 MHz): δ (ppm) 2.50 (s, 3H, CH₃), 3.38 (s, 3H, OCH₃), 3.87 (s, 3H, OCH₃), 6.96 (dd, J = 7.2, 1.6 Hz, 1H, ArH), 7.53 (d, J = 8.8 Hz, 2H, ArH), 7.59 (d, J = 8.8 Hz, 2H, ArH), 8.16 (s, 1H, ArH), 8.54 (d, J = 7.2 Hz, 1H, ArH). ¹³C NMR (CDCl₃, 100 MHz): δ 21.7 (CH₃), 51.6 (CH₃), 52.3 (CH₃), 103.2 (C), 118.6 (CH), 118.7 (CH), 120.0 (C), 126.4 (C), 128.1 (CH), 130.2 (2CH), 131.3 (2CH), 132.1 (C), 138.5 (C), 138.9 (C), 140.2 (C), 163.4 (C), 165.3 (C), 185.2 (C). Anal. calcd for C₂₀H₁₆BrNO₅: C, 55.83; H, 3.75; N, 3.26. Found: C, 56.32; H, 4.29; N, 3.48.

Dimethyl 3-(4-bromobenzoyl)-6,8-dimethylindolizine-1,2dicarboxylate (9d)

The general procedure was followed using 1-[2-(4bromophenyl)-2-oxoethyl]-3,5-dimethylpyridinium bromide 3d (0.7 g, 1.82 mmol, 1 equiv), DMAD (0.29 mL, 2.35 mmol, 1.3 equiv), triethylamine (0.38 mL, 2.73 mmol, 1.5 equiv) and acetonitrile (20 mL). Cream solid; 44% yield; mp (EtOH) 126-128°C. IR v cm⁻¹: 1736, 1710, 1624, 1587, 1489, 1443, 1373, 1289, 1200, 1172, 1067, 1013, 926, 833, 789, 766, 726, 679, 659, 535, 452. ¹H NMR (CDCl₃, 400 MHz): δ (ppm) 2.34 (s, 3H, CH₃), 2.57 (s, 3H, CH₃), 3.30 (s, 3H, OCH₃), 3.85 (s, 3H, OCH₃), 6.99 (s, 1H, ArH), 7.57 (s, 1H, ArH), 9.20 (s, 1H, ArH). ¹³C NMR (CDCl₃, 100 MHz): δ 18.4 (CH₃), 20.2 (CH₃), 52.1 (CH₃), 52.3 (CH₃), 108.0 (C), 119.7 (C), 123.4 (CH), 125.6 (C), 126.7 (C), 128.9 (C), 129.0 (C), 130.2 (2CH), 130.8 (CH), 131.4 (2CH), 134.3 (C), 139.3 (C), 164.8 (C), 164.9 (C), 185.5 (C). Anal. calcd for C₂₁H₁₈BrNO₅: C, 56.77; H, 4.08; N, 3.15. Found: C, 57.32; H, 4.57; N, 3.48.

Dimethyl 3-(4-bromobenzoyl)pyrrolo[2,1-a]quinoline-1,2dicarboxylate (9e)

The general procedure was followed using 1-[2-(4bromophenyl)-2-oxoethyl]quinolinium bromide **3f** (1.0 g, 2.46 mmol, 1 equiv), DMAD (0.39 mL, 3.19 mmol, 1.3 equiv), triethylamine (0.51 mL, 3.69 mmol, 1.5 equiv) and acetonitrile (20 mL) to provide pure indolizine **9e** as a cream solid with the same physico-chemical properties as described in the literature [24]; 22% yield;mp (EtOH) 193-196°C.

Dimethyl 1-(4-bromobenzoyl)-1,3a-dihydropyrrolo[1,2a]quinolone-2,3-dicarboxylate (11a)

By-product from the synthesis of indolizine **9e**; yellow solid; 44% yield; mp (EtOH) 121-125°C. IR v cm⁻¹: 1733, 1695, 1678, 1625, 1583, 1556, 1470, 1426, 1353, 1250, 1067, 1009, 771, 760. ¹H NMR (CDCl₃, 400 MHz): δ (ppm) 3.49 (s, 3H, CH₃), 3.90 (s, 3H, CH₃), 4.56 (d, J = 12.8 Hz, 1H, CH), 5.44 (d, J = 12.8 Hz, 1H, CH), 5.80 (d, J = 6.8 Hz, 1H, ArH), 6.22 (d, J = 6.8 Hz, 1H, ArH), 7.04 (s, 1H, ArH), 7.26 (s, 1H, ArH), 7.36 (s, 1H, ArH). ¹³C NMR (CDCl₃, 100 MHz): δ 51.3 (CH₃), 53.0 (CH₃), 53.2 (CH), 65.4 (CH), 104.2 (C), 109.4 (CH), 123.6 (CH), 123.7 (CH), 124.8 (CH), 127.3 (CH), 128.4 (CH), 133.7 (C), 150.5 (C), 164.2 (C), 173.8 (C), 188.1 (C). Anal. calcd for C₂₃H₁₈BrNO₅: C, 58.99; H, 3.87; N, 2.99. Found: C, 59,23; H, 4.47; N, 3.26.

3-(4-Bromobenzoyl)pyrrolo[2,1-a]quinoline-1-carbonitrile (10a)

The general procedure was followed using 1-[2-(4bromophenyl)-2-oxoethyl]quinolinium bromide 3f (0.7 g, 1.72 mmol, 1 equiv), acrylonitrile (0.14 mL, 2.24 mmol, 1.3 equiv), triethylamine (0.36 mL, 2.58 mmol, 1.5 equiv) and acetonitrile (15 mL). Cream solid; 14% yield; mp (EtOH) 282-284°C. IR v cm⁻¹: 3126, 2225, 1626, 1588, 1535, 1467, 1423, 1324, 1235, 1170, 1069, 1010, 968, 879, 833, 801, 749, 737, 685, 562, 504, 466, 408. ¹H NMR (CDCl₃, 400 MHz): δ (ppm) 7.26 (d, J = 7.6 Hz, 1H, ArH), 7.60 (s, 1H, ArH), 7.69 (d, J = 8.8 Hz, 2H, ArH), 7.72 (d, J = 8.8 Hz, 2H, ArH), 7.74-7.77 (m, 2H, ArH), 7.83-7.86 (m, 1H, ArH), 9.01 (d, J = 7.2 Hz, 1H, ArH), 9.46 (d, J = 7.2 Hz, 1H, ArH).¹³C NMR (CDCl₃, 100 MHz): δ 103.0 (C), 115.6 (CH), 117.3 (C), 120.6 (CH), 124.5 (C), 125.3 (CH), 126.7 (C), 127.0 (CH), 128.5 (C), 128.9 (CH), 129.9 (CH), 130.9 (C), 131.2 (2CH), 131.9 (2CH), 134.1 (C), 136.4 (CH), 137.4 (C), 179.2 (C). Anal. calcd for C₂₀H₁₁BrN₂O: C, 64.02; H, 2.95; N, 7.47. Found: C, 64.61; H, 3.56; N, 7.84.

3-(4-Bromobenzoyl)pyrrolo[2,1-a]isoquinoline-1-carbonitrile (10b)

The general procedure was followed using 2-[2-(4bromophenyl)-2-oxoethyl]isoquinolinium bromide 3g (0.7 g, 1.72 mmol, 1 equiv), acrylonitrile (0.14 mL, 2.24 mmol, 1.3 equiv), triethylamine (0.36 mL, 2.58 mmol, 1.5 equiv) and acetonitrile (15 mL). Cream solid; 11% yield; mp (EtOH) 282-285°C. IR v cm⁻¹: 3127, 2225, 1626, 1588, 1535, 1467, 1452, 1423, 1362, 1342, 1236, 1171, 1069, 1010, 968, 879, 833, 801, 776, 749, 737, 685, 562, 467, 408. ¹H NMR (CDCl₃, 400 MHz): δ (ppm) 7.33 (d, J = 7.6 Hz, 1H, ArH), 7.56 (s, 1H, ArH), 7.67-7.77 (m, 6H, ArH), 7.82-7.87 (m, 1H, ArH), 8.98-9.03 (m, 1H, ArH), 9.55 (d, J = 7.6 Hz, 1H, ArH). ¹³C NMR (CDCl₃, 100 MHz): δ 86.1 (C), 116.0 (CH), 116.9 (C), 123.6 (C), 124.1 (CH), 124.1 (C), 125.1 (CH), 127.3 (C), 127.3 (CH), 128.8 (CH), 129.0 (CH), 129.9 (C), 130.2 (CH), 130.6 (2CH), 131.9 (2CH), 137.8 (C), 138.1 (C), 184.3 (C).Anal. calcd for C₂₀H₁₁BrN₂O: C, 64.02; H, 2.95; N, 7.47. Found: C, 64.71; H, 3.62; N, 7.69.

2a-(4-Bromobenzoyl)-6-methoxy-1,2,2a,3,4,4a,5,7a-octahydropyrrolo[2,1,5-cd]indolizine-1,4-dicarbonitrile (12)

The general procedure was followed using 1-[2-(4bromophenyl)-2-oxoethyl]-4-methoxypyridinium bromide 3e (0.4 g, 1.0 mmol, 1 equiv), acrylonitrile (0.09 mL, 1.34 mmol, 1.3 equiv), triethylamine (0.22 mL, 1.55 mmol, 1.5 equiv) and acetonitrile (15 mL). White crystals; 12% yield; mp (EtOH) 268-269°C. IR v cm⁻¹: 2942, 2910, 2325, 2235, 1678, 1663, 1583, 1566, 1462, 1395, 1367, 1309, 1279, 1218, 1160, 1134, 1071, 1035, 993, 971, 851, 830, 808, 761, 722, 664, 578, 466. ¹H NMR (CDCl₃, 400 MHz): δ (ppm) 2.31-2.42 (m, 2H, CH₂), 2.60-2.65 (m, 1H, CH), 2.72-2.82 (m, 2H, CH₂), 3.18-3.24 (m, 1H, CH), 3.34-3.4 (m, 3H, CH₂CH), 3.65 (s, 3H, OCH₃), 3.92-3.96 (m, 1H, CH), 4.71-4.72 (m, 1H, CH), 7.61 (d, J = 9.2 Hz, 2H, ArH), 8.10 (d, J =8.4 Hz, 2H, ArH). ¹³C NMR (CDCl₃, 100 MHz): δ 31.9 (CH₂), 32.7 (CH), 34.5 (CH), 39.5 (CH₂), 40.7 (CH₂), 55.3 (CH₃), 58.7 (CH), 59.9 (CH), 79.3 (C), 90.1 (CH), 118.9 (C), 121.3 (C), 128.8 (C), 131.4 (2CH), 131.9 (2CH), 132.8 (C), 157.0 (C), 198.2 (C). Anal. calcd for C₂₀H₁₈BrN₃O₂: C, 58.26; H, 4.40; N, 10.19. Found: C, 59.12; H, 4.72; N, 10.64.

General Procedure for the Preparation of 3-(4-substituted benzoyl)indolizine-1-carboxylic acids 7a and 7b

Aqueous 2N NaOH was added to a suspension of ethyl ester 6c and 6f (1 equiv) in MeOH. The reaction mixture was stirred at reflux, until complete solubilization. The resulting mixture was cooled to room temperature, and then citric acid was added until complete precipitation. The carboxylic acid obtained 7a and 7b was washed with hot ethanol and collected by filtration.

3-(4-Bromobenzoyl)indolizine-1-carboxylic acid (7a)

The general procedure was followed using ethyl 3-(4bromobenzoyl)-7-methylindolizine-1-carboxylate **6c** (0.1 g, 0.28 mmol, 1 equiv), NaOHaq 2N (4 mL) and MeOH (4 mL) to provide pure carboxylic acid **7a** as a white solid with the same physico-chemical properties as described in the literature [20]; 76% yield; mp (EtOH) 275-277°C.

3-(4-Bromobenzoyl)pyrrolo[1,2-a]quinoline-1-carboxylic acid (7b)

The general procedure was followed using ethyl 1-(4bromobenzoyl)pyrrolo[1,2-*a*]quinoline-3-carboxylate **6f** (0.1 g, 0.25 mmol, 1 equiv), NaOHaq 2N (4 mL) and MeOH (4 mL). White solid; 97% yield; mp (EtOH) 267-269°C. IR v cm⁻¹: 3150, 1692, 1621, 1589, 1518, 1459, 1356, 1338, 1238, 1195, 1159, 1140, 965, 870, 748.¹H NMR (DMSO- d_{6} , 400 MHz): δ (ppm) 7.53 (d, J = 7.6 Hz, 1H, ArH), 7.66 (s, 1H, ArH), 7.69-7.81 (m, 6H, ArH), 9.50 (d, J = 7.6 Hz, 1H, ArH), 9.84 (d, J = 7.6 Hz, 1H, ArH), 12.72 (s, 1H, OH).¹³C NMR (DMSO- d_6 , 100 MHz): δ 110.7 (C), 115.5 (CH), 122.4 (C), 123.8 (C), 124.7 (CH), 125.7 (C), 127.0 (CH), 127.6 (CH), 127.8 (CH), 129.5 (CH), 129.6 (CH), 130.1 (C), 130.9 (2CH), 131.5 (2CH), 135.8 (C), 138.2 (C), 165.2 (C), 183.8 (C). Anal. calcd for C₂₀H₁₂BrNO₃: C, 60.93; H, 3.07; N, 3.55. Found: C, 61.34; H, 3.29; N, 3.68.

Biological Evaluation

1. Farnesyltransferase assay: These assays were realized as described in a previous article [19, 26].

2. *Tubulin studies*: These studies were realized as described in a preceding publication [27], according to reported procedure [28, 29] using DAPI as fluorescent molecule.

3. Cell proliferation assay: The cell proliferation assay was realized with indolizines **6c**,**f**,**g**, **7a**,**b** and **10a**,**b** on a panel of 60 human cancer cell lines at the National Cancer Institute, Germantown, MD. The cytotoxicity studies were carried out using the sulforhodamine B assay [30-32].

CONCLUSION

A new series of 3-(*p*-bromobenzoyl) substituted indolizine derivatives was synthesized by [3+2] cycloaddition reaction, fully characterized and evaluated for cytotoxicity on an NCI-60 human cancer cell lines panel and tested for farnesyltransferase and tubulin polymerization inhibitory activity. The best results after these investigations were registered for compound **10b** which showed a selective antiproliferative activity against SNB-75 CNS cancer cell line, being a promising candidate for future modulations. Furthermore, farnesyltransferase assay revealed a strong inhibitory potential for 1-carboxyethyl-6,8-dimethyl substituted derivative **6d**, with an IC₅₀ value of $1.07 \pm 0.34 \mu$ M.

CONFLICT OF INTEREST

The authors confirm that this article content has no conflict of interest.

ACKNOWLEDGEMENTS

This work was supported by the strategic grant POS-DRU/159/1.5/S/137750, Project "Doctoral and Postdoctoral programs support for increased competitiveness in Exact Sciences research"co financed by the European Social Found within the Sectorial Operational Program Human Resources Development 2007 – 2013 (PhD scholarship L. L.). The authors acknowledge the National Cancer Institute (NCI) for biological evaluation of compounds on their 60-cell panel: the testing was performed by the Developmental Therapeutics Program, Division of Cancer Treatment and Diagnosis (the URL to the Program's website: http://dtp.cancer.-gov).

REFERENCES

 James, D. A.; Koya, K.; Li, H.; Liang, G.; Xia, Z.; Ying, W.; Wu, Y.; Sun, L. Indole- and Indolizine-Glyoxylamides Displaying Cytotoxicity against Multidrug Resistant Cancer Cell Lines. Bioorg. Med. Chem. Lett. 2008, 18(6), 1784–1787.

- [2] Shen, Y. M.; Lv, P. C.; Chen, W.; Liu, P. G.; Zhang, M. Z.; Zhu, H. L. Synthesis and Antiproliferative Activity of Indolizine Derivatives Incorporating a Cyclopropylcarbonyl Group against Hep-G2 Cancer Cell Line. *Eur. J. Med. Chem.* **2010**, *45*(7), 3184– 3190.
- [3] Bedjeguelal, K.; Bienaymé, H.; Dumoulin, A.; Poigny, S.; Schmitt, P.; Tam, E. Discovery of Protein-Protein Binding Disruptors Using Multi-Component Condensations Small Molecules. *Bioorg. Med. Chem. Lett.* 2006, 16(15), 3998–4001.
- [4] Cheng, Y.; An, L. K.; Wu, N.; Wang, X. D.; Bu, X. Z.; Huang, Z. S.; Gu, L. Q. Cytotoxic Activities and Structure-Activity Relationships of Topoisomerase I Inhibitors: Indolizinoquinoline-5,12-Dione Derivatives. *Bioorg. Med. Chem.* 2008, 16(8), 4617–4625.
- [5] Gundersen, L. L.; Negussie, A. H.; Rise, F.; Østby, O. B. Antimycobacterial Activity of 1-Substituted Indolizines. Arch. Pharm. (Weinheim). 2003, 336(3), 191-195.
- [6] Gundersen, L. L.; Charnock, C.; Negussie, A. H.; Rise, F.; Teklu, S. Synthesis of Indolizine Derivatives with Selective Antibacterial Activity against Mycobacterium Tuberculosis. *Eur. J. Pharm. Sci.* 2007, 30(1), 26-35.
- [7] Muthusaravanan, S.; Perumal, S.; Yogeeswari, P.; Sriram, D. Facile Three-Component Domino Reactions in the Regioselective Synthesis and Antimycobacterial Evaluation of Novel Indolizines and Pyrrolo[2,1-A]Isoquinolines. *Tetrahedron Lett.* **2010**, *51*(49), 6439-6443.
- [8] Gundersen, L. L.; Malterud, K. E.; Negussie, A. H.; Rise, F.; Teklu, S.; Østby, O. B. Indolizines as Novel Potent Inhibitors of 15-Lipoxygenase. *Bioorg. Med. Chem.* 2003, *11*(24), 5409–5415.
- [9] Teklu, S.; Gundersen, L. L.; Larsen, T.; Malterud, K. E.; Rise, F. Indolizine 1-Sulfonates as Potent Inhibitors of 15-Lipoxygenase from Soybeans. *Bioorg. Med. Chem.* 2005, 13(9), 3127-3139.
- [10] Dawood, K. M.; Abdel-Gawad, H.; Ellithey, M.; Mohamed, H. A.; Hegazi, B. Synthesis, Anticonvulsant, and Anti-Inflammatory Activities of Some New Benzofuran-Based Heterocycles. *Arch. Pharm. (Weinheim)*, **2006**, *339*(3), 133-140.
- [11] Jaisankar, P.; Pal, B.; Manna, R. K.; Pradhan, P. K.; Medda, S.; Basu, M. K.; Giri, V. S. Synthesis of Antileishmanial (5*R*)-(-)-5carbomethoxy-3-formyl-5,6-dihydroindolo-[2,3-*a*]-indolizine. *ARKIVOC*, 2003, *ix*, 150-157.
- [12] Darwish, E. S. Facile Synthesis of Heterocycles via 2-Picolinium Bromide and Antimicrobial Activities of the Products. *Molecules* 2008, 13(5), 1066-1078.
- [13] Weide, T.; Arve, L.; Prinz, H.; Waldmann, H.; Kessler, H. 3-Substituted Indolizine-1-Carbonitrile Derivatives as Phosphatase Inhibitors. *Bioorg. Med. Chem. Lett.*, 2006, 16(1), 59-63.
- [14] Kemnitzer, W.; Kuemmerle, J.; Jiang, S.; Zhang, H. Z.; Sirisoma, N.; Kasibhatla, S.; Crogan-Grundy, C.; Tseng, B.; Drewe, J.; Cai, S. X. Discovery of 1-Benzoyl-3-cyanopyrrolo[1,2-A]quinolines as a New Series of Apoptosis Inducers Using a Cell- and Caspase-Based High-Throughput Screening Assay. Part 1: Structure-Activity Relationships of the 1- and 3-Positions. *Bioorg. Med. Chem. Lett.*, **2008**, 18(23), 6259-6264.
- [15] Ghinet, A.; Abuhaie, C.-M.; Gautret, P.; Rigo, B.; Dubois, J.; Farce, A.; Belei, D.; Bîcu, E.Studies on Indolizines. Evaluation of Their Biological Properties as Microtubule-Interacting Agents and as Melanoma Targeting Compounds. *Eur. J. Med. Chem.* 2015, *89*, 115-127.
- [16] Abuhaie, C.-M.; Bîcu, E.; Rigo, B.; Gautret, P.; Belei, D.; Farce, A.; Dubois, J.; Ghinet, A. Synthesis and Anticancer Activity of Analogues of Phenstatin, with a Phenothiazine A-Ring, as a New Class of Microtubule-Targeting Agents. *Bioorg. Med. Chem. Lett.*, 2013, 23(1), 147-152.
- [17] Dumea, C.; Belei, D.; Ghinet, A.; Dubois, J.; Farce, A.; Bîcu, E. Novel Indolizine Derivatives with Unprecedented Inhibitory Activity on Human Farnesyltransferase. *Bioorg. Med. Chem. Lett.*, 2014, 24(24), 5777-5781.
- [18] Belei, D.; Abuhaie, C.; Bicu, E.; Jones, P. G.; Hopf, H.; Birsa, L.M. A Direct Synthesis of octahydropyrrolo[2,1,5-cd]indolizin-6-One Derivatives. *Synlett* 2012, 4, 545-548.
- [19] Dumitriu, G.-M.; Ghinet, A.; Belei, D.; Rigo, B.; Gautret, P.; Dubois, J.; Bîcu, E. Investigation of New Phenothiazine and Carbazole Derivatives as Potential Inhibitors of Human Farnesyltransferase. *Drug Des. Discov. Lett.*, **2015**, *12*(2), 85-92.

- [20] Osmialowski, B.; Janota, H.; Gawinecki, R. Stability of 1-Phenacylpyridinium and 1-(2-Hydroxy-2-phenylvinyl) pyridinium Cations. Pol. J. Chem., 2003, 77, 169-177.
- [21] Forster, W.; Laird, R. M. The Mechanism of Alkylation Reactions. Part 2. The Effect of Pressure and Substituents on the Reaction of Phenacyl Bromide with Pyridine in Methanol. J. Chem. Soc. Perkin Trans., 21991, 2, 1033-1044.
- [22] Sato, M.; Ujiie, S. Miscibility of Semirigid Thermotropic Liquid Crystalline PolyCarbonate with Poly (Vinyl Chloride). *Macromol. Rapid Commun.*, **1996**, *17*(7), 439-446.
- [23] Hopkin, M. D.; Baxendale, I. R.; Ley, S. V. A New Focused Microwave Approach to the Synthesis of Amino-Substituted Pyrroloisoquinolines and Pyrroloquinolines via a Sequential Multi-Component Coupling Process. Synthesis (Stuttg)., 2008, 11, 1688-1702.
- [24] Georgescu, E.; Caira, M.; Georgescu, F.; Drăghici, B.; Popa, M.; Dumitrascu, F. One-Pot, Three-Component Synthesis of a Library of New Pyrrolo[1,2-A]quinoline Derivatives. *Synlett.*, 2009, 11, 1795-1799.
- [25] Liu, J.; Yan, P.; Li, Y.; Zhou, Z.; Ye, W.; Yao, J.; Wang, C. Iodine-Promoted Synthesis of Acylindolizine Derivatives from Acetylenecarboxylates and Pyridinium, Isoquinolinium, or Quinolinium Ylides. *Monatshefte für Chemie - Chem. Mon.*, 2013, 145(4), 617-625.

- [26] Coudray, L.; de Figueiredo, R. M.; Duez, S.; Cortial, S.; Dubois, J. Synthesis of Imidazole-containing Analogues of Farnesyl Pyrophosphate and Evaluation of their Biological Activity on Protein Farnesyltransferase. J. Enz. Inhib. Med. Chem., 2009, 24(4), 972-985.
- [27] Lucescu, L.; Ghinet, A.; Belei, D.; Rigo, B.; Dubois, J.; Bîcu, E. Indolizines Containing Triazine Moity as New Leads for the Development of Antitumoral Agents Targeting Mitotic Events. *Bioorg. Med. Chem. Lett.*, **2015**, *25*(18), 3975-3979.
- [28] Shelanski, M. L.; Gaskin, F.; Cantor, C. R. Microtubule Assembly In the Absence of Added Nucleotides. *Proc. Natl. Acad. Sci. USA*, 1970, 70, 765-762.
- [29] Barron, D. M.; Chatterjee, S. K.; Ravindra, R.; Roof, R.; Baloglu, E.; Kingston, D. G. I.; Bane, S.A Fluorescence-Based High-Throughput Assay for Antimicrotubule Drugs. *Anal. Biochem.* 2003, 315(1), 49.
- [30] Shoemaker, R. H. The NCI60 Human Tumour Cell Line Anticancer Drug Screen. Nat. Rev. Cancer, 2006, 6(10), 813-823.
- [31] Skehan, P.; Storeng, R.; Scudiero, D.; Monks, A.; McMahon, J.; Vistica, D.; Warren, J. T.; Bokesh, H.; Kenney, S.; Boyd, M. R. New Colorimetric Cytotoxicity Assay for Anticancer-Drug Screening. J. Natl. Cancer Inst., 1990, 82(13), 1107-1112.
- [32] Boyd, R. B. Anticancer Drug Development Guide: Preclinical Screening, Clinical Trials, and Approval, ed. B. Teicher, Humana Press Inc., Totowa, NJ, 1997, 23-42.