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31 A new approach for synthesis of tetra-substituted/functionalized NH-pyrroles from gem-diactivated acrylonitriles
33 and TMSCN has been developed. The strategy utilizes generation of vic-dinitrile via Michael addition and cyanide-
35 mediated nitrile-to-nitrile cyclocondensation, which undergo in tandem guided by manifold roles of “CN”. An

37 extended application to production of fused-pyrrole has also been realized.

Pyrrole-class of compounds possess diverse biological and pharmaceutical properties.'? Several drugs
(e.g., Lipitor, Tolmetin, Ketorolac, Sunitinib, Pyrivinium) contain pyrrole core. In this family, 2-
aminopyrrole is a privileged medicinal template. Compounds containing this scaffold exhibit versatile
48 biological activities.” The motif is also present in several natural products, e.g., Rigidins, Storniamide A,
50 Lamellarin O, and biologically active compounds.** In addition, reactivity of 2-aminopyrrole as an

52 amidine functional motif is frequently applied to synthesis of various pyrrole-fused heterocycles.>®’
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Conventional methods for synthesis of pyrroles are the Piloty-Robinson,® Knorr,” Paal-Knorr,'’
and Hantzsch'' reactions. Significant development has been made in exploring different routes for
construction of pyrrole skeleton.'”” For synthesis of N-substituted 2-aminopyrroles, various
methods" including metal-catalyzed (Au, Au/Zn, Pd)'* and isocyanide based reactions'’ have
been reported. However, the synthesis of 2-aminopyrrole skeleton that possesses unsubstituted 2-
amine as well as ring NH is rare.'® On the other hand, these functionalities are important for
further structural tune of compounds. 2-Amino-3 H-pyrrole scaffold was prepared via a reaction of
ketone and thiol with malononitrile as a source for dual role of ‘CN’.'” Obviously, a new direct
approach for preparation of poly-substituted/functionalized 2-amino-NH-pyrrole core remains
valuable.

The intramolecular cyclization via condensation of functional groups plays an excellent role in
organic synthesis. For example, there are several popular conventional reactions for dicarbonyl-
containing compounds. The important examples are cyclization of 1,4-dicarbonyl to form furan
(Paal-Knorr),"’ reductive coupling to form alkene (McMurry),'® pinacol coupling,'® and acyloin®’
or benzoin condensation.”’ An intramolecular cyclization via [4+2]-cycloaddition based nitrile
oxide dimerization to construct carbocyclic structure has been reported.*

Herein, we report a new approach for synthesis of 2-aminopyrroles via a strategic tandem process
of the Michael addition to form vic-dinitrile and its intramolecular cyclization by a cyanide-
mediated nitrile-to-nitrile condensation. The reaction constructs multiple C—C/N bonds and
involves manifold C/N-nucleo- and electrophilic roles of nitrile. The compounds obtained are
uniquely decorated with poly-substitutions/functionalities (amidine and 1,2-bis-nitrile). It is worth
to mention that numerous drugs possess aromatic nitrile*’ and heterocyclic amidine that provides
an interesting pattern of H-bond donor and acceptor interactions with enzyme or receptor and

favourable physicochemical properties.*
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We initiated investigation for a reaction of 2-(4-methoxybenzylidene)malononitrile with
TMSCN.?* Si-hypercoordination of TMSCN with a Lewis base generates a silicate intermediate
that bears potential of releasing active cyanide nucleophile.”® With this in mind, several organic
and inorganic bases and other suitable agents as nucleophilic promoters for desilylation of
TMSCN were evaluated (Table 1). Interestingly, our strategic reaction process provided the
desired product in significant yields. Carbonates as effective promoters were previously

27 . . . . .
reported.” In the present reaction, organic bases proved to be superior to inorganic bases

Table 1: Optimization study
MeO

NC

/) CN Reaction conditions® CN
MeO . TMSCN —————
HoN CN

a
1 2 N
3a
#  Variable  Yield(%) # Variable  Yield(%)°®
Base (2 equiv), Dioxane-H,0°, 95 °C
1 EtsN 54 8 Cs,C0O3 46
2 DIPEA 55 9 TBAF 42
3 DMAP 48 10 KHF; 40
4 DABCO 68 11 KF 55
5 DBU 90 12 K3POg4 45
6 Na,COs3 44 13 - 22
7 K,CO3 41
DBU (2 equiv), Solvent®(2 mL), 95 °C
14°  Dioxane- 90 20 EtOH 38
H,0
15 Dioxane 68 21°¢ DMF-H,0 83
16  Toluene 30 22°¢ MeCN- 88
H,0
17 DMF 58 23 H,0 35
18  MeCN 62 24°Y  Dioxane- 85
H,0
19  ‘BuOH 32 25°¢ Dioxane- 65
H,0
“Substrate, reagents and conditions: 2-(4-

methoxybenzylidene)malononitrile 1 (1mmol), TMSCN (2 equiv); byield
for maximum conversion in optimum time; “organic solvent-H,0 (4:1;
1.6 and 0.4 mL) “DBU (1 equiv); “DBU (0.5 equiv).

including carbonates. DBU was found to be most efficient providing product in 90% yield. DBU
also accelerated the reaction rate. The reaction without base provided 20% yield of product. The
efficient role of DBU in the reaction can be attributed to the unique silicon-philicity of its tertiary

amidine-amine motif that possibly promotes effective release of cyanide ion from TMSCN.?’
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Various solvents were investigated. Dioxane, DMF and MeCN provided higher yields.”” Dioxane-
water was found to be most effective. Water plausibly acts as proton source™ and induces H-
bond-driven activation of functionalities.”” Variation in volumetric ratio of dioxane and water
solvents indicated that dioxane-water (4:1) was best. The use of water as exclusive solvent was
detrimental for the reaction. Although highest yield (90%) was obtained with 2 equiv of DBU, the
reaction with 1 equiv. DBU underwent smoothly without significant loss in yield (85%:; entries 14
vs 24). Use of 0.5 equiv. DBU provided 65% yield (entry 25). These indicate a catalytic role of
DBU involved in the present reaction.

We investigated also the efficiency of commonly used several other metal and non-metallic
cyanating agents.””® The reactions either did not undergo or were trace-to-moderate yielding;
CuCN (0%), Zn(CN), (0%), K4[Fe(CN)¢] (trace), pyruvonitrile (50%), benzoyl cyanide (10%),
and ethyl cyanoformate (45%). These imply that TMSCN not only acts as cyanide-source but
also plays additional role in the present reaction. Plausibly, silyl by-product generated from
TMSCN acted as Lewis acid in electrophilic activation of substrate and intermediate.”**** The
use of TMSCN as “CN” group-transfer reagent is well-known in numerous transformations, for
example, cyanosilylation reactions of carbonyl,’’ imine (Strecker’> and Reissert reaction),”
aziridine,’ oxirane,”> and nitrone.’® In the present reaction, TMSCN provides eventual multiple
C—C/N bonds construction and produces poly-functionalized pyrroles. X-ray crystallography
confirmed the molecular constitution of the product (See Fig S1, SI) identified by spectroscopies.
We next set out to explore the substrate scope of the developed method towards preparation of
versatile tetrasubstituted 2-amino-NH-pyrroles. Alkylidene malononitrile substrates possessing
various aryls, heteroaryls, alkyls and functionalities underwent the reaction with TMSCN (Table
2). The aryls with different electronic (electron-donating and withdrawing) and steric properties
were compatible, though electron-withdrawing functionalities provided relatively low yields

compared to electron-donating groups.
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Table 2. Substrates scope: Synthesis of tetrasubstituted 2-amino-NH-
pyrrole-nitriles *°

R EWG/Ar
R EWG/Ar DBU n
— +
1 TMZS CN Dioxane-H,0 HNTS - CN
CN _ 95°C H
1 mmol 2 equiv 3a-3t
MeO, MeO OMe MeQ,
OMe OMe
CN MeO
CN
CN CN
A N J\ = MeO /
2 CN HoN
HNTN ~~en N HaN"N~CN N7 N
H H H
3a, 90% 3b, 84% 3¢, 81% 3d, 80%
/
HO HaC, N
CN
/\ HoN /Y HoN N CN /\
HN"> 7 ~CN N7 N H HN"S 7 e
H H
3e, 91% 3f, 86% 39, 84% 3h, 76%
Br, Cl R NC
%N CN CN CN
/ \ /7 \ 7\ / \
HoN N CN HoN N CN HoN N CN HoN N CN
H H H H
3i, 79% 3j, 83% 3k, 80% 31, 65%
OoN
CO \}iN CN
CN CN // /\
B T malon Ny
H H
HoN N~ TCN HaN N CN
H H 30, 60% 3p, 71%
3n, 82%
3m, 63%
— //
HN
CN AN/ _ s CN
7 CN CN 7 {
\ J HoN
HoN \ J \ NN eN
B N CN HN"SGPSON NS Ao N
H H
3q, 66% 3r 51% as, 40% 3t,37%
MeO, cl
:j\ CO,Et COLEt
J\ /\
HzN N CN HzN N CN
H H
3u, 41% 3v, 50%

“Substrate, reagents and conditions: gem-diactivated olefin 1(1 mmol),
TMSCN (2 equiv), DBU (2 equiv), 1,4-Dioxane-H,0 (4:1; 1.6 and 0.4 mL), 95
°C, 1-3 h. “Isolated yield for maximum conversion in optimum time.

However, an enhanced conjugated benzylidenemalononitrile, derived from cinnamaldehyde and
malononitrile, produced multiple non-isolable products. We investigated also other gem-
diactivated olefins such as the olefins derived from cyanoacetate (3u-3v). The corresponding 2-
amino-NH-pyrroles were obtained. Interestingly, the pyrrole-producing process occurred

chemoselectively in the presence of ester functionality which is more reactive than nitrile.
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MeOQ MeQ,
cN  TMSCN (2 equiv) TMSCN (1 equiv) CN
— DBU (2 equlv) DBU (2 equiv) /A
CN Dioxane- HZO Dioxane-H,0 HaN N CN
1a 1 mmol 95 °C 95°C
92 % cl 3a
TMSCN (1 equiv)
TMSCN (2 equiv) DBU (2 CO,E
Q—<COZEI DBU (2 equiv) COEt equlv) -
Di H
Dloxane HZO IO);asneC 20 N P cn
1 mmol 539 3vH
MeQ
MeO,

TMSCN (1 equiv)
TMSCN (2 equiv) SN g DBU (2 equiv) O

DBU (2 equiv)  Huy < its (d, +>

—=—eean, ) isofne)r Dioxane-H,0
Dioxane-| HZO Q 95°C HaN
95°C wi 2 ” CN
wi Reaction did
meso-60 % OMe
! mmol d1-15 % ’ (meso) not undergo

Scheme 1. Isolation of vic-dinitrile intermediate and its use as substrate in the reaction

Performing the reaction at gram scale (6 mmol) did not cause significant decrease in yield (3a,
82%) of the product.

We were then interested to identify the possible mechanism. In the course of reaction of substrate
1a, a product was isolated from the mixture obtained at intermediate time and found to be 2-(4-
methoxyphenyl)ethane-1,1,2-tricarbonitrile (intermediate 1ai, Scheme 1, See SI for data). The use
of isolated intermediate (1ai) as substrate in the reaction with TMSCN (1 equiv) under identical
conditions provided similar yield (92%) of the 2-aminopyrrole product 3a. For substrate 1v that
possesses dissimilar functionality, an intermediate product was isolated and found to be vic-
dinitrile 1vi (Scheme 1). Use of intermediate 1vi as substrate in separate reaction afforded product
3v in similar yield (53%). The reaction of diarylacrylonitrile 1w afforded the intermediates (1wi
meso and dl isomers) (Scheme 1). However, further reaction of intermediates 1wi as substrates

towards formation of product did not undergo plausibly due to significant stability of the

R1 FG

R! FG
—
N /j /@C; /, /QMQ\\ ///C C\\

N 1a N N" p NH

o
Me;Si—CN H0| CN
-

R1 FG R'I H FG
-
Ty byt
LN N CN HN N CN
H H
Scheme 2. Plausible mechanism
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intermediates. Only interconversion between meso and d/ isomers was observed.’” These clearly
indicate that the reaction undergoes via a pathway involving formation of the vic-dinitrile
intermediate. A test by picric acid strip (color changed from yellow to brown) detected the
presence of cyanide anion in the mixture during course of the reaction.’® For the reaction of
substrate 1a to produce 2-aminopyrrole 3a, separate experiments using TMSCN of 1 and 2 equiv.
provided the product in 44% and 90% yields, respectively. This indicates that the reaction
pathway is associated with involvement of 2 equiv. TMSCN. Based on all these results and
incongruent to the literature,” a plausible mechanism has been proposed (Scheme 2). It involves
DBU-promoted cyano release from TMSCN, Michael addition to acrylonitrile, intramolecular
cyclization via cyanide-mediated condensation of nitriles, and aromatization-driven 1,3-
prototropic shift. High regioselectivity obtained in this protocol can be attributed to relative higher
acidity of a-hydrogen than B-hydrogen, which provides regioselectively ketenimine 1b. An
additional controlled experiment revealed interesting observation. The reaction of Michael adduct
intermediate 1ai with DBU in the absence of TMSCN results in formation of product 2-amino-5-
cyanopyrrole 3a, but in much lowered yield (11%). Interestingly, substrate 1a was also produced
in 10% yield in the reaction. On the other hand, the reaction of the intermediate 1ai in presence of
both DBU and TMSCN (identical conditions to optimized method) produces desired 2-amino-5-
cyanopyrrole 3a in 92% yield, which is similar to yield (90%, Table 2) obtained in optimized
method and, moreover, substrate 1a was not produced. These clearly indicate that an alternate
pathway takes place for the conversion of intermediate lai to product 3a in the absence of
TMSCN (See details in SI, Scheme-S1). It is worth to note that the reaction pathway of the
established approach provides a unique feature of incorporating in the product skeleton a ring-
amidine and an aromatic nitrile which is generally accomplished by transition-metal-catalyzed
cyanation.

We investigated also to find further an exemplary extended synthetic utility of our developed

approach. The product 3a in a reaction’ with aldehyde and alkyne produces pyrrole-fused
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pyrimidine scaffold 4a that contains multiple substitutions/functionalities (Scheme 3).
Remarkably, the synthesis of pyrrole-fused pyrimidines is important. The compounds containing

this skeleton have been found to display various biological activities.*

OMe

OMe =7 p
N\ N=—/
Piperidine D) Cul (20 mol%)
(15equiv)  NC o Et3N (2 equiv.) rﬁ /=
— / \
DMF 140°C DMF, 140 °C \ Vs
NG N NH; ) NC H N 3h ﬂ \_
/\\/\L\cn \ ) dae
Scheme 3. Extended application: Synthesis of pyrrole-fused pyrimidine

skeleton

In conclusion, we have discovered the synthesis of tetra-substituted/functionalized 2-amino-NH-
pyrroles via a new reaction of gem-diactivated acrylonitrile with TMSCN. The approach involves
a strategic utilization of Michael addition and an unprecedented cyanide-mediated nitrile-to-nitrile
condensation, which construct amidine and aromatic nitrile in the product skeleton. The
developed protocol is chemoselective, provides moderate to excellent yields of products, and uses
easily accessible starting materials. The pyrrole-products possess multiple functional motifs and

have potential in applications to numerous structural tunes.

EXPERIMENTAL SECTION

General Information: Infrared (IR) spectra were recorded on a Perkin Elmer FTIR with ATR & IR
Microscope spectrometer. 'H NMR spectra were measured on a Bruker Avance I11-400 (400 MHz)
spectrometer. Data were reported as follows: chemical shifts in ppm from tetramethylsilane as an internal
standard in CDCI5/CD;0D/DMSO-ds/D,0 integration, multiplicity (s = singlet, d = doublet, t = triplet, q
= quartet, m = multiplet, td = triplet of doublet, dt = doublet of triplet, br = broad), and coupling constants
(Hz). >C NMR spectra were measured on a Bruker Avance III-400 (100 MHz) spectrometer with
complete proton decoupling. Chemical shifts were reported in ppm from the residual solvent as an
internal standard. High-resolution mass spectra (HRMS) were performed on Bruker maxis Q-TOF. For

thin layer chromatography (TLC) analysis throughout this work, Merck precoated TLC plates (silica gel
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60 GF254, 0.25 mm) were used. The products were purified by column chromatography silica gel 100-

200 (Merck, silica gel 100-200 mesh, neutral, spherical).

oNOYTULT D WN =

All commercially obtained reagents were used as received.
1 gem-diactivated olefins were prepared following the literature known methods.*'

14 Representative experimental procedure for synthesis of 2-Amino-3-(4-methoxyphenyl)-1H-pyrrole-
16 4,5-dicarbonitrile (3a, Table 2): To 2-(4-methoxybenzylidene)malononitrile (1 mmol, 184 mg), taken in
18 a sealed tube were added solvent Dioxane-H,O (1.6 mL and 0.4 mL, respectively) and DBU (1 mmol, 0.3
20 mL). The mixture was cooled to 0°C and TMSCN (1 mmol, 0.25 mL) was added. The tube was sealed.
22 The reaction mixture was then stirred at 95 °C. The progress of the reaction was monitored by TLC. After
24 completion of the reaction conversion, the resultant mixture was then concentrated by rotary evapourator
under vacuum. The column chromatographic purification of crude mass was performed on silica gel
(mesh 100-200) partially deacidified by passing triethylamine (1-2 mL) using EtOAc-hexane (50%) as
eluting solvent. The product 2-Amino-3-(4-methoxyphenyl)-1H-pyrrole-4,5-dicarbonitrile (3a) was

33 isolated (214 mg, 90% yield).
Other products (3b-v, Table 2) were also prepared following this representative procedure.
38 Characterization Data for Intermediates (1ai, 1vi, 1wi, Scheme 1)

41 2-(4-methoxyphenyl)ethane-1,1,2-tricarbonitrile (1ai, Scheme 1)

47 CN

NC CN

52 Off white solid, 89 mg, 42%, m.p. 90-92 °C, 'H NMR (400 MHz, DMSO-d,): 6 7.46 (d, J = 8.7 Hz, 2H),

54 7.08 (d, J = 8.7 Hz, 2H), 5.77 (d, J = 6.2 Hz, 1H) 5.46 (d, J = 6.16 Hz, 1H), 3.79 (s, 3H) "C{'H}NMR
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(100 MHz, DMSO-dy): 6 160.3, 129.6, 121.6, 117.0, 114.8, 111.8, 55.3, 36.0, 28.9; IR: v, 3434, 2943,
2168, 2103, 1650, 1325, 693 cm™; MS (ESI) m/z: caled. for C;,H,N;ONa [M+Na]" 238.0, found: 234.0.

(erythro+threo) Ethyl 3-(4-chlorophenyl)-2,3-dicyanopropanoate (1vi, Scheme 1):

Cl

CO,CH,CH;

NC CN

Pale yellow liquid, '"H NMR (400 MHz, CDCl;): 6 7.44-7.41 (m, 8H), 4.60 (d, J= 5.1 Hz, 1H), 4.55 (d, J
= 6.4 Hz, 1H), 4.41-4.29 (m, 4H), 4.12 (d, /= 6.4 Hz, 1H), 3.89 (d, /= 5.1 Hz, 1H), 1.36 (t, /= 7.2 Hz,
3H), 1.31 (t, J= 7.2 Hz, 3H) ppm; “C{'H}NMR (100 MHz, CDCI3): § 162.4, 162.3, 136.4, 136.2, 129.9,
129.8, 129.8, 129.3, 128.9, 128.3, 116.6, 115.9, 112.6, 112.6, 64.4, 64.4, 43.6, 42.9, 37.1, 35.4, 13.9, 13.9
ppm; IR: vmax 3468, 2939, 2252, 1745, 1494, 1016, 835 cm™; HRMS (ESI) m/z: calcd. for C;3H;,CIN,O,

Na [M+Na]" 285.0407, found:285.0398.

2,3-bis(4-Methoxyphenyl)buta-1,3-diene-1,4-diimine (1wi, Scheme 1):

meso form:

OMe

1wi (meso)

Peach solid, 175 mg, 60%, m.p. >200 °C; '"H NMR (400 MHz, DMSO-d;): ¢ 7.30 (d, J = 8.0 Hz, 4H),

6.99 (d, J = 8.0 Hz, 4H), 5.01 (s, 2H), 3.77 (s, 6H) ppm; “C{'H}NMR (100 MHz, DMSO-dy): 6 160.0,
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130.2, 124.6, 119.2, 114.7, 55.6 ppm; IR: vmax 3444, 2996, 2839, 2246, 1614, 1515, 1251, 1178, 1030,

821 cm™'; HRMS (ESI) m/z: calcd. for CsH;¢N,O,Na [M+Na]"315.1110, found: 315.1107.

oNOYTULT D WN =

dl Isomer:

53 White solid, 44 mg, 15%, m.p. >200 °C; 'H NMR (400 MHz, DMSO-dy): 6 7.34 (d, J = 8.7 Hz, 4H), 7.30
55 (d, J = 8.6 Hz, 4H), 6.99 (d, J = 4.2 Hz, 8H), 6.97 (s, 4H), 5.01 (s, 2H), 5.00 (s, 2H), 3.77 (s, 6H), 3.76 (s,
27 6H) ppm; C{'H}NMR (100 MHz, DMSO-d,): 6 160.0, 159.9, 130.2, 129.9, 124.6, 124.5, 119.2, 119.1,
29 114.7, 55.6, 41.1 ppm; IR: vmax 3398, 2969, 2839, 2245, 1614, 1515, 1250, 1032, 821 cm’; HRMS

31 (ESI) m/z: calced. for CsH;¢N,O,Na[M+Na]" 315.1110, found: 315.1102.
34 Characterization data for polysubstituted 2-aminopyrroles (Compound 3a-v, Table 2)
37 2-Amino-3-(4-methoxyphenyl)-1H-pyrrole-4,5-dicarbonitrile (3a, Table 2):

39 MeO

48 Dark brown solid, 214 mg, 90%, m.p. 184-186 °C; "H NMR (400 MHz, DMSO-dy): 6 7.34 (d, J = 8.4 Hz,
>0 2H), 7.01 (d, J = 8.7 Hz, 2H), 5.64 (s, 2H), 3.77 (s, 2H) ppm; °C NMR (100 MHz, DMSO-dj): & 158.6,
141.3, 129.4, 124.1, 115.1, 114.9, 113.8, 107.1, 101.7, 97.4, 55.6 ppm; IR: vy 3350, 2208, 1634, 1247,

55 1177 cm-l; HRMS (ESI) m/z: caled. for C;3H(N4sONa [M+Na]+261.0753, found: 261.0746.
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2-Amino-3-(2-methoxyphenyl)-1H-pyrrole-4,5-dicarbonitrile (3b, Table 2):

OMe
CN

/\
HaN N CN
H
Brown solid, 200 mg, 84%, m.p. 144-146 °C; '"H NMR (400 MHz, DMSO-d): 6 7.33 (dt, J=8.1 Hz, J =
1.7 Hz, 1H), 7.24 (dd, J = 7.5 Hz, J = 1.7 Hz, 1H), 7.09 (d, J= 7.9 Hz, 1H), 7.00 (dt, J=7.4 Hz, J=0.8
Hz, 1H), 5.42 (s, 2H), 3.79 (s, 3H) ppm; *C NMR (100 MHz, DMSO-d,): J 156.8, 142.4, 131.0, 129.3,
121.0, 120.3, 115.1, 114.2, 111.9, 104.3, 103.3, 97.9, 55.7 ppm; IR: v, 3408, 3334, 3235, 2231, 2206,

1260, 1015cm™; HRMS (ESI) m/z: caled. for C,3H,;;N,O [M+H]"239.0933, found: 239.0925.
2-Amino-3-(3,4,5-trimethoxyphenyl)-1 H-pyrrole-4,5-dicarbonitrile (3¢, Table 2):

MeO OMe

MeO
CN

/\

HN"S
H

CN

Dark brown solid, 241 mg, 81%, m.p. 85-87 °C; '"H NMR (400 MHz, DMSO-dy): 0 6.69 (s, 2H), 3.80 (s,
9H) ppm; "C NMR (100 MHz, DMSO-d;): 6 153.5, 141.8, 136.7, 127.5, 115.2, 113.8, 107.0, 105.3,
101.7, 97.9, 60.5, 56.2 ppm; IR: Ve 3338, 2209, 1598, 1128, 735 cm™'; HRMS (ESI) m/z: caled. for

CisH sN,O3 [M+H]"299.1144, found: 299.1141.
2-Amino-3-(2,4,6-trimethoxyphenyl)-1H-pyrrole-4,5-dicarbonitrile (3d, Table 2):

MeO

OMe

MeO / {
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Dark brown solid, 238 mg, 80%, m.p. >200 °C; 'H NMR (400 MHz, DMSO-dy): 6 11.96 (s, 1H), 6.29 (s,
2H), 5.14 (s, 2H), 3.82 (s, 3H), 3.73 (s, 6H) ppm; “C{'H}NMR (100 MHz, DMSO-d): J 161.5, 159.0,
142.4, 115.0, 114.1, 105.2, 100.5, 100.4, 96.1, 91.3, 55.9, 55.7 ppm; IR: vmax 3426, 3346, 2229, 2207,

1630, 1275, 1109 cm™. HRMS (ESI) m/z: calcd. for C;sH sN4O; [M+H]"299.1144, found: 299.1146.
2-Amino-3-(4-hydroxyphenyl)-1H-pyrrole-4,5-dicarbonitrile (3¢, Table 2):

HO

Red solid, 204 mg, 91%, m.p. >200 °C; "H NMR (400 MHz, DMSO-d,): 6 9.56 (s, 1H), 7.22 (d, J = 8.4
Hz, 2H), 6.83 (d, J = 8.4 Hz, 2H), 5.59 (s, 2H) ppm; °C NMR (100 MHz, DMSO-d,): § 156.8, 141.2,
129.4, 122.5, 116.2, 115.2, 113.9, 107.6, 101.6, 97.2 ppm; IR: vy 3390, 3350, 2209, 1627, 1249 cm’;

HRMS (ESI) m/z: caled. for C;;HN,O [M+Na]"247.0596, found: 247.0583.

2-Amino-3-(p-tolyl)-1H-pyrrole-4,5-dicarbonitrile (3f, Table 2):

Brown solid, 191 mg, 86%, m.p. >200 °C; '"H NMR (400 MHz, DMSO-dy): 6 12.1 (s, 1H), 7.32 (d, J =
7.6 Hz, 2H), 7.25 (d, J = 7.6 Hz, 2H), 5.75 (s, 2H), 2.33 (s, 3H) ppm; °C NMR (100 MHz, DMSO-d;): §
141.5, 136.4, 129.9, 128.9, 127.9, 115.0, 113.7, 106.9, 101.7, 97.7, 21.2 ppm; IR: vy 3443, 3334, 3224,
2237, 2208, 1628, 1286 cm™'; HRMS (ESI) m/z: caled. for C;3H;(N4Na [M+Na]" 245.0803, found:

245.0801.

2-Amino-3-phenyl-1H-pyrrole-4,5-dicarbonitrile (3g, Table 2):
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Brown solid, 175 mg, 84%, m.p. >200 °C; "H NMR (400 MHz, DMSO-dy): 0 12.22 (s, 1H), 7.44-7.31 (m,
5H), 5.82 (s, 2H) ppm; BC NMR (100 MHz, DMSO-d,): ¢ 141.6, 131.9, 129.3, 127.9, 127.1, 115.0,
113.6, 106.7, 101.7, 98.0 ppm; IR: v 3404, 3330, 3248, 2229, 2215, 1638, 1276 cm™; HRMS (ESI)

m/z: calcd. for C,HgN,Na [M+Na] 231.0647, found: 231.0646.

2-Amino-3-(4-(dimethylamino)phenyl)-1H-pyrrole-4,5-dicarbonitrile (3h, Table 2):

CN

/ \
HoNT Sy CN
H

Dark brown solid, 191 mg, 76%, m.p. >200 °C; "H NMR (400 MHz, DMSO-dy): 6 12.11 (s, 1H), 7.25 (d,
J = 8.8 Hz, 2H), 6.79 (d, J = 8.8 Hz, 2H), 5.55 (s, 2H), 2.92 (s, 6H) ppm; *C NMR (100 MHz, DMSO-
ds): 0 149.9, 139.9, 128.3, 119.4, 114.1, 112.9, 112.5, 108.8, 101.6, 97.0, 39.4 ppm; IR: v« 3478, 3386,

3250, 2229, 2212, 1613 cm™; HRMS (ESI) m/z: caled. for Ci,H,4Ns [M+H]" 252.1249, found: 252.1249.
2-Amino-3-(4-bromophenyl)-1H-pyrrole-4,5-dicarbonitrile (3i, Table 2):

Br

Dark brown solid, 225 mg, 79%, m.p. >200 °C; "H NMR (400 MHz, DMSO-dy): 6 12.26 (s, 1H), 7.63 (d,

J = 8.4 Hz, 2H), 7.38 (d, J = 8.4 Hz, 2H), 5.91 (s, 2H) ppm; *C NMR (100 MHz, DMSO-d,): & 141.8,
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132.3, 131.2, 130.0, 120.0, 114.8, 113.5, 105.3, 101.6, 98.3 ppm; IR: v,y 3468, 3379, 3241, 2233, 2208,

1618, 1267, 750 cm™; HRMS (ESI) m/z: caled. for C,H,BrN,Na [M+Na]" 308.9752, found: 308.9749.

oNOYTULT D WN =

2-Amino-3-(4-chlorophenyl)-1H-pyrrole-4,5-dicarbonitrile (3j, Table 2):

1 Cl

14 CN
15 7 \

16 H,oN N CN

H
20 Dark red solid, 200 mg, 83%, m.p. >200 °C; '"H NMR (400 MHz, DMSO-d): § 12.26 (s, 1H), 7.50 (d, J =
22 8.6 Hz, 2H), 7.44 (d, J = 8.6 Hz, 2H), 5.91 (s, 2H) ppm; °*C NMR (100 MHz, DMSO-d,): 6 141.8, 131.5,
24 130.8, 129.7, 129.3, 114.8, 113.5, 105.3, 101.7, 98.3 ppm; IR: vy 3470, 3388, 3243, 2221, 2208, 1623,

26 1269, 827 cm™'; HRMS (ESI) m/z: calcd. for C;,H,CIN;Na [M+Na]"265.0257, found: 265.0249.

29 2-Amino-3-(4-fluorophenyl)-1 H-pyrrole-4,5-dicarbonitrile (3k, Table 2):

35 CN

36 / A\
37 HoNT S~ CN
38 H

Light brown solid, 181 mg, 80%, m.p. >200 °C; '"H NMR (400 MHz, DMSO-dy): 0 12.25 (s, 1H), 7.47-
43 7.44 (m, 2H), 7.28 (dd, J = 8.8 Hz, J = 8.8 Hz, 2H), 5.82 (s, 2H) ppm; BC NMR (100 MHz, DMSO-dy): 6
45 161.3 (d, Je.r= 242 Hz), 141.6, 130.1 (d, Je.c.c.r.= 8 Hz), 128.3 (d, Je.c.c.c.r= 3 Hz), 116.2 (d, Joc.p= 22
47 Hz), 114.9, 113.5, 105.8, 101.8, 97.8 ppm; IR: v,y 3450, 3353, 2215, 1624, 1217 cm™'. HRMS (ESI) m/z:

49 calcd. for C,HgFN, [M+H]+ 227.0733, found: 227.0726

52 2-Amino-3-(4-cyanophenyl)-1H-pyrrole-4,5-dicarbonitrile (31, Table 2):
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NC

CN
/ \

HoN"S
H

CN

Dark brown solid, 151 mg, 65%, m.p. >200 °C; "H NMR (400 MHz, DMSO-dy): 6 11.92 (s, 1H), 8.00 (d,
J = 8.3 Hz, 2H), 7.74 (d, J = 8.3 Hz, 2H), 6.83 (s, 2H) ppm; *C NMR (100 MHz, DMSO-d): § 151.1,
135.7, 134.2, 133.4, 128.5, 119.0, 116.1, 114.8, 111.4, 91.4, 72.5 ppm; IR: v, 3437, 3348, 3226, 2208,

1636, 1247 cm™. HRMS (ESI) m/z: caled. for C,3HgNs [M+H]" 234.0780, found: 234.0787.

2-Amino-3-(4-nitrophenyl)-1H-pyrrole-4,5-dicarbonitrile (3m, Table 2):

Red solid, 160 mg, 63%, m.p. >200 °C; 'H NMR (400 MHz, DMSO-d,): § 12.78 (s, 1H), 8.39 (d, J = 7.6
Hz, 2H), 7.99 (d, J = 7.6 Hz, 2H), 6.11 (s, 2H) ppm; °C NMR (100 MHz, DMSO-dy): J 149.0, 147.6,
136.9, 134.8, 127.4, 124.9, 115.5, 114.3, 87.0, 81.3 ppm; IR: vy 3450, 3363, 3252, 2206, 1637, 1341,

1270 cm™'; HRMS (ESI) m/z: caled. for C,H;N5;O,Na[M+Na]" 276.0498, found: 276.0493.

2-Amino-3-(naphthalen-2-yl)-1 H-pyrrole-4,5-dicarbonitrile (3n, Table 2):

O
]\
N

CN

HoN CN
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Buff solid, 211 mg, 82%, m.p. 145-147 °C; 'H NMR (400 MHz, DMSO-d,): 6 8.00-7.95 (m, 1H), 7.68-
7.66 (m, 1H), 7.59-7.52 (m, 3H), 7.44 (dd, J = 7.0 Hz, J = 0.8 Hz, 1H), 5.46 (s, 2H) ppm; '*C NMR (100
MHz, DMSO-d,): § 142.4, 134.0, 131.9, 129.2, 128.9, 128.8, 126.9, 126.6, 126.2, 125.7, 114.7, 113.8,
105.4, 104.1, 97.5 ppm; IR: Vx 3445, 3352, 3231, 2234, 2208, 1620, 1276 cm™'; HRMS (ESI) m/z: caled.

for C16H10N4Na [M+Na]+2810803, found: 281.0797.

2-Amino-3-propyl-1H-pyrrole-4,5-dicarbonitrile (30, Table 2):

Dark brown solid, 104 mg, 60%, m.p. 163-165 °C; 'H NMR (400 MHz, DMSO-dy): 4.06 (s, 2H), 2.34 (4,
J = 7.3 Hz, 2H), 1.49-1.40 (m, 2H), 0.85 (t, J = 7.3 Hz, 3H) ppm; *C NMR (100 MHz, DMSO-d,): §
141.7, 114.7, 113.9, 107.2, 103.1, 94.9, 25.4, 23.1, 13.7 ppm; IR: v, 3449, 3360, 2238, 2202, 1624,

1274 cm™. HRMS (ESI) m/z: calced. for CoHy Ny [M+H]+ 175.0984, found: 175.0980.

5-Amino-4-heptyl-1H-pyrrole-2,3-dicarbonitrile (3p, Table 2):

CN
/\

HoN N
H

CN

Dark brown solid, 164 mg, 71%, m.p. 112-114 °C; 'H NMR (400 MHz, DMSO-dy): 11.90 (s,1H), 5.53
(s, 2H), 2.35 (t, J = 7.3 Hz, 2H), 1.46-1.41 (m, 2H), 1.24 (s, 8H), 0.85 (t, /= 6.7 Hz, 3H ) ppm; "C NMR

(100 MHz, DMSO-dy): 6 141.9, 114.8, 114.1, 107.4, 103.0, 95.0, 31.7, 29.8, 28.9, 28.8, 23.4, 22.5, 14.4
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ppm; IR: vy 3350, 2924, 2206, 1595, 1496, 1275, 1082, 750 cm’. MS (ESI) calcd. for C;3H 9Ny [M+H]+

231.1, found: 231.1.

5-Amino-4-phenethyl-1H-pyrrole-2,3-dicarbonitrile (3q, Table 2):

CN
7\

HoN N
H

CN

Light brown solid, 155 mg, 66%, m.p. 123-125 °C; 'H NMR (400 MHz, DMSO-d;): 11.91 (s, 1H), 7.29-
7.25(m, 2H), 7.21-7.18 (m, 3H) 5.62 (s, 2H), 2.74-2.70 (m, 2H), 2.67-2.63 (m, 2H) ppm; *C NMR (100
MHz, DMSO-dy): 6 142.0, 141.4, 128.8, 128.6, 126.4, 114.6, 114.0, 106.4, 103.2, 95.1, 35.7, 25.7 ppm;
IR: Vmax 3347, 2209, 1626, 1500, 1416, 1287, 1080, 702 cm™'. MS (ESI) caled. for C,4H;,N,Na [M+Na]"

259.0, found: 259.0.

2-Amino-3-(pyridin-3-yl)-1H-pyrrole-4,5-dicarbonitrile (3r, Table 2):

/ \

HoN N
H

CN

Pale white solid, 106 mg, 51%, m.p. >200 °C; 'H NMR (400 MHz, DMSO-d,): 6 8.74 (d, J = 1.8 Hz,
1H), 8.62 (dd, J = 4.8 Hz, J= 1.4 Hz, 1H), 7.95 (dt, J= 4.9 Hz, J = 1.8 Hz), 7.55 (dd, J= 7.9 Hz, J = 4.8
Hz, 1H), 6.78 (s, 2H) ppm; “C{'H}NMR (100 MHz, DMSO-d,): 5 150.9, 149.9, 148.2, 135.4, 133.1,
127.3, 124.5, 116.2, 114.9, 91.1, 72.8 ppm; IR: vmax 3406, 3335, 3218, 2204, 1646, 1540, 1254 cm';

HRMS (ESI) m/z: caled. for C; HgNs [M+H] 210.0779, found: 210.0777.

2-Amino-3-(1H-indol-3-yl)-1H-pyrrole-4,5-dicarbonitrile (3s, Table 2):
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HN
CN

/\

HN"N
H

CN

Black solid, 99 mg, 40%, m.p. >200 °C; 'H NMR (400 MHz, DMSO-d,): § 11.36 (s, 1H), 7.48-7.41 (m,
3H), 7.14 (t, J = 8.0 Hz, 1H), 7.04 (t, J = 7.9 Hz, 1H), 5.45 (s, 2H), 4.47 (s, 1H) ppm; *C NMR (100
MHz, DMSO-dy): d 141.9, 136.6, 126.4, 124.9, 121.9, 119.8, 112.2, 105.1, 63.2 ppm; IR: Viax 2924,

2215, 1713, 1462, 804 cm'.MS (ESI) m/z: calcd. for Ci4HoNs Na [M+Na]+270.0, found: 270.0.

2-Amino-3-(thiophen-2-yl)-1H-pyrrole-4,5-dicarbonitrile (3t, Table 2):

Black solid, 79 mg, 37%, m.p. >200 °C; '"H NMR (400 MHz, DMSO-d;): d 10.64 (s, 1H), 7.61 (d, J=5.0
Hz, 1H), 7.44 (d, J = 3.6 Hz, 1H), 7.16 (t, J = 3.9 Hz, 1H), 6.67 (s, 2H) ppm; *C NMR (100 MHz,
DMSO-d,): § 150.9, 132.1, 129.7, 128.4, 127.3, 126.5, 116.4, 115.2, 89.8, 72.1 ppm; IR: Ve 3333, 2199,

1613 cm™. MS (ESI) calcd. for C,(H¢N,SNa [M+Na]" 237.0, found: 237.0.
Ethyl 2-amino-5-cyano-3-(4-methoxyphenyl)-1H-pyrrole-4-carboxylate (3u, Table 2):

MeO

COOCH,CH,
/\

HN"N
H

CN

Light orange solid, 117 mg, 41%, m.p. >200 °C; 'H NMR (400 MHz, DMSO-d;): 6 11.85 (s, 1H), 7.15

(d, J = 8.6 Hz, 2H), 6.90 (d, J = 8.6 Hz, 2H), 5.04 (s, 2H), 4.08 (q, J = 7.1 Hz, 2H), 3.76 (s, 3H), 1.10 (t,
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7.1 Hz, 3H) ppm; *C NMR (100 MHz, DMSO-d,): § 162.8, 158.1, 141.4, 131.6, 125.6, 122.2, 115.3,
113.8, 106.1, 94.7, 60.2, 55.5, 14.3 ppm; IR: v,y 3215, 2926, 2201, 1717, 1658, 1275, 1175 cm’’. HRMS

(ESI) m/z: calcd. for C;sH;¢N;03 [M+H]+286.1 192, found: 286.1188.
Ethyl 2-amino-3-(4-chlorophenyl)-5-cyano-1H-pyrrole-4-carboxylate (3v, Table 2):
Cl

CO,CH,CH3
/\

H,N N
H

CN

Light orange solid, 115 mg, 40%, m.p. >200 °C; "H NMR (400 MHz, DMSO-dy): 6 7.37 (d, J = 8.4 Hz,
2H), 7.24 (d, J = 8.4 Hz, 2H), 5.24 (s, 2H), 4.09 (q, J= 7.1, 2H), 1.11 (t, J= 7.1, 2H) ppm; "C{'H}NMR
(100 MHz, DMSO-dg): 6 162.14, 141.26, 131.96, 131.76, 130.54, 127.71, 121.56, 114.57, 104.23, 94.89,
59.83, 13.71 ppm; IR: vmax 3475, 3377, 2211, 1663, 1614, 1508, 1310, 1220, 835, 701 cm™'; HRMS
(ESI) m/z: caled. for C;4H,,CIN;0,Na [M+Na]" 312.0516, found: 312.0506.

Characterization Data for 2-(4-chlorophenyl)-8-(4-methoxyphenyl)-4-phenylpyrrolo[1,2-
a|pyrimidine-6,7-dicarbonitrile (4a, Scheme 3)

2-(4-chlorophenyl)-8-(4-methoxyphenyl)-4-phenylpyrrolo[1,2-a]pyrimidine-6,7-dicarbonitrile  (4a,
Scheme 3)

OMe

Yellow solid, 142 mg, 62%, m.p. >200 °C; '"H NMR (400 MHz, CDCls): ¢ 8.10 (d, J = 8.6 Hz, 2H), 8.04

(d, J = 8.8 Hz, 2H), 7.74 (dd, J = 7.3, 7.3 Hz, 1H), 7.67 (dd, J = 7.7, 7.3 Hz, 2H), 7.61 (d, J = 7.3 Hz,
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2H), 7.52 (d, J = 8.6 Hz, 2H), 7.35 (s, 1H), 7.13 (d, J = 8.8 Hz, 2H), 3.93(s, 3H), ppm; *C NMR (100
MHz, CDCls): § 159.8, 154.3, 146.7, 139.8, 137.7, 134.2, 132.2, 130.2, 130.1, 129.5, 129.3, 129.1, 128.5,
122.3, 119.2, 114.4, 113.3, 109.8, 109.5, 108.3, 96.7, 55.4 ppm; IR: Ve 2956, 2839, 2250, 2208, 1618,
1459, 1275, 1260, 750 cm™; HRMS (ESI) m/z: caled. for CaosHsCIPN,O [M+H]" 461.1169, found:

461.1184.
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