

Mendeleev Commun., 2010, **20**, 291–292

Mendeleev Communications

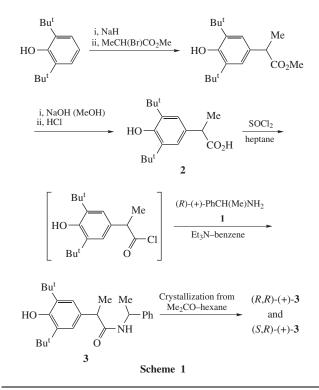
Simple chiral auxiliary-assisted resolution of 2-(3,5-di-*tert*-butyl-4-hydroxyphenyl)propionic acid[†]

Grigory A. Nikiforov,^a Orudzh G. Nabiev,^b Ivan I. Chervin^b and Remir G. Kostyanovsky^{*b}

^a N. M. Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, 119334 Moscow,

Russian Federation. Fax: +7 499 137 4101

^b N. N. Semenov Institute of Chemical Physics, Russian Academy of Sciences, 119991 Moscow, Proving Federation, France 7, 405, 651, 2101, a small least@shub.arg.ma


Russian Federation. Fax: + 7 495 651 2191; e-mail: kost@chph.ras.ru

DOI: 10.1016/j.mencom.2010.09.018

Chiroptical properties and X-ray diffraction were studied for both diastereomers of N-[(R)-1-phenylethyl]-2-(3,5-di-*tert*-butyl-4-hydroxyphenyl)propanamide, whose acid moiety is a chiral antioxidant.

Synthesis and applications of achiral phenolic antioxidants (PAO) were broadly studied.¹ In the last decades, considerable attention was focused on the pharmaceutical chiral substances, including chiral PAO in racemic² and scalemic³ forms. Several PAO-based chiral drugs of broad spectrum of action were devised, *e.g.*, Tazofelone⁴ and its analogue⁵ as well as recently reported antioxidant protector against cigarette smoke.⁶ Investigations⁷ dealing with mono-, di-, and three-isobornylphenols^{7(a)} should be of special note. The works⁸ on the phenomenon of 'mitochondria-targeted antioxidants more effective than untargeted one' are of particular interest. Studies of natural polyphenolic antioxidants discovered their antiinflammatory and antiinvasive activities.⁹ Natural flavones and their synthetic analogues exhibited antiviral and antiinvasive activity against solid tumors.⁹

A key problem in obtaining chiral PAO is resolution of racemates into enantiomers. Here, this problem was solved through incorporation of enantiomerically pure moiety of amine

[†] To the memory of Grigory Nikiforov, our long-time friend and colleague.

1 into the racemic PAO 2 followed by simple crystallization to resolve the diastereomers of amide 3 (Scheme 1).^{\ddagger}

By three-fold crystallization of compound 3 from acetone, the well-shaped hexahedral plates were obtained; according to

^{*} Methyl 2-(3,5-di-tert-butyl-4-hydroxyphenyl)propionate. 2,6-Di-tertbutylphenol (20.6 g, 0.1 mol) was added to suspension of NaH (3 g, 0.1 mol) in dry 1,2-dimethoxyethane (200 ml) under argon stream. The mixture was stirred for 2.5 h at 40 °C, then cooled to 15–20 °C, methyl 2-bromopropionate (11.2 ml, 0.1 mol) was added under stirring. The mixture was stirred for 1 h at 80–85 °C, cooled to 20 °C, thereafter the solid residue was filtered off, and the mother liquor was evaporated *in vacuo*. The residue was dissolved in CH₂Cl₂ (100 ml), the solution was washed with 1% HCl, and the organic layer was separated and evaporated *in vacuo*. The residue was dissolved on heating in hexane (20 ml), then cooled to -5 °C, and the crystals were filtered off to give 20.3 g (69% yield) of the title ester, mp 84–85 °C. ¹H NMR (acetone- d_6) δ : 1.43 (s, 18H, 2Me₃C), 1.48 (d, 3H, Me, ³J 6.7 Hz), 3.61 (s, 3H, MeO), 3.67 (q, 1H, CHMe, ³J 6.7 Hz), 6.02 (s, 1H, OH), 7.11 (s, 2H, H_{Ar}).

2-(3,5-Di-tert-butyl-4-hydroxyphenyl)propionic acid **2**. The corresponding methyl ester (5.84 g, 20 mmol) was added to solution of NaOH (1 g, 25 mmol) in a mixture of MeOH and water (45 and 5 ml, respectively) under argon stream, and the mixture was boiled for 2 h. After cooling, 10% HCl was added to reach pH \approx 5, and the mixture was diluted with equal amount of water. The residue was separated and washed with water and hexane to afford 5.7 g of the product, yield 98%, mp 200–201 °C. ¹H NMR (CDCl₃) δ : 1.43 (s, 18H, Bu^t), 1.48 (d, 3H, Me, ³J 6.7 Hz), 3.65 (q, 1H, CH), 5.16 (s, 1H, OH), 7.12 (s, 2H, Ar).

Amide 3. Thionyl chloride (1.2 ml, 17 mmol) was added to a suspension of acid 2 (2.78 g, 10 mmol) in heptane (30 ml), and the mixture was stirred for 3 h at 90-95 °C, cooled down and evaporated in vacuo. The chloroanhydride thus obtained (mp 40-42 °C) was dissolved in benzene (75 ml), and a solution of Et₃N (1.4 ml, 10 mmol) and (R)-(+)-PhCH(Me)NH₂ 1 (1.3 ml, 10 mmol) in benzene (10 ml) was added at 20 °C. The mixture was stirred for 0.5 h under argon stream, the precipitate of Et₃N·HCl was separated, and the filtrate was evaporated in vacuo. Crystallization of the residue from hexane gave 3.5 g of yellowish crystals of amide 3 (92% yield). Upon three-fold crystallization from acetone the diastereomer (R,R)-(+)-3 was obtained, yield 92%, mp 188–189 °C, $[\alpha]_D^{20}$ +21.8 (c 0.49, MeOH). HRMS, m/z: 382.2763 [M⁺] (calc. 381.5597). ¹H NMR (benzene- d_6) δ : 1.07 (d, 3H, MeCHAr, ³J 6.9 Hz), 1.62 (d, 3H, MeCHN, ³J 7.1 Hz), 1.35 (s, 18H, 2Me₃C), 3.33 (q, 1H, CHAr, ³J 6.9 Hz), 5.27 (dq, 1H, MeCHNH, ³J 7.1 and 8.0 Hz), 5.02 (s, 1H, OH), 5.45 (d, 1H, NH, ${}^{3}J$ 8.0 Hz), 7.06 (m, 5H, Ph), 7.2 (s, 2H, H_{Ar}). Upon evaporation of mother liquor, three-fold crystallization of the residue from acetonehexane mixture (1:9 v/v) gave the diastereomer (S,R)-(+)-3, yield 91%, mp 143–144 °C, $[\alpha]_{D}^{20}$ +57.4 (c 0.76, MeOH). ¹H NMR (benzene- d_{6}) δ : 1.06 (d, 3H, MeCHAr, ³J 7.0 Hz), 1.38 (s, 18H, 2Me₃C), 1.58 (d, 3H, MeCHN, ³J 7.1 Hz), 3.21 (q, 1H, CHAr, ³J 7.1 Hz), 5.25 (dq, 1H, MeCHNH).

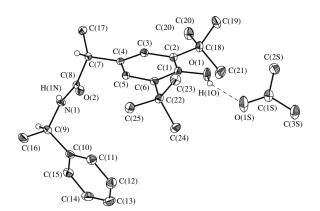
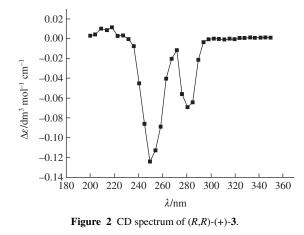



Figure 1 General view of the molecule of (R,R)-(+)-3.

results of X-ray diffraction they have the (R,R)-(+) configuration.[§] This compound crystallizes as the solvate with acetone molecule that participates in the formation of hydrogen bond with hydroxy group [O(1)...O(1S) 2.826(2) Å]. In the crystal, the molecules are assembled into infinite chains by means of weak N–H...O hydrogen bonds [N...O 3.298(2) Å] (Figure 1).[§] This diastereomer was characterized by the CD spectrum (Figure 2). Upon evaporation of the mother liquor, three-fold crystallization of the residue from acetone–hexane mixture (1:9 v/v) afforded fine needles of another diastereomer (*S*,*R*)-(+)-**3**.

To conclude, a simple and efficient method has been developed to synthesize (yields 69–92%) and resolve diastereomers of the described chiral PAO.

[§] *Crystal data for* (*R*,*R*)-(+)-**3**. Crystals (C₂₅H₃₅NO₂, C₃H₆O, *M* = 439.62) are trigonal, space group *P*3₂2₁, at 100 K: *a* = *b* = 10.519(5) and *c* = 40.33(4) Å, *V* = 3865(4) Å³, *Z* = 6 (*Z'* = 1), *d*_{calc} = 1.133 g cm⁻³, μ (MoKα) = 0.72 cm⁻¹, *F*(000) = 1440. All measurements were performed with a Bruker SMART APEX2 CCD diffractometer [λ (MoKα) = 0.71073 Å, *ω*-scans]. 15781 reflections were measured (2*θ* < 58°), from which 3950 are independent (*R*_{int} = 0.0332), *wR*₂ = 0.1004 and GOF = 1.062 for all independent reflections [*R*₁ = 0.0407 for 3626 observed reflections with *I* > 2*σ*(*I*)]. All calculations were performed using SHELXTL-Plus 5.0.¹⁰

CCDC 791361 contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre *via* www.ccdc.cam.ac.uk/data_request/cif. For details, see 'Notice to Authors', *Mendeleev Commun.*, Issue 1, 2010.

The authors are grateful to Professor K. A. Lyssenko (A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences) for performing X-ray diffraction analysis.

This work was supported by the Russian Academy of Sciences and the Russian Foundation for Basic Resarch (grant no. 09-03-00537a).

References

- (a) Chemical and Biological Kinetics. New Horizons. Vol. 1: Chemical Kinetics, eds. E. B. Burlakova, A. E. Shilov, S. D. Varfolomeev and G. E. Zaikov, VSP, Leiden–Boston, 2005; (b) Chemical and Biological Kinetics. New Horizons. Vol 2: Biological Kinetics, eds. E. B. Burlakova and S. D. Varfolomeev, VSP, Leiden–Boston, 2005; (c) V. V. Ershov, G. A. Nikiforov and A. A. Volodkin, Prostranstvenno zatrudnennye fenoly (Sterically Hindered Phenols), Khimiya, Moscow, 1972 (in Russian).
- 2 (a) L. A. Cohen and W. M. Jones, J. Am. Chem. Soc., 1962, 84, 1629;
 (b) G. A. Nikiforov and K. M. Dyumaev, Izv. Akad. Nauk SSSR, Ser. Khim., 1964, 1069 (Bull. Acad. Sci. USSR, Div. Chem. Sci., 1964, 13, 991);
 (c) H.-J. Teuber, H. Krause and V. Berariu, Liebigs Ann. Chem., 1978, 757;
 (d) H.-J. Teuber and H. Krause, Liebigs Ann. Chem., 1978, 1311;
 (e) A. Hutinek, A. Ziogas, M. El-Mobayed and A. Rieker, J. Chem. Soc., Perkin Trans. 1, 1998, 2201.
- 3 (a) M. M. Hansen, A. R. Harkness, V. V. Khau, M. J. Martinelli and J. B. Dieter, *Tetrahedron: Asymmetry*, 1996, 7, 2515; (b) E. Jorss, P. Schuler, C. Maichle-Mossmer, S. Abram and H. B. Stegmann, *Enantiomer*, 1997, 2, 5; (c) T. Kato, T. Ozaki, K. Tamura, Y. Suzuki, M. Akima and N. Ohi, *J. Med. Chem.*, 1999, 42, 3134; (d) K. R. C. Prakash, Y. Tang, A. P. Kozikowskii, J. L. Flippen-Anderson, S. M. Knoblach and A. I. Faden, *Bioorg. Med. Chem.*, 2002, 10, 3043; (e) N. R. Irlapati, J. E. Baldwin, R. M. Adlington, G. J. Pritchard and A. Cowley, *Org. Lett.*, 2003, 5, 2351.
- 4 S. M. Reutzel-Edens, V. A. Russel and L. Yu, J. Chem. Soc., Perkin Trans. 2, 2000, 913.
- 5 T. Kato, T. Ozaki, K. Tamura, Y. Suzuki, M. Akima and N. Ohi, J. Med. Chem., 1998, 41, 4309.
- 6 T. E. Sussan, T. Rangasamy, D. J. Blake, D. Malhotra, H. El-Haddad, D. Bedja, M. S. Yates, P. Kombairaju, M. Yamamoto, K. T. Liby, M. B. Sporn, K. L. Gabrielson, H. C. Champion, R. M. Tuder, T. W. Kensler and S. Biswal, *Proc. Natl. Acad. Sci. USA*, 2009, **106**, 250.
- 7 (a) I. Yu. Chukicheva, A. V. Kutchin, L. V. Spirikhin, O. Ya. Borbulevich, A. V. Churakov and A. I. Belokon, *Butlerov Commun.*, 2003, 9; (b) I. Yu. Chukicheva, E. B. Buravlev, L. V. Spirikhin, A. V. Churakov and A. V. Kutchin, *Izv. Akad. Nauk, Ser. Khim.*, 2006, 1754 (*Russ. Chem. Bull.*, *Int. Ed.*, 2006, **55**, 1819); (c) E. B. Buravlev, I. Yu. Chukicheva, D. V. Belykh and A. V. Kutchin, *Khim. Prir. Soedin.*, 2007, 561 [*Chem. Nat. Compd. (Engl. Transl.*), 2007, **43**, 678]; (d) E. B. Buravlev, I. Yu. Chukicheva and A. V. Kutchin, *Khim. Prir. Soedin.*, 2008, 367 [*Chem. Nat. Compd. (Engl. Transl.*), 2008, **44**, 455]; (e) E. B. Buravlev, I. Yu. Chukicheva and A. V. Kutchin, *Synth. Commun.*, 2009, **39**, 3639.
- 8 (a) R. A. J. Smith, C. M. Porteous, A. M. Gane and M. P. Murphy, *Proc. Natl. Acad. Sci. USA*, 2003, **100**, 5407; (b) G. F. Kelso, C. M. Porteous, H. G. Ledgerwood, E. C. Gane, R. A. J. Smith and M. P. Murphy, *Ann. N. Y. Acad. Sci.*, 2002, **959**, 263; (c) M. P. Murphy and R. A. J. Smith, *Adv. Drug Deliv. Rev.*, 2000, **41**, 235; (d) R. A. J. Smith, C. M. Porteous, C. V. Coulter and M. P. Murphy, *Eur. J. Biochem.*, 1999, **263**, 709.
- 9 S. Malhotra, G. Shakya, A. Kumar, B. W. Vanhoecke, A. L. Cholli, H. G. Raj, L. Saso, B. Ghosh, M. E. Bracke, A. K. Prasad, S. Biswal and V. S. Parmar, *ARKIVOC*, 2008 (vi), 119.
- 10 G. M. Sheldrick, Acta Crystallogr., Sect. A, 2008, 64, 112.

Received: 30th March 2010; Com. 10/3498