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Approach from Nitrophenols
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Benzimidazoles may be formed in high yield through the
phosphite-triggered reductive cyclization of o-nitroaniline
derivatives. This reaction was used for the one-pot synthesis

Introduction

In the last 20 years the renewed interest for isocyanide
chemistry and isocyanide-based multicomponent reactions
(IMCR)[1] is certainly due to their ability to deliver libraries
of medicinally privileged structures[2] by using fast and ef-
ficient synthetic pathways. Benzimidazoles have been exten-
sively used in medicinal chemistry, displaying antiarrhyth-
mic, antiulcer, anticancer, fungicidal, and antiviral activi-
ties.[3] Following our interest in the multicomponent synthe-
sis of heterocycles, we wished to develop fast, multicompo-
nent access towards these scaffolds from simple nitroarene
derivatives. Benzimidazoles are usually prepared from o-
phenylenediamine derivatives,[4] which may be obtained
from reduction of nitroaniline intermediates. Two direct
paths are reported for the cyclization of N,N-dialkyl-o-ni-
troanilines (Scheme 1). Their thermal dehydration gives ac-
cess to benzimidazole oxides that must be reduced in a fur-
ther step.[5] Metal-catalyzed reductive coupling under CO
pressure[6] is more straightforward, but hampered by high
prices and safety issues. Thinking about a more convenient
cyclodehydration towards benzimidazoles, we surmised that
heating the product under reductive conditions with phos-
phites could lead to benzimidazoles in one step through ni-
troso intermediates. Nitroarenes, under treatment with
phosphites, are known to form nitroso and nitrene deriva-
tives that might insert into various C–H bonds in an intra-
molecular manner (Cadogan reaction).[7] The Cadogan re-
action usually involves C–H aryl bond insertion, but inter-
esting couplings with allyl residues (nitroso–ene reaction)[8]

and N–N or N–P bond formation[9] have also been ob-
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of benzimidazoles from o-nitrophenols and isocyanides. The
mechanism is discussed in relation with nitroso intermedi-
ates.

served. We could not find any benzimidazole synthesis
starting from N-alkyl-substituted o-nitroanilines under Ca-
dogan conditions.[10]

Scheme 1. Benzimidazole formation from nitroanilines.

Results and Discussion

To test these hypotheses on a functionalized starting ma-
terial, Ugi–Smiles adduct 1a was prepared from the corre-
sponding benzylamine, isocyanide, and o-nitrophenol.[11]

Compound 1a was then heated under neat conditions with
triethyl phosphite at 160 °C for 2 h (Scheme 2). We were
delighted to observe the formation of benzimidazole 2a in
a 48% isolated yield. After testing different solvents (aceto-
nitrile, toluene, DMF) and temperatures, 1a was isolated in
69% yield by heating the reaction to reflux in toluene (1 m)
by using 12 equiv. of triethyl phosphite. This could be fur-
ther optimized under microwave conditions: heating in
DMF (2 m) at 165 °C for 25 min with P(OEt)3 (8 equiv.)
gave 2a in 80 % isolated yield. Both steps, Ugi–Smiles and
phosphite reductive cyclization, could be performed in the
same pot just replacing MeOH by DMF in the second step
with a similar yield (Table 1, Entry 1). This new benzimid-
azole synthesis was tested on several Ugi–Smiles adducts,
as displayed in Table 1, with yields given directly from the
starting o-nitrophenols.
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Table 1.One-pot four-component synthesis of benzimidazoles.

Entry R1 R2 R3 R4 2[a] (Yield)

1 Cy 4-ClC6H4 iBu H 2a (80%)
2 Cy 4-MeOC6H4 iBu H 2b (72%)
3 Cy 4-MeC6H4 Et MeO 2c (83%)
4 4-ClC6H4CH2 4-ClC6H4 Et MeO 2d (61%)
5 4-MeOC6H4CH2 Ph CH3(CH2)5 MeO 2e (64%)
6 3,4-(MeO)2C6H3CH2 4-MeOC6H4 iBu MeO 2f (72 %)
7 4-MeOC6H4CH2 4-MeC6H4 iBu Me 2g (74%)
8 Cy 2-ClC6H4 Et MeO 2h (73%)
9 tBu 2-MeOC6H4 Et MeO 2i (60%)
10 tBu 2-furyl iBu Me 2j (23%)
11 Cy Me(CH2)2 Et Cl –
12 Cy CH2=CH iBu H –

[a] Using P(OEt)3 (8 equiv.) in 2 m DMF in the second step.

Scheme 2. Benzimidazole formation from Ugi–Smiles adduct 1a.

The reaction is only efficient with benzylic amino deriva-
tives, as shown by the lack of reactivity of allyl and butyl
adducts (Table 1, Entries 11 & 12). The lower yield obtained
with furfurylamine is due to the formation of important
side products in the second step.

Two mechanistic hypotheses may be advanced for this
phosphite-induced reaction. A thermal dehydration to
benzimidazole oxides followed by reduction by the phos-
phite as pictured in Scheme 1 or a prior reduction to nitroso
derivatives followed by a 1,5-sigmatropic process, cycliza-
tion, and dehydration (Scheme 3).[12]

To give some clues about the mechanism, a solution of
Ugi intermediate 1a in acetic acid was heated at reflux for
several days (conditions reported for benzimidazole oxide
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Scheme 3. Possible mechanism.

formation)[5b] as well as heated under microwave conditions
at 160 °C for 1 h. The recovery of unreacted 1a seems to
indicate that the nitroso path is more likely followed.

All examples given in Table 1 involve aliphatic aldehydes.
When aromatic aldehydes and benzylic amines react to-
gether in the Ugi–Smiles coupling, the presence of two dif-
ferent benzylic positions in the adduct may be associated
with selectivity issues. This was confirmed by the formation
of a mixture of benzimidazoles 2k and 3k when using p-

Scheme 4. Fate of aromatic aldehydes.
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chlorobenzaldehyde and a benzylic amine as starting part-
ners (Scheme 4). Product 3k probably results from an inter-
mediate cyclization followed by a final aromatization
through isocyanate release. When the amine component
cannot be involved in the cyclization process, this pathway
is the only one observed, as shown by the exclusive forma-
tion of 3l when starting with butylamine and p-chlorobenz-
aldehyde (Scheme 4).

Conclusions

As a conclusion, we have disclosed a new phosphite-me-
diated reductive cyclization of o-nitroaniline derivatives
through the activation of the C–H aminobenzylic position.
Combined with a first Ugi–Smiles step, these conditions al-
lowed us to achieve one of the shortest IMCR routes for
access to benzimidazole derivatives from simple commer-
cially available starting materials.[13] We are further studying
the interest of phosphite-triggered reactions in IMCRs.

Experimental Section

General Procedure for the Synthesis of Benzimidazoles: To a 3 m

solution of carbonyl derivative (1 mmol) in methanol was added
successively benzylamine (1 mmol), isocyanide (1 mmol, 1.0 equiv.),
and o-nitrophenol (1 mmol). The reaction mixture was stirred at
60 °C until completion of the Ugi–Smiles coupling and then cooled
to room temperature. After removing the excess amount of meth-
anol, the crude Ugi–Smiles adduct was used in the next step. To a
2 m solution of Ugi–Smiles adduct (1 mmol) in DMF was added
triethyl phosphite (8 mmol), and the tube was sealed. The mixture
was heated under microwave irradiation (165 °C, 200 W) for
25 min. After completion of the reaction, the excess amount of tri-
ethyl phosphite was removed in vacuo, and the residue was purified
by flash chromatography on silica gel.

2a: The typical procedure was followed employing the isovaleral-
dehyde (107 μL, 1.0 mmol), p-chlorobenzylamine (122 μL,
1.0 mmol), cyclohexylisocyanide (124 μL, 1.0 mmol), o-nitrophenol
(139 mg, 1.0 mmol), and triethyl phosphite (1.37 mL, 8.0 mmol) to
afford compound 2a (338 mg, 80%) as a white solid by flash
chromatography on silica gel. Rf = 0.8 (petroleum ether/diethyl
ether, 50:50). M.p. 177–178 °C. 1H NMR (400 MHz, CDCl3): δ =
7.85 (d, J = 7.8 Hz, 1 H), 7.58 (d, J = 8.3 Hz, 2 H), 7.51 (d, J =
8.3 Hz, 2 H), 7.40 (d, J = 7.8 Hz, 1 H), 7.37–7.28 (m, 2 H), 5.84
(br. d, J = 8.3 Hz, 1 H), 5.04 (dd, J = 4.0, 11.1 Hz, 1 H), 3.94–3.83
(m, 1 H), 2.25–2.16 (m, 1 H), 2.12–2.04 (m, 1 H), 1.92–1.82 (m, 2
H), 1.69–1.53 (m, 3 H), 1.40–1.26 (m, 2 H), 1.09–1.00 (m, 2 H),
0.75–0.65 (m, 1 H), 0.89–0.81 (m, 1 H), 0.59 (d, J = 6.3 Hz, 3 H),
0.43 (d, J = 6.3 Hz, 3 H) ppm. 13C NMR (100.6 MHz, CDCl3): δ
= 168.1, 154.1, 143.6, 136.6, 133.3, 130.5, 129.4, 128.1, 123.6, 123.4,
120.7, 112.3, 59.2, 48.8, 37.9, 33.0, 32.8, 25.2, 24.8, 24.7, 24.4, 22.9,
20.5 ppm. IR (thin film): ν̃ = 3310, 2933, 2857, 1644, 1522, 1477,
1453, 1408, 1369, 1272, 1261, 1091, 1017 cm–1. HRMS: calcd. for
C25H30ClN3O 423.2077; found 423.2074.

Supporting Information (see footnote on the first page of this arti-
cle): Experimental procedures and spectroscopic data for all new
compounds.
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