79

Synthesis of Low Generation Phenylenealkylene Dendrons as Nonpolar Building Blocks for a Dendrimer Construction Set

Matthias Beinhoff, Birol Karakaya, A. Dieter Schlüter*

Freie Universität Berlin, Institut für Chemie/Organische Chemie, Takustr. 3, 14195 Berlin, Germany Fax +49(30)83853357; E-mail: adschlue@chemie.fu-berlin.de *Received 30 July 2002; revised 25 September 2002*

Abstract: The gram scale syntheses of first and second generation (G1 and G2) dendrons 1–4, and 35, based on aryl and alkyl moieties, by Suzuki–Miyaura cross-coupling are presented. Both a divergent and an accelerated convergent route are applied. In addition, first results on the synthesis of hyperbranched oligomers of AB_2 monomer 19 are reported.

Key words: dendrimers, dendrons, Suzuki–Miyaura cross-coupling, iododesilylation, building blocks

Introduction

One of our aims is to develop a construction set consisting of first (G1) and second generation (G2) dendritic building blocks which carry orthogonally protected functional groups to allow a wide range of combinations.¹ Such a set is of considerable interest not only for the modular and combinatorial synthesis of a variety of spherical dendrimers and dendronized polymers² but also for surface modifications.³ Up to now, we have developed G1 and G2 dendrons with the following orthogonal protecting group patterns (periphery/focal point/connectivity): hydroxy/ isocyanate/urethane,⁴ hydroxy/acid/amides,⁵ amines/acid/ amides,⁶ and amines/olefin (allyl)/amides.⁷ Besides these, dendrons with two differently protected amine groups in the periphery were also constructed.⁸ Properties of dendrimers like solubility, glass transition temperature, melting behavior, etc., are very dependent on the nature of their periphery. For applications as energy or electron transfer agents or their ability to act as a host for guest uptake (and release), the interior of dendrimers is also important. Recently we started a project aiming at the creation of a polarity gradient in the interior of dendrimers.^{6b,9} For such a goal the construction set lacks nonpolar representatives, like hydrocarbons, with appropriate connecting functions in the periphery and/or at the focal point. Unfortunately, the known all-hydrocarbon dendrons on the basis of oligo(phenylene)s,¹⁰ oligo(phenyleneacetylene)s,¹¹ oligo(phenylenevinylene)s,¹² and oligo-(alkylene)s¹³ are not suitable, since they are too different in flexibility and/or in spacer lengths between two phenylene branching units in comparison to other dendrons in our set.14

Here we describe gram scale procedures for the synthesis of nonpolar aryl/alkyl G1 and G2 dendrons employing both divergent and convergent routes. The main synthetic tool is the Suzuki–Miyaura cross-coupling of alkyl boranes with aryl bromides and iodides.¹⁵ This tool was also applied to one of the new AB₂ type monomers to test whether hyperbranched polymers with reasonable molar mass and branching degree can be obtained.¹⁶

Results and Discussion

Figure 1 shows the four main target dendrons 1-4. They are characterized by threefold benzene branching units which are connected by trimethylene (1, 2) and tetramethylene bridges (3, 4), respectively. Dendrons 1 and 2 each carry two trimethylsilyl (TMS) placeholder functions per terminal phenyl unit and a benzyl protected hydroxyethyl group at the focal point. Dendrons 3 and 4 carry two silylprotected hydroxypropyl groups per terminal phenyl unit and 1-but-3-enyl groups at the focal point which results in a very efficient, step economic growth reaction (see below). The syntheses for 1 and 2 are divergent, that for 3 and 4 convergent.

Divergent Procedure

The synthesis of dendrons **1** and **2** started from 1,3,5-tribromobenzene (**5**) which was silylated to give compound $6^{17,18}$ in 80% yield by performing twice the metal–halogen exchange sequence and quenching the generated anion with chlorotrimethylsilane (Scheme 1). The ethanol derivative **7** was obtained by reacting parent oxirane with the Grignard derivative of **6**. Its benzyl protection gave **8**. Subsequent *ipso*-iododesilylation¹⁹ at the position carrying the TMS place holder group²⁰ with iodine monochloride at –60 °C led to the diiodo compound **9** on a 30 g scale.

The G1 dendron 1 was synthesized from bromide 6 (Scheme 2). Its conversion into the terminal olefin 10 was achieved through reductive metalation and allylation with allyl bromide. Isomerization to the conjugated isomer (not shown) was not observed (high-field NMR) under the conditions applied. In situ hydroboration of 10 with 9-BBNH cleanly furnished the expected anti-Markownikow²¹ borane **11**, which was not isolated. For the following Suzuki-Miyaura cross-coupling 2.2-2.3 equivalents of borane 11 were reacted with the diiodo compound **9** in the presence of $1-3 \mod 6$ of $Pd(Ph_3P)_4$ as

Synthesis 2003, No. 1, 30 12 2002. Article Identifier: 1437-210X,E;2003,0,01,0079,0090,ftx,en;T08602SS.pdf. © Georg Thieme Verlag Stuttgart · New York ISSN 0039-7881

Figure 1 Structures of target dendrons 1-4

Scheme 1 Reagents and conditions: (a) i. BuLi (1 equiv), anhyd Et_2O , -78 °C, ii. TMSCl, -78 °C to r.t., iii. repetition of i and ii, 80%; (b) i. Mg, anhyd THF, reflux, ii. oxirane, 83%; (c) i. *t*-BuONa, anhyd THF, r.t., ii. benzyl bromide, r.t., 95%; (d) ICl, CHCl₃, -60 °C, 87%

catalyst precursor to afford G1 dendron 1 in 85-88% yield. The slight excess of borane 11 could easily be separated by column chromatography because it became converted into the more polar corresponding hydroxyborate under the basic coupling conditions. The next step leading to the tetraiodoarene 12 required iododesilylation which is normally conveniently achieved by the addition of iodine monochloride. Even when the reaction was carried out avoiding any excess of ICl and at a temperature as low as -78 °C, the formation of a side product could not be prevented (up to 8% by ¹H NMR). Repeated recrystallization or reversed phase HPLC gave the pure byproduct and was characterized as the pentaiodo compound 13 (mass spectrometry, 2D HMQC NMR,²² see Figure 3 in the experimental section for structure and signal assignment). Obviously the central branching unit is activated by its

Scheme 2 *Reagents and conditions*: (a) i. Mg, anhyd THF, reflux, ii. allyl bromide, 85%; (b) 9-BBNH, anhyd THF, r.t.; (c) i. aq NaOH, ii. 9, toluene, degas, iii. cat. $Pd(Ph_3P)_4$, reflux, 87%; (d) ICl, CHCl₃, -60 °C, 94% of **12**; (e) cyclohexa-1,4-diene, Pd/C (10%), THF, reflux, quant

Scheme 3 Reagents and conditions: (a) i. aq NaOH, ii. 12, toluene, degas, iii. cat. $Pd(Ph_3P)_4$, reflux, 77%; (b) cyclohexa-1,4-diene, Pd/C (10%), THF, reflux, quant

three alkyl substituents to such a degree that it is attacked by the electrophilic iodine monochloride. Recently, conditions were found which allow suppression of this side reaction by applying a solvent combination.¹⁴

The coupling procedure was repeated with G1 dendron 12 and 4.5-5.0 equivalents of borane 11 to give the G2 dendron 2 in reproducible isolated yields of 77–78% and quantities of about 8 g (Scheme 3). Thus, every step of this fourfold coupling proceeds with at least 94%.

Preliminary experiments showed that the benzylic protecting group can be cleanly removed in the presence of peripheral TMS group. Catalytic hydrogenation of **1** and **2** with Pd/C and cyclohexa-1,4-diene gave deprotected G1-dendron **14** (Scheme 2) and G2-dendron **15**, respectively (Scheme 3). ¹H NMR integration did not indicate any loss of TMS.

Convergent Procedure

Figure 2 shows the general structure of the used $A^{i}B_{2}$ monomer where i denotes the inactivity of the focal function A in the coupling step and its potential for an in situ activation. Here, A is an olefinic group whereas B are halogens. The construction methodology starts with the replacement of the peripheral halogens by protected hydroxyalkyl moieties. Hydroxy groups were chosen mainly for two reasons. First, they can serve as suitable connecting units to already existing other dendritic building blocks in the construction set of which many have benzoic acid groups at their focal point. Secondly, the varying number of protected hydroxy groups in different dendrimer generations should facilitate column purification by polarity differences.

Figure 2 Structure of AⁱB₂ monomer

Low generation dendrons were obtained by an accelerated convergent approach whereby every isolated step produces a new generation.^{23,24} It uses the fact that the focal ole-finic group is inactive during the Pd-catalyzed growth reaction performed at the periphery and can then be easily converted into a coupling functionality by hydroboration. This allows the entire growth step to be performed as a one-pot reaction.

Pd-catalyzed cross-coupling reactions with iodoarenes usually proceed faster and with higher yields than the corresponding bromo compunds. Though 1-allyl 3,5-dibromobenzene has been employed in a convergent dendron synthesis,^{7,25} the diiodo derivative **19** was considered superior and synthesized instead (Scheme 4).²⁶

1,3,5-Trichlorobenzene (16) was silvlated threefold in a one-pot reaction in the presence of magnesium and chlorotrimethylsilane to the 1,3,5-tris(trimethylsilyl)benzene (17).²⁷ Subsequent ipso-iododesilylation¹⁹ with iodine monochloride at room temperature led to 1,3,5triiodobenzene (18) in an overall yield of 63% on a 100 g scale which was purified by recrystallization. Both this high yield and the simple purification procedure renders this route to triiodobenzene 18 superior to other protocols.²⁸ Allyl derivative **19** was obtained in up to 86% yield on a 60 g scale by coupling the in situ prepared monolithiation product of 18 with allyl bromide (Scheme 4). The lithiation was performed with butyllithium in toluene. When the same reaction was conducted in diethyl ether or tetrahydrofuran, even at -78 °C, the product always contained butylated and twofold allylated compounds (NMR) which were rather difficult to remove. A reason for this may be the low solubility of the mono lithiated intermediate in toluene which seems to protect it from the side reactions mentioned. It precipitates immediately after addition of butyllithium as finely dispersed particles. This lithiation in toluene is very slow and it took several days to reach completion. Besides small amounts of unaffected 18, 1,3-diiodobenzene (not shown) was detected as a byproduct, presumably resulting from quenching of unreacted organolithium compound with water.

Scheme 4 Reagents and conditions: (a) Mg, TMSCl, anhyd THF, reflux, 70%; (b) ICl, CH_2Cl_2 , 0 °C, 90%; (c) i. BuLi (1 equiv), anhyd toluene, r.t., ii. allyl bromide, 86%

Monomer **19** was converted into the G1 dendron **22** in 70% yield by reacting it with the in situ prepared **21**, which is the hydroborated derivative of the benzyl-protected allylic alcohol **20** (Scheme 5). Unfortunately the desired allylic product **22** was accompanied by varying amounts of its styryl isomer **23**. These compounds could easily be differentiated by ¹H NMR spectroscopy (see experimental section). Compound **23** was typically formed in yields below 10%, in some cases, however, even 50% was observed. No reaction conditions could be found which suppressed this isomerization in a reproducable manner.¹⁸ Thus, in principle compound **19** should work as a AⁱB₂ monomer, the purification requirements for **22**, however, were considered too unattractive to follow this route further.

Scheme 5 Reagents and conditions: (a) 9-BBNH, anhyd toluene, r.t.; (b) i. aq NaOH, ii. **19**, toluene, degas, iii. cat. $Pd(Ph_3P)_4$, reflux, 70%

Two alternative A^iB_2 monomers were, therefore, considered, one with a methylene group less (a dihalostyrene) and one with an additional methylene group (dihalohomoallylbenzene). Orienting experiments with 3,5-dibromostyrene revealed an unexpectedly high propensity of its bis(hydroxypropyl) functionalized derivative to polymerize. This route was, therefore, not continued.

Finally, the homoallyl variants **28** and **32** led to success (Schemes 6 and 7). The bromo derivative was considered more attractive for lower generation dendrons regarding overall effort, whereas for higher generation the diiodo analogue was also prepared to exploit its generally higher coupling efficiency.

Both compounds were prepared according to four step sequences starting from bromide 5 or 6. 1,3-Dibromo-5-iodobenzene $(24)^{14,29}$ was obtained by monolithiation of tribromobenzene 5 in diethyl ether³⁰ and electrophilic trapping of the resulting organolithium derivative with 1.2-diiodoethane. In situ hydroboration of vinyl acetal 25 with 9-BBNH and Pd-catalyzed coupling of the resulting borane with 24 exploiting the known chemoselectivity of C-I over C-Br groups yielded acetal 26 (Scheme 6). Hydrolysis of 26 to the aldehyde 27 proceeded quantitatively (TLC) with catalytic amounts of DDQ in aqueous acetonitrile solution.³¹ Various other conditions, including treatment with acidic resin Amberlyst[®]-15³² or tin(II) chloride,³³ only led to partial deprotection. In the case of the dioxolane derivative (not shown) the results were even worse. Aldehyde 27 was unstable on silica gel. The reaction mixture was therefore filtered through Celite to remove DDQ. Standard Wittig reaction produced dibromo olefin 28 in an overall yield of 35% on a 10 g scale.³⁴ Attempts to obtain aldehyde 27 by selective Heck coupling of iodoarene 24 and allyl alcohol³⁵ (not shown) yielded a low yield mixture with the twofold coupled byproduct.

Scheme 6 Reagents and conditions: (a) i. BuLi (1 equiv), anhyd Et₂O, -78 °C; ii. 1,2-diiodoethane, -78 °C to r.t., 92%; (b) 9-BBNH, anhyd THF, r.t.; (c) i. THF, aq NaOH, degas, ii. cat. Pd(Ph₃P)₄, reflux, 68%; (d) DDQ, MeCN–H₂O (9:1), r.t., 90%; (e) i. Ph₃PCH₂I, BuLi, anhyd THF, 0 °C, ii. **27**, r.t., 63%

A similar strategy was applied for the synthesis of 1-but-3-enyl-3,5-diiodobenzene (32) (Scheme 7). The bromoarene 6 was converted into acetal 29, again by coupling with the hydroboration product of vinylacetal 25. The iododesilylation step gave the diiodoacetal 30, which was accompanied by some deprotected aldehyde 31. It was crucial to perform the iododesilylation at low temperature (-78 °C). At room temperature or 0 °C some α -chlorination of the alkyl chain occurred as indicated by a ¹³C NMR signal at $\delta = 63.8$ and the corresponding molecular ion in the mass spectrum. Acetal **30** was not separated, but rather a mixture of **30** and aldehyde **31** was reacted with DDQ to give **31** in a clean conversion. Wittig reaction of **31** resulted in the diiodo olefin **32**.

Scheme 7 Reagents and conditions: (a) i. 9-BBNH, anhyd THF, r.t., ii. aq NaOH, iii. 6, degas, iv. cat. $Pd(Ph_3P)_4$, reflux, 76%; (b) ICl, CH_2Cl_2 , -78 °C; (c) DDQ, MeCN-H₂O (9:1), r.t.; (d) i. triphenylmethylphosphonium iodide, BuLi, anhyd THF, 0 °C, ii. **31**, r.t., 62%

Both homoallylbenzene derivatives 28 and 32 acted successfully as AⁱB₂ monomers. Functionalization of the peripheral halogens proceeded without affecting the homoallyl goup (Scheme 8). Three equivalents of allyl benzyl ether 20 or allyl TBDMS ether 33 were both hydroborated in situ with 9-BBNH to boranes 21 and 34, respectively, and coupled under standard Suzuki-Miyaura cross-coupling conditions with either the dibromo 28 or the diiodo monomer **32**.³⁶ The benzylether **35** was isolated in a yield of about 95%, the TBDMS ether 3 80 (from 28) and 85% (from 32). G2 dendron 4 was obtained from G1 building block 3 and iodo monomer 32 in 75% on a 2 g scale. The excess of unreacted borane derivative 34 was easily removed by column chromatography. For the TB-DMS ether dendrons 3 and 4, the desired polarity differences were so small that chromatographic separation of the pure compounds from the monocoupled products resulted in lower isolated yields.³⁷

Hyperbranched Oligomer

In contrast to dendrons/dendrimers where a few all-hydrocarbon representatives have been reported, there is only one such example for a hyperbranched polymer. This is a poly(phenylene), which was synthesized by Suzuki crosscoupling of 3,5-dibromophenylboronic acid.³⁸ Considering the importance of unpolar highly branched molecules with a polar surface specifically for transport of unpolar guests in polar media, the $A^{i}B_{2}$ monomer **19** was tested with regard to its ability to polymerize. Activation of its olefinic group by 9-BBN hydroboration followed by typical cross-coupling of the resulting borane [(1-3 d reflux)]in THF or toluene, NaOH or Ba(OH)₂ as base, 1–2 mol% of the freshly prepared catalyst precursor $Pd(Ph_3P)_4$] gave a polymeric material to which tentatively the poly(phenylenepropenylene) structure 36 was assigned

Scheme 8 Reagents and conditions: (a) 9-BBNH, anhyd THF, r.t.; (b) i. aq NaOH, ii. 28 or 32 (0.5 equiv), degas, iii. cat. $Pd(Ph_3P)_4$, reflux, 80–95%; (c) i. 9-BBNH, anhyd THF, r.t., ii. aq NaOH, iii. 32, degas, iv. cat. $Pd(Ph_3P)_4$, reflux, 75%

(Scheme 9). In several runs under different conditions, polymeric material was obtained in yields of 78-95% which was only slightly soluble in common organic solvents. Size exclusion chromatography (SEC) analyses of the THF soluble fractions gave M_n of about 2.000 to 3.000 g/mol, and PDI between 1.35 and 1.50 (polystyrene standard, THF as eluent, r.t.) which corresponds to relatively low degrees of polymerization (DP) of 8-12.39 In some SEC fractions of masses up to 10 000 g/mol were determined. MALDI TOF mass spectrometric analysis confirmed at least oligomers with a DP of 9. The degree of branching (DB) was determined on the basis of ¹H NMR integration using the method by Frey.⁴⁰ The aromatic signals were assigned by comparison with the ones of the parent molecular compounds, diiodotoluene, iodoxylene, and mesitylene. The resonances at $\delta = 7.82$ (H-1) and 7.42 (H-2) stem from the terminal moiety, the signals at $\delta =$ 7.30 (H-3) and 6.88 (H-4) from the linear unit and the one at $\delta = 6.76$ (H-5) belong to the dendritic part. Values of about DB = 0.65 were obtained. The compared aromatic signals were not completely baseline separated, and the

DB can therefore only be considered a reasonable estimation. The oligomer **36** shows a broad endothermic transition from 35-55 °C (differential scanning calorimetry) and decomposition at 290 °C (thermogravimetric analysis).

Scheme 9 *Reagents and conditions*: Typical procedure: (a) i. 9-BBNH, anhyd THF, r.t., ii. aq NaOH, degas, iii. cat. Pd(Ph₃P)₄, reflux, 94%. Due to its hyperbranched (hb) nature, polymer **36** consists of three different units, the terminal, linear, and dendritic units (from left)

Conclusion and Outlook

The gram scale syntheses of all-hydrocarbon G1 and G2 dendrons by Suzuki-Miyaura cross-coupling of alkyl boranes with aryl halides were presented. Both a divergent and convergent procedure were successfully applied. The latter approach seems to be capable of yielding higher generation dendrons in an accelerated manner since every isolated step yields a new generation. Depending on whether their hydroxy groups are at the periphery or the focal point, the dendrons presented have the promising potential to be used for the construction of higher generations both with a polarity gradient going from the interior to the exterior and the other way around, respectively. For example, the convergently grown dendrons with (protected) hydroxyl groups in the periphery will be connected to some of the dendrons with carboxylic acids at the focal point.^{5,6} First results in the synthesis of hyperbranched oligomers of an AⁱB₂ monomer by Suzuki-Miyaura crosscoupling were also reported.

All chemicals were purchased from Acros, Aldrich, Fluka, Janssen, or Lancaster and used without further purification. Several compounds were prepared according to literature procedures and gave satisfactory NMR and MS data: 17,²⁷ 20,⁴¹ triphenylmethylphosphonium iodide.⁴² Pd(Ph₃P)₄ was prepared according to Ref.,⁴³ stored in a glove box (O₂: <2.0 ppm, H₂O: <0.3 ppm) and used without further characterization. Compounds 6,^{17,44} 10,¹⁴ 18²⁸ and 24^{14,29} were prepared in ways different to the literature procedures, and are described in full detail. All other compounds have not been previously reported. Anhyd toluene, Et₂O, and THF were distilled from

sodium/benzophenone ketyl or potassium/benzophenone ketyl; in the cross-coupling reactions toluene used was of p.a. quality. The solvents used in the column chromatography were distilled prior to use. Experiments under a protective atmosphere were carried out under N_2 with a purity of 4.0 and 5.0, purchased from Linde or Messer Griesheim. All reactions with moisture sensitive reagents (e. g., lithiations and hydroborations) were performed in dried glassware. The apparatus was evacuated (~15 mbar), heated with an electric dryer (~500 °C), and flushed with N₂. After cooling, this procedure was repeated. All palladium-catalyzed cross-coupling reactions were carried out under oxygen-free conditions. For this a stream of N₂ was run through the stirred mixture (15-30 min). All reactions were monitored by TLC on silica gel alumina sheets. Some of the compounds were spotted by spraying the TLC plate either with an anisaldehyde stain (solution of 0.5 mL p-methoxybenzaldehyde, 50 mL glacial AcOH, and 1 mL concd H₂SO₄) and heating it up to ~100 °C (for boranes, alcohols and ethers), or with an aqueous solution of $KMnO_4$ (0.5%, for olefins). Melting points: Büchi SMP 510 (open capillaries, uncorrected values). NMR: Bruker WH 270, AC 500 (¹H: CDCl₃ at $\delta = 7.24$, ¹³C: CDCl₃ at $\delta = 77.00$ as internal standards, 20 °C). MS: Perkin-Elmer Varian Type MAT 771 and CH6 (EI), Type CH5DF (FAB), or Bruker Reflex (MAL-DI-TOF) respectively. MALDI-TOF: UV-Laser (337 nm), delayed extraction source, reflector mode. 2,5-Dihydroxybenzoic acid (DHB) was used as matrix. The high resolution mass spectra were obtained according to the peak match method (MAT 771). Elemental analyses: Perkin-Elmer EA 240. Column chromatography: Merck silica gel 60, 0.040-0.063 mm (230-400 mesh). Analytical TLC: Merck silica gel Si 60, F254, on aluminum sheets. Preparative RP-HPLC: Machery-Nagel, Nucleosil[®] $5\mu m C_{18}$, $32 \times 250 mm$, UV detection at 254 nm. Analytical SEC: Waters Styragel HR 1 or HR 3 columns, Waters 2487 UV/VIS detector at 254 nm.

1-Bromo-3,5-bis(trimethylsilyl)benzene (6)

To a solution of 1,3,5-tribromobenzene (**5**; 100.0 g, 318.0 mmol) in Et_2O (1.4 L) was added BuLi (210.0 mL of a 1.6 M solution in hexane, 336.0 mmol, 1.06 equiv) within 30 min at -40 °C. After the mixture had been stirred at -78 °C for 30 min, Me₃SiCl (50.0 mL, 400.7 mmol, 1.19 equiv) was added all at once, and the mixture was allowed to warm up to r.t. The suspension was cooled to -78 °C and BuLi (250.0 mL of a 1.6 M solution in hexane, 400.0 mmol, 1.19 equiv) was added within 15 min. After the addition of chlorotrime-thylsilane (60.0 mL, 480.8 mmol, 1.43 equiv) all at once, the mixture was allowed to warm up to r.t. Aq 10% NaHCO₃ solution (100 mL) was added, followed by extractive workup with Et_2O (3 × 100 mL), drying (MgSO₄), evaporation of the volatile components, and distillation through a vigreux column. Recrystallization of the residue from EtOH (70 mL) at -22 °C gave 81.0 g (85%) of the desired **6** as colorless crystals; bp 65 °C/0.02 mbar.

¹H NMR (270 MHz, CDCl₃): δ = 0.30 (s, 18 H), 7.58 (s, 2 H), 7.65 (s, 1 H).

¹³C NMR (68 MHz, CDCl₃,): δ = -1.16, 123.41, 136.19, 136.33, 142.95.

MS (EI, 70 eV, 40 °C): m/z (%) = 302 (17, [M]⁺), 287 (100, [M – CH₃]⁺).

Anal. Calcd for $C_{12}H_{21}BrSi_2$ (301.37): C, 47.82; H, 7.02. Found: C, 47.59; H, 6.87.

2-[3,5-Bis(trimethylsilyl)phenyl]ethanol (7)

Ethylene oxide (oxirane, 15 mL) was condensed into THF (20 mL), and added dropwise to an ice-cold Grignard solution prepared from 1-bromo-3,5-bis(trimethylsilanyl)benzene (**6**; 65.7 g, 218.0 mmol) and Mg (6.4 g, 263.3 mmol, 1.2 equiv) in THF (150 mL). The solution was stirred overnight, and brine (200 mL) was added. After acidification with AcOH (~ pH 5), the separated aqueous phase was extracted with Et₂O (3×100 mL), the combined organic phases

were dried (MgSO₄), and evaporated. The crude product was distilled to give the alcohol **7** as a colorless oil in 83% yield (48.2 g); bp 95 °C/0.014 mbar.

¹H NMR (270 MHz, CDCl₃): δ = 0.30 [s, 18 H, Si(CH₃)₃], 1.56 (s, 1 H, OH), 3.38 (t, ³J = 7.0 Hz, 2 H, Ar-CH₂), 3.88 (t, ³J = 7.0 Hz, 2 H, CH₂OH), 7.36 (s, 2 H, Ar-H), 7.55 (s, 1 H, Ar-H).

¹³C NMR (68 MHz, CDCl₃,): $\delta = -1.44$, 39.27, 63.26, 134.28, 135.77, 136.69, 138.92.

MS (EI, 70 eV, 40 °C): m/z (%) = 266 (16, [M]⁺), 251 (100, [M – CH₃]⁺).

Anal. Calcd for $C_{14}H_{26}OSi_2$ (266.53): C, 63.09; H, 9.83. Found: C, 62.85; H, 9.69.

1-(2-Benzyloxyethyl)-3,5-bis(trimethylsilyl)benzene (8)

To a stirred solution of alcohol **7** (21.9 g, 82.2 mmol) and *t*-BuONa (21.1 g, 219.5 mmol, 2.7 equiv) in THF (150 mL) was slowly added benzyl bromide (20.0 mL, 168.4 mmol, 2.05 equiv) via a syringe. After stirring overnight, brine (200 mL) was added. The separated aqueous phase was extracted with Et_2O (3 × 100 mL), the combined organic phases were dried (MgSO₄), and the resulting oil was distilled in vacuo to give 27.7 g (95%) of a colorless oil; bp 131 °C/ 0.014 mbar.

¹H NMR (270 MHz, CDCl₃): $\delta = 0.39$ [s, 18 H, Si(CH₃)₃], 3.04 (t, ³J = 7.0 Hz, 2 H, Ar-CH₂), 3.82 (t, ³J = 7.0 Hz, 2 H, CH₂CH₂O), 4.62 (s, 2 H, Ar-CH₂), 7.40 (m, 5 H, Ar-H), 7.48 (s, 2 H, Ar-H), 7.63 (s, 1 H, Ar-H).

¹³C NMR (68 MHz, CDCl₃): δ = -1.06, 36.61, 71.50, 72.93, 127.45, 127.54, 128.29, 134.55, 136.06, 137.20, 138.44, 139.41.

MS (EI, 70 eV, 60 °C): m/z (%) = 356 (22, [M]⁺), 73 (100, [SiMe₃]⁺).

Anal. Calcd for C₂₁H₃₂OSi₂ (356.65): C, 70.72; H, 9.04. Found: C, 70.40; H, 8.76.

1-(2-Benzyloxyethyl)-3,5-diiodobenzene (9); Typical Procedure A stirred solution of **8** (27.6 g, 77.4 mmol) in CHCl₃ (100 mL) was cooled to -60 °C, and a solution of ICl (26.4 g, 162.6 mmol, 2.1 equiv) in CHCl₃ (50 mL) was added dropwise. After stirring 1.5 h at this temperature, a solution of Na₂S₂O₅ (20 g) in H₂O (100 mL) was added, and the mixture was stirred for additional 30 min. The separated aqueous phase was washed with CHCl₃ (3 × 50 mL), the collected organic phases were dried (MgSO₄), and the solvent was evaporated. The diiodo compound **9** was recrystallized from CH₂Cl₂, and 31.1 g (87%) were obtained as colorless, long needles; mp 82 °C.

¹H NMR (270 MHz, CDCl₃): $\delta = 2.78$ (t, ³J = 7.0 Hz, 2 H, CH₂CH₂O), 3.63 (t, ³J = 7.0 Hz, 2 H, CH₂CH₂O), 4.49 (s, 2 H, ArCH₂O), 7.29 (m, 5 H, Ar-H), 7.53 (s, 2 H, Ar-H), 7.89 (s, 1 H, Ar-H).

¹³C NMR (67 MHz, CDCl₃): δ = 35.31, 69.95, 72.99, 94.66, 127.58, 127.63, 128.40, 137.25, 137.96, 142.81, 143.40.

MS (EI, 70 eV, 100 °C): m/z (%) = 464 (29), 91 (100, $[C_7H_7]^+$).

Anal. Calcd for $C_{15}H_{14}I_2O$ (464.08): C, 38.82; H, 3.04. Found: C, 38.71; H, 2.73.

1-Allyl-3,5-bis(trimethylsilyl)benzene (10)

To a refluxing Grignard solution prepared from 1-bromo-3,5bis(trimethylsilyl)benzene (**6**; 36.6 g, 121.4 mmol) and Mg (3.1 g, 127.6 mmol, 1.05 equiv) in THF (100 mL), was added dropwise a solution of allyl bromide (15.0 mL, 181.8 mmol, 1.5 equiv) in THF (50 mL). After refluxing overnight, the mixture was cooled to r.t., and brine (200 mL) was added. The separated aqueous phase was extracted with Et₂O (3×100 mL), the combined organic phases were dried (MgSO₄), and the resulting oil obtained after evaporation of the solvent was distilled in vacuo to give 27.2 g (85%) of a colorless oil **10**; bp 53 °C/0.010 mbar.

¹H NMR (270 MHz, CDCl₃): $\delta = 0.41$ [s, 18 H, Si(CH₃)₃], 3.54 (d, ³*J* = 7.5 Hz, 2 H, Ar-CH₂), 5.19–5.29 (m, 2 H, CH=CH₂), 6.13 (m, 1 H, CH=CH₂), 7.41 (s, 2 H, Ar-H), 7.61 (s, 1 H, Ar-H).

¹³C NMR (68 MHz, CDCl₃): δ = -1.03, 40.51, 115.72, 134.15, 135.97, 137.59, 138.22, 139.59.

MS (EI, 80 eV, 20 °C): m/z (%) = 262 (16; [M]⁺, 247 (100, [M – CH₃]⁺).

Anal. Calcd for $C_{15}H_{26}Si_2$ (262.54): C, 68.62; H, 9.98. Found: C, 68.31; H, 9.71.

1-(2-Benzyloxyethyl)-3,5-bis{3-[3,5-bis(trimethylsilyl)phenyl]propyl}benzene (1); Typical Procedure

A solution of **10** (16.9 g, 64.4 mmol) and 9-BBNH (7.9 g, 64.7 mmol, 1.01 equiv) in THF (180 mL) was stirred overnight. After removing the solvent toluene (130 mL), aq 1 M NaOH (80 mL), and **9** (13.3 g, 28.7 mmol, 0.45 equiv) were added to the degassed solution. The catalyst precursor Pd(Ph₃P)₄ (980 mg, 0.85 mg, 1.5 mol%) was added, and the resulting suspension was refluxed overnight. After cooling to r.t., the phases were separated, the aqueous phase was extracted with toluene (3×50 mL), the combined organic phases were washed with H₂O (50 mL) and dried (MgSO₄). After removal of the solvent, the residual oil was chromatographed on silica gel (EtOAc–hexanes, 1:20) to give **1** as a viscous oil; yield: 18.4 g (87%); R_f 0.64 (EtOAc–hexanes, 1:6).

¹H NMR (270 MHz, CDCl₃): $\delta = 0.32$ [s, 36 H, Si(CH₃)₃], 2.00 (quintet, ³*J* = 7.5 Hz, 4 H, CH₂CH₂CH₂), 2.70 (m, 8 H, Ar-CH₂), 2.95 (t, ³*J* = 7.5 Hz, 2 H, Ar-CH₂), 3.73 (t, ³*J* = 7.0 Hz, 2 H, CH₂CH₂O), 4.57 (s, 2 H, Ar-CH₂), 6.95 (s, 3 H, Ar-H), 7.25–7.37 (m, 5 H, Ar-H), 7.41 (s, 4 H, Ar-H), 7.56 (s, 2 H, Ar-H).

 13 C NMR (68 MHz, CDCl₃): $\delta = -1.00, 33.21, 35.60, 35.89, 36.36, 71.37, 72.95, 126.59, 127.50, 127.60, 128.32, 134.05, 135.63, 138.41, 138.82, 139.34, 140.50, 142.36.$

MS (EI, 70 eV, 150 °C): m/z (%) = 736 (1, [M]⁺).

Anal. Calcd for C₄₅H₆₈OSi₄ (737.38): C, 73.30; H, 9.29. Found: C, 73.09; H, 9.12.

1-(2-Benzyloxyethyl)-3,5-bis[3-(3,5-diiodophenyl)propyl]benzene (12)

Following the typical procedure described for the preparation of **9**, the reaction was carried out with **1** (12.5 g, 16.9 mmol), ICl (17.0 g, 104.7 mmol, 6.2 equiv), CHCl₃ (200 mL), and worked up with $Na_2S_2O_5$ (20 g) in H_2O (100 mL). Recrystallization from Et₂O gave 15.1 g (94%) of the tetraiodo compound **12** as colorless, short needles; mp 83 °C. The pentaiodo compound **13** was obtained as a side product (see below).

¹H NMR (270 MHz, CDCl₃): δ = 1.92 (m, 4 H, CH₂CH₂CH₂), 2.50 (t, ³*J* = 7.5 Hz, 4 H, Ar-CH₂), 2.60 (t, ³*J* = 7.5 Hz, 4 H, Ar-CH₂), 2.93 (t, ³*J* = 7.0 Hz, 2 H, Ar-CH₂), 3.73 (t, ³*J* = 7.0 Hz, 2 H, CH₂CH₂O), 4.57 (s, 2 H, Ar-CH₂), 6.83 (s, 1 H, Ar-H), 6.89 (s, 2 H, Ar-H), 7.32 (m, 5 H, Ar-H), 7.49 (s, 4 H, Ar-H), 7.89 (s, 2 H, Ar-H).

 ^{13}C NMR (68 MHz, CDCl₃): δ = 32.38, 34.49, 35.05, 36.25, 71.23, 72.89, 94.83, 126.41, 126.71, 127.48, 127.53, 127.66, 128.25, 139.07, 140.37, 141.61, 142.38, 146.48.

MS (EI, 70 eV, 250 °C): m/z (%) = 952 (100, [M]⁺).

Anal. Calcd for $C_{33}H_{32}I_4O$ (952.23): C, 41.62; H, 3.39. Found: C, 41.49; H, 3.27.

1-(2-Benzyloxyethyl)-4-iodo-3,5-bis[3-(3,5-diiodophenyl)propyl]benzene (13)

Pentaiodo compound **13** (Figure 3) was obtained as a side product in the synthesis of G1 **12**. It was separated either by recrystallization (EtOAc–toluene) or reversed phase HPLC: t_R 5.3 min at 28 mL/min vs t_R 4.7 min of **12**; mp 92–93 °C.

¹H NMR (500 MHz, CDCl₃): $\delta = 1.88$ (m, 4 H, H-6, H-6'), 2.52 (m, 4 H, H-5, 7), 2.59 (t, 2 H, ${}^{3}J = 7.7$ Hz, H-7'), 2.75 (t, ${}^{3}J = 7.7$ Hz, 2 H, H-5'), 3.12 (t, ${}^{3}J = 7.0$ Hz, 2 H, H-12), 3.70 (t, ${}^{3}J = 7.0$ Hz, 2 H, H-13), 4.56 (s, 2 H, H-14), 6.81 (d, ${}^{4}J = 2.0$ Hz, 1 H, H-4), 6.92 (s, ${}^{4}J = 2.0$ Hz, 1 H, H-2), 7.31 (m, 5 H, H-16, 17, 18), 7.45 (d, ${}^{4}J = 1.3$ Hz, 2 H, H-9), 7.53 (d, ${}^{4}J = 1.3$ Hz, 2 H, H-9'), 7.87 (d, ${}^{4}J = 1.3$ Hz, 2 H, H-11, 11').

¹³C NMR (126 MHz, CDCl₃): δ = 31.19 (C-6'), 32.09 (C-6), 34.25, 34.32 (C-5, 7), 34.60 (C-7'), 41.43 (C-5'), 42.13 (C-12), 69.54 (C-13), 72.78 (C-14), 94.87, 94.89 (C-10, 10'), 104.20 (C-2'), 127.49 (C-16, 18), 127.56 (C-4), 128.15 (C-2), 128.27 (C-17), 136.72, 136,76 (C-9, C-9'), 138.21 (C-15), 141.18 (C-3), 142.11 (C-1), 142.36 (C-11, 11'), 144.94 (C-3'), 146.11, 146.14 (C-8, 8').

MS (EI, 70 eV, 270 °C): m/z (%) = 1078 (2, [M]⁺), 987 (3, [M - C₇H₇]⁺), 972 (2, [M - C₇H₇O]⁺), 952 (2, [M - I]⁺), 845 (100, [M - C₇H₇O - I]⁺).

Anal. Calcd for $C_{33}H_{31}I_5O$ (1078.12): C, 36.76; H, 2.90. Found: C, 36.88; H, 2.88.

Figure 3 Structure of byproduct 13, elucidated by 2D NMR

1-(2-Benzyloxyethyl)-3,5-bis[3-(3,5-bis[3-[3,5-bis(trimethylsilyl)phenyl]propyl]phenyl)propyl]benzene (2)

Following the typical procedure described for the preparation of **1**, the reaction was carried out with **10** (8.5 g, 32.4 mmol), 9-BBNH (4.0 g, 32.8 mmol, 1.01 equiv), THF (150 mL), toluene (75 mL), aq 1 M NaOH (75 mL), **12** (6.5 g, 6.8 mmol, 0.21 equiv), and Pd(Ph₃P)₄ (844 mg, 0.73 mmol, 2.7 mol%). The resulting viscous oil was dried at 80 °C in high vacuo to give **2** as a resin-like substance; yield: 7.8 g (77%); $R_f 0.71$ (EtOAc–hexanes, 1:6).

¹H NMR (270 MHz, CDCl₃): $\delta = 0.32$ [s, 72 H, Si(CH₃)₃], 2.03 (m, 12 H, CH₂CH₂CH₂), 2.70 (m, 24 H, ArCH₂), 2.93 (t, ³J = 7.0 Hz, 2 H, Ar-CH₂), 3.72 (t, ³J = 7.0 Hz, 2 H, CH₂CH₂O), 4.56 (s, 2 H, Ar-CH₂), 7.02 (s, 9 H, Ar-H), 7.42 (m, 5 H, Ar-H), 7.49 (s, 8 H, Ar-H), 7.66 (s, 4 H, Ar-H).

¹³C NMR (68 MHz, $CDCl_3$): $\delta = -1.00, 33.21, 35.60, 35.69, 35.86, 36.32, 71.39, 72.91, 125.84, 126.09, 126.52, 126.89, 127.46, 127.57, 128.29, 128.66, 134.06, 135.60, 138.39, 138.70, 139.30, 139.69, 139.82, 140.50, 142.25, 142.32.$

MS (EI, 70 eV, 350 °C): m/z (%) = 1489 (1, [M]⁺), 325 (100), 73 (70, [TMS]⁺).

Anal. Calcd for $C_{93}H_{140}OSi_8$ (1498.79): C, 74.53; H, 9.41. Found: C, 74.35; H, 9.16.

Cleavage of Benzyl Group; General Procedure

A mixture of the respective benzyl ether **1** or **2**, cyclohexa-1,4-diene and 10% Pd/C in THF was refluxed overnight. The cooled suspension was filtered through Celite, and the volatile components were evaporated at elevated temperature in high vacuo to give an analytically pure, colorless, highly viscous oil in virtually quantitative yield.

2-(3,5-Bis{3-[3,5-bis(trimethylsilyl)phenyl]propyl}phenyl)ethanol (14)

This compound was prepared starting from 1 (3.0 g, 4.1 mmol), cyclohexa-1,4-diene (6.4 g, 80 mmol), and 10% Pd/C (0.3 g); yield: 2.63 g (99%).

¹H NMR (500 MHz, CDCl₃): $\delta = 0.38$ [s, 36 H, Si(CH₃)₃], 1.77 (s, 1 H, OH), 2.13 (m, 4 H, CH₂CH₂CH₂), 2.83 (m, 8 H, Ar-CH₂), 2.97 (t, ³*J* = 7.0 Hz, 2 H, Ar-CH₂), 3.98 (t, ³*J* = 7.0 Hz, 2 H, CH₂CH₂O), 7.06 (s, 2 H, Ar-H), 7.10 (s, 4 H, Ar-H), 7.48 (s, 4 H, Ar-H), 7.67 (s, 2 H, Ar-H).

 ^{13}C NMR (126 MHz, CDCl₃): δ = –1.01, 33.19, 35.62, 35.87, 39.15, 63.68, 126.09, 126.57, 134.05, 135.61, 139.33, 140.50, 142.27, 142.67.

MS (EI, 70 eV, 180 °C): m/z (%) = 646 (6, [M]⁺).

Anal. Calcd for C₃₈H₆₂OSi₄ (647.25): C, 70.52; H, 9.65. Found: C, 70.30; H, 9.30.

2-{3,5-Bis[3-(3,5-bis{3-[3,5-bis(trimethylsilyl)phenyl]propyl}phenyl)propyl]phenyl}ethanol (15)

This compound was prepared strating from 2 (3.0 g, 2.0 mmol), cyclohexa-1,4-diene (3.2 g, 40 mmol), and 10% Pd/C (0.3 g); yield: 2.80 g (99%).

¹H NMR (500 MHz, CDCl₃): $\delta = 0.36$ [s, 72 H, Si(CH₃)₃], 1.45 (s, 1 H, OH), 2.05 (m, 12 H, CH₂CH₂CH₂), 2.70 (m, 24 H, Ar-CH₂), 2.80 (t, ³J = 7.0 Hz, 2 H, Ar-CH₂), 3.87 (t, ³J = 7.0 Hz, 2 H, CH₂CH₂O), 6.95 (m, 9 H, Ar-H), 7.43 (s, 8 H, Ar-H), 7.60 (s, 4 H, Ar-H).

¹³C NMR (126 MHz, CDCl₃): δ = -0.98, 31.21, 31.73, 32.46, 35.66, 35.54, 35.86, 39.13, 63.63, 126.61, 126.66, 126.81, 126.87, 134.01, 138.33, 138.93, 139.07, 139.58, 139.82, 141.52, 142.34.

MS (EI, 70 eV, 350 °C): m/z (%) = 1408 (4, [M]⁺).

Anal. Calcd for $C_{86}H_{134}OSi_8$ (1408.69): C, 73.33; H, 9.59. Found: C, 73.21; H, 9.36.

1,3,5-Triiodobenzene (18)

To a solution of **17** (66.0 g, 224.0 mmol) in CH₂Cl₂ (1000 mL) was added a solution of ICl (122.4 g, 754.0 mmol, 3.4 equiv) in CH₂Cl₂ (400 mL) at r.t. within 3 h. Cooling with an ice/water bath was necessary. The product precipitated, and the suspension was stirred overnight. After removal of excess ICl with aq Na₂S₂O₅ solution, the layers were separated and the aqueous layer was washed with CH₂Cl₂. The combined organic layers were dried (MgSO₄) and filtered. Some of the solvent was evaporated and the precipitated product was filtered under suction. Recrystallization from the concentrated filtrate was repeated three times to yield 91.7 g (90%) of **18** as colorless crystals. The product was stored under exclusion of light to avoid brownish discoloring; mp. 183 °C (Lit.^{28a} mp 184 °C, Lit.^{28c} mp 183 °C).

¹H NMR (270 MHz, $CDCl_3$): $\delta = 7.98$ (s).

¹³C NMR (63 MHz, CDCl₃): δ = 95.21, 144.42.

MS (EI, 80 eV, 50 °C): m/z (%) = 456 (100, [M]⁺).

anal. Calcd for $C_6H_3I_3$ (455.80): C, 15.81; H, 0.66. Found: C, 15.98; H, 0.60.

1-Allyl-3,5-diiodobenzene (19)

To a suspension of 1,3,5-triiodobenzene (**18**; 84.4 g, 185.2 mmol) in toluene (1000 mL) was added a 1.6 M solution of BuLi in hexane (116.0 mL, 185.6 mmol, 1.00 equiv) within 60 min at r.t. After 3 d, allyl bromide (25.0 mL, 303.6 mmol, 1.64 equiv) was added all at once and the mixture was stirred for an additional one day with a mechanical stirrer. H₂O (500 mL) was added, the phases separated, and the aqueous layer was extracted with toluene twice. The combined organic layers were dried (MgSO₄), and evaporated to give 70 g of a brownish oil. Distillation utilizing a vigreux column gave 58.7 g (86%) of the desired **19** as a colorless, mobile oil. Long, colorless needles were obtained by recrystallization from EtOH at -22 °C, but these crystals were not stable at r.t. (22 °C); bp 75 °C/ 0.008 mbar. 1,3-Diiodobenzene was identified as a side product.

¹H NMR (500 MHz, CDCl₃): δ = 3.25 (d, ³*J* = 6.5 Hz, 2 H), 5.03– 5.14 (m, 2 H), 5.86 (m, 1 H), 7.49 (d, ⁴*J* = 1.3 Hz, 2 H), 7.87 (d, ⁴*J* = 1.3 Hz, 1 H).

 ^{13}C NMR (126 MHz, CDCl₃): δ = 39.08, 94.91, 117.22, 135.57, 136.87, 142.72, 144.11.

MS (EI, 70 eV, 25 °C): m/z (%) = 370 (100, [M]⁺).

Anal. Calcd for $C_9H_8I_2$ (369.97): C, 29.22; H, 2.18. Found: C, 28.92; H, 1.69.

1-Allyl-3,5-bis(3-benzyloxypropyl)benzene (22); Typical Procedure

Allyl benzyl ether (**20**; 7.6 g, 51.1 mmol, 2.07 equiv) and 9-BBNH (6.3 g, 51.4 mmol, 2.08 equiv) were suspended in toluene (100 mL) and stirred for one day at r.t. After addition of aq NaOH (1 M, 60 mL) and 1-allyl-3,5-diiodobenzene (**19**; 9.1 g, 24.7 mmol), the suspension was degassed. The catalyst precursor Pd(Ph₃P)₄ (1.07 g, 9.3 × 10⁻⁴ mol, 1.8 mol% per coupling) was added and the suspension was stirred under gentle reflux for 16 h. Usual extractive workup with toluene and purification by column chromatography on silica gel (hexanes–EtOAc, 20:1) yielded 7.1 g (70%) of **22** as a colorless oil; R_f 0.52 (hexanes–EtOAc, 6:1). The product was accompanied by varying amounts of the styrene derivative **23**, identified by the signals in the ¹H NMR spectra [δ = 1.88 (d, 3 H), 6.21 (m, 1 H), 6.38 (d, ³J = 15 Hz, 1 H)].

¹H NMR (250 MHz, CDCl₃): δ = 1.96 (m, 4 H), 2.71 (t, ³*J* = 6.5 Hz, 4 H), 3.37 (d, ³*J* = 6.5 Hz, 2 H), 3.53 (t, ³*J* = 7.0 Hz, 4 H), 4.58 (s, 4 H), 5.06–5.17 (m, 2 H), 6.00 (m, 1 H), 6.89 (s, 3 H), 7.27–7.44 (m, 10 H).

 ^{13}C NMR (63 MHz, CDCl₃): δ = 31.35, 32.01, 40.12, 69.53, 72.81, 115.54, 126.17, 126.38, 127.42, 127.55, 128.26, 137.54, 138.52, 139.90, 142.03.

MS (EI, 80 eV, 170 °C): m/z (%) = 414 (2, [M]⁺), 91 (100, [C₇H₇]⁺).

Anal. Calcd for $C_{29}H_{34}O_2$ (414.58): C, 84.02; H, 8.27. Found: C, 83.59; H 7.98.

1,3-Dibromo-5-iodobenzene (24)

To a solution of 1,3,5-tribromobenzene (**5**; 13.4 g, 42.7 mmol) in Et₂O (300 mL) was added BuLi (27.0 mL of a 1.6 M solution in hexane, 43.2 mmol, 1.01 equiv) within 30 min at -78 °C. After an additional hour, solid 1,2-diiodoethane (12.2 g, 43.1 mmol, 1.01 equiv) was added all at once, and the mixture was allowed to warm up to r.t. H₂O (100 mL) was added, followed by usual extractive workup with CH₂Cl₂. Recrystallization from Et₂O gave 14.2 g (92%) of the desired **24** as colorless crystals. The product was stored under exclusion of light to avoid brownish discoloring; mp 118 °C.⁴⁵

¹H NMR (270 MHz, CDCl₃): δ = 7.62 (s, ⁴*J* = 1.7 Hz, 1 H), 7.77 (s, ⁴*J* = 1.7 Hz, 2 H).

¹³C NMR (63 MHz, CDCl₃): δ = 94.43, 123.34, 133.60, 138.46.

MS (EI, 80 eV, 60 °C): m/z (%) = 362 (100, $[C_6H_3^{79}Br^{81}BrI]^+$).

Anal. Calcd for $C_6H_3Br_2I$ (361.80): C, 19.92; H, 0.84. Found C, 19.82; H, 0.89.

1,3-Dibromo-5-(3,3-dimethoxypropyl)benzene (26); Typical Procedure

3,3-Dimethoxypropene (**25**;10.2 mL, 88.6 mmol) was added to a 0.5 M solution of 9-BBNH in THF (200.0 mL, 100.0 mmol, 1.13 equiv) at 0 °C, and the mixture was stirred for 20 h at r.t. After addition of 1,3-dibromo-5-iodobenzene (**24**; 32.1 g, 88.7 mmol, 1.00 equiv), the catalyst precursor Pd(Ph₃P)₄ (1.00 g, 8.65 × 10⁻⁴ mol, 0.98 mol%), aq NaOH (3 M, 85 mL) and additional THF (50 mL), the suspension was stirred under reflux for 20 h. The mixture was cooled with ice/water, and 30% aq H₂O₂ (35 mL) was added carefully. Extractive workup with Et₂O and column chromatography on silica gel (hexanes, then hexanes–EtOAc, 15:1) gave 20.4 g (68%) of **26** as a colorless oil; R_f 0.23 (hexanes–EtOAc, 10:1).

¹H NMR (270 MHz, CDCl₃): δ = 1.85 (m, 2 H), 2.59 (d, ³*J* = 7.5 Hz, 2 H), 3.33 (s, 6 H), 4.39 (t, ³*J* = 6.0 Hz, 1 H), 7.25 (s, 2 H), 7.48 (s, 1 H).

¹³C NMR (63 MHz, CDCl₃): δ = 30.17, 33.58, 52.80, 103.26, 122.76, 130.25, 131.56, 145.58.

MS (EI, 80 eV, 40 °C): m/z (%) = 338 (7, $[C_{11}H_{14}^{79}Br^{81}BrO_2]^+$), 75 (100, $[HC(OCH_3)_2]^+$).

HRMS: *m*/*z* Calcd for C₁₁H₁₄Br₂O₂ 335.97605; found 335.93298.

3-(3,5-Dibromophenyl)propionaldehyde (27)

1,3-Dibromo-5-(3,3-dimethoxypropyl)benzene (**26**; 9.4 g, 27.8 mmol) was dissolved in a mixture of MeCN (120 mL) and H₂O (13 mL). After addition of DDQ (0.6 g, 2.7 mmol, 0.1 equiv), the dark red suspension was stirred at r.t. for 18 h. After filtration of the mixture through Celite to remove DDQ and elution with CH_2Cl_2 the product was not further purified, since aldehyde **27** was unstable on silica gel. The solvent was evaporated to give 7.3 g (90%) of **27** as a colorless oil; R_f 0.20 (hexanes–EtOAc, 6:1).

¹H NMR (270 MHz, CDCl₃): δ = 2.78 (m, 4 H), 7.24 (s, 2 H), 7.44 (s, 1 H), 9.74 (s, 1 H).

 ^{13}C NMR (63 MHz, CDCl₃): δ = 27.13, 44.38, 122.80, 130.10, 131.81, 144.30, 199.98.

1-But-3-enyl-3,5-dibromobenzene (28); Typical Procedure

To a suspension of triphenylmethylphosphonium iodide (9.3 g, 23.1 mmol) in THF (100 mL) was added BuLi (14.3 mL of a 1.6 M solution in hexane, 22.9 mmol, 0.99 equiv) at 0 °C within 5 min, and the resulting orange solution was stirred for an additional 45 min. A solution of 3-(3,5-dibromophenyl)propionaldehyde (**27**; 6.1 g, 20.9 mmol, 0.90 equiv) in THF (20 mL) was added dropwise and the reaction mixture was stirred at r.t. for 2 h. The solution was decanted, the residue was washed with Et₂O (3 ×), the combined organic layers were dried (MgSO₄). Purification by column chromatography on silica gel (hexanes) gave 3.8 g (63%) of **28** as a colorless oil; R_f 0.58 (hexanes); bp 65 °C/0.01 mbar.

¹H NMR (270 MHz, CDCl₃): $\delta = 2.33$ (q, ³*J* = 8.0 Hz, 2 H), 2.64 (t, ³*J* = 8.0 Hz, 2 H), 5.02 (m, 2 H), 5.78 (m, 1 H), 7.25 (s, 2 H), 7.47 (s, 1 H).

¹³C NMR (63 MHz, CDCl₃): δ = 34.63, 34.79, 115.70, 122.67, 130.27, 131.48, 136.84, 145.65.

MS (EI, 80 eV, 40 °C): m/z (%) = 290 (30, $[C_{10}H_{10}^{79}Br^{81}Br]^+$), 249 (100, $[C_7H_5^{79}Br^{81}Br]^+$).

Anal. Calcd for $C_{10}H_{10}Br_2$ (289.99): C, 41.42; H, 3.48. Found: C, 41.41; H, 3.07.

1,3-Bis(trimethylsilyl)-5-(3,3-dimethoxypropyl)benzene (29)

Following the typical procedure described for the preparation of **26**, the reaction was carried out with 3,3-dimethoxypropene (**25**; 17.0 mL, 147.7 mmol), 9-BBNH (18.1 g, 148.6 mmol, 1.01 equiv), THF (200 mL), 1-bromo-3,5-bis(trimethylsilyl)benzene (**6**; 41.9 g, 139.0 mmol, 0.94 equiv), Pd(Ph₃P)₄ (1.60 g, 1.39 mmol, 1.0 mol%), aq NaOH (3 M, 100 mL), and 30% aq H₂O₂ (60 mL); yield: 36.6 g (76%); colorless oil; $R_f 0.26$ (hexanes–EtOAc, 10:1).

¹H NMR (270 MHz, CDCl₃): $\delta = 0.27$ (s, 18 H), 1.95 (m, 2 H), 2.68 (m, 2 H), 3.46 (s, 6 H), 4.42 (t, ${}^{3}J = 6.0$ Hz, 1 H), 7.35 (s, 2 H), 7.51 (s, 1 H).

¹³C NMR (63 MHz, CDCl₃): δ = -1.06, 31.15, 34.47, 52.80, 104.03, 133.99, 135.77, 139.54, 139.82.

MS (EI, 80 eV, 130 °C): m/z (%) = 324 (2, [M]⁺), 291 (4, [M – HOCH₃]⁺), 276 (17, [M – CH₃ – HOCH₃]⁺), 73 (100, [SiMe₃]⁺).

HRMS: m/z Calcd for $C_{11}H_{12}Br_2O_2$: 324.194087. Found: 324.19732.

Anal. Calcd for $C_{11}H_{12}Br_2O_2$ (324.60): C, 62.90; H, 9.94. Found: C, 62.46; H, 9.95.

3-(3,5-Diiodophenyl)propionaldehyde (31)

To a solution of 1,3-bis(trimethylsilyl)-5-(3,3-dimethoxypropyl)benzene (29; 30.8 g, 94.9 mmol) in CH₂Cl₂ (250 mL) at 0 °C was added a solution of ICl (42.9 g, 264.4 mmol, 2.79 equiv) in CH₂Cl₂ (50 mL) within 2 h. After stirring for an additional 30 min, an aq sat. solution of Na2S2O5 was added, and the layers were separated. The aqueous layer was washed with CH_2Cl_2 (2 × 20 mL) and the combined organic layers were dried (MgSO₄), filtered and the solvent was removed. ¹H NMR analysis of the residue indicated formation of a mixture of acetal 30 and aldehyde 31. It was not further purified, but dissolved in a mixture of MeCN (250 mL) and H₂O (30 mL). After addition of DDQ (2.15 g, 9.5 mmol, 0.10 equiv based on 29), the dark red suspension was stirred at r.t. for 4 h. Chromography through a short column of silica gel (hexanes-EtOAc, 20:1) and precipitation from CH₂Cl₂-MeOH yielded 9.2 g (25%) of 31 as a pale yellow solid; mp 65-66 °C; Rf 0.23; (hexanes-EtOAc, 6:1). Compound 31 was not stable on silica gel leading to considerable loss. The mass spectra indicated the formation of the corresponding acid.

¹H NMR (500 MHz, CDCl₃): δ = 2.74 (m, 2 H), 2.80 (m, 2 H), 7.48 (s, 2 H), 7.86 (s, 1 H), 9.77 (s, 1 H).

 ^{13}C NMR (125 MHz, CDCl₃): δ = 26.09, 44.62, 94.86, 136.67, 142.96, 144.58, 200.31.

MS (EI, 80 eV, 90 °C): m/z (%) = 386 (100, [M]⁺).

Anal. Calcd for $C_9H_8I_2O$ (385.97): C, 28.01; H, 2.09. Found: C, 27.99; H, 2.05.

1-But-3-enyl-3,5-diiodobenzene (32)

Following the typical procedure described for the preparation of **28**, the reaction was carried out with triphenylmethylphosphonium iodide (0.70 g, 1.73 mmol), THF (20 mL), BuLi (1.05 mL of a 1.6 M solution in hexane, 1.68 mmol, 1.14 equiv), and 3-(3,5-diiodophenyl)propionaldehyde (**31**; 0.57 g, 1.48 mmol) in THF (10 mL); yield: 0.53 g (62%); oil; R_f 0.70 (hexanes–EtOAc, 6:1).

¹H NMR (270 MHz, $CDCl_3$): $\delta = 2.32$ (m, 2 H), 2.57 (t, ³*J* = 8.0 Hz, 2 H), 5.01 (m, 2 H), 5.78 (m, 1 H), 7.50 (s, 2 H), 7.86 (s, 1 H).

¹³C NMR (63 MHz, CDCl₃): δ = 34.36, 34.85, 94.76, 115.68, 136.79, 136.89, 142.51, 145.96.

MS (EI, 80 eV, 40 °C): m/z (%) = 384 (66, [M]⁺), 343 (100, [M – C₃H₅]⁺).

Anal. Calcd for $C_{10}H_{10}I_2$ (384.00): C, 31.28; H, 2.62. Found: C, 31.52; H, 2.48.

1-But-3-enyl-3,5-bis-(3-benzyloxypropyl)benzene (35)

Following the typical procedure described for the preparation of **22**, the reaction was carried out with allyl benzyl ether (**20**; 1.51 g, 10.19 mmol, 3.08 equiv), 9-BBNH (20.0 mL of a 0.5 M solution in THF, 10.0 mmol, 3.7 equiv), aq NaOH (1 M, 20 mL), 1-but-3-enyl-3,5-dibromobenzene (**28**; 0.78 g, 2.69 mmol), and Pd(Ph₃P)₄ (0.23 g, 0.11 mmol, 2.04 mol% per coupling) by refluxing for 5 d; yield: 1.10 g (95%); colorless oil; R_f 0.34 (hexanes–EtOAc, 10:1).

¹H NMR (250 MHz, CDCl₃): δ = 1.84 (m, 4 H, CH₂CH₂CH₂O), 2.26 (m, 2 H, CH₂CH₂CH), 2.59 (m, 6 H, Ar-CH₂), 3.37 (t, ³*J* = 7.0 Hz, 4 H, CH₂CH₂CH₂O), 4.39 (s, 2 H, PhCH₂O), 4.86–4.98 (m, 2 H, CH=CH₂), 5.77 (m, 1 H, CH=CH₂), 6.92 (s, 3 H, Ar-H), 7.32–7.44 (m, 10 H, Ar-H).

 13 C NMR (63 MHz, CDCl₃): δ = 31.33, 32.27, 35.27, 35.47, 69.45, 72.81, 114.75, 125.76, 125.88, 127.53, 128.16, 128.57, 138.04, 138.55, 141.86, 141.86.

MS (EI, 80 eV, 130 °C): m/z (%) = 428 (2, [M]⁺), 337 (100, [M - C₇H₇]⁺).

HRMS: *m/z* Calcd for C₃₀H₃₆O₂: 428.27153. Found: 428.27158.

1-But-3-enyl-3,5-bis[3-(*tert*-butydimethylsiloxy)propyl]benzene (3)

Following the typical procedure described for the preparation of **22**, the reaction was carried out with (allyloxy)(*tert*-butyl)dimethylsilane (**33**; 11.0 mL, 51.8 mmol, 3.01 equiv), 9-BBNH (6.3 g, 51.7 mmol, 3.01 equiv), THF (60 mL), aq NaOH (1 M, 150 mL), 1-but-3-enyl-3,5-dibromobenzene (**28**; 5.0 g, 17.2 mmol), Pd(Ph₃P)₄ (0.44 g, 3.8×10^{-4} mol, 1.1 mol% per coupling), and an additional amount THF (100 mL) by refluxing for 17 h; yield: 8.8 g (85%); colorless oil; R_f 0.64 (hexanes–EtOAc, 20:1).

¹H NMR (250 MHz, CDCl₃): $\delta = 0.08$ [s, 12 H, Si(CH₃)₂], 0.94 [s, 18 H, *t*-C₄H₉], 1.86 (m, 4 H, CH₂CH₂CH₂O), 2.36 (m, 2 H, CH₂CH₂CH), 2.66 (m, 6 H, Ar-CH₂), 3.66 (t, ³*J* = 7.0 Hz, 4 H, CH₂CH₂CH₂O), 4.98–5.11 (m, 2 H, CH=CH₂), 5.89 (m, 1 H, CH=CH₂), 6.87 (s, 3 H, Ar-H).

 ^{13}C NMR (63 MHz, CDCl₃): $\delta = -5.26, 18.35, 25.99, 32.03, 34.49, 35.41, 35.62, 62.48, 114.69, 126.03, 126.24, 138.31, 141.75, 142.14.$

MS (EI, 80 eV, 60 °C): m/z (%) = 476 (<1, [M]⁺), 418 (33, [M - t-Bu]⁺), 346 (61, [M - OSi(CH₃)₂Bu-t]⁺, 75 (100, [OSi(CH₃)₂]⁺).

Anal. Calcd for $C_{28}H_{52}O_2Si_2$ (476.88): C, 70.52; H, 10.99. Found: C, 70.74; H, 10.75.

1-But-3-enyl-3,5-bis(3-{3,5-bis-[3-(*tert*-butyldimethylsiloxy)-propyl]phenylpropyl)benzene (4)

Following the general procedure described for the preparation of **22**, the reaction was carried out with G1 dendron **3** (3.1 g ,6.5 mmol, 3.09 equiv), 9-BBNH (13.0 mL of a 0.5 M solution in THF, 6.5 mmol, 3.09 equiv), aq NaOH (1 M, 25 mL), 1-but-3-enyl-3,5-dibromobenzene (**28**; 0.61 g, 2.10 mmol), and Pd(Ph₃P)₄ (0.15 g, 1.3 × 10^{-4} mol, 3.09 mol% per coupling) in additional THF (20 mL); yield: 1.7 g (75%); colorless oil; R_f 0.38 (hexanes–EtOAc, 20:1).

¹H NMR (250 MHz, CDCl₃): $\delta = 0.01$ [s, 24 H, Si(CH₃)₂], 0.96 (s, 36 H, *t*-C₄H₉), 1.70 (m, 8 H, CH₂CH₂CH₂CH₂), 1.86 (m, 8 H, CH₂CH₂CH₂CH₂O), 2.40 (m, 2 H, CH₂CH₂CH), 2.63–2.70 (m, 18 H, Ar-CH₂), 3.68 (t, ³J = 7.0 Hz, 8 H, CH₂CH₂CH₂O), 5.00–5.10 (m, 2 H, CH=CH₂), 5.91 (m, 1 H, CH=CH₂), 6.87–6.88 (m, 9 H, Ar-H).

¹³C NMR (63 MHz, CDCl₃): δ = -5.27, 18.33, 25.98, 26.19, 31.34, 32.03, 34.47, 35.38, 35.61, 35.81, 62.48, 114.70, 125.75, 125.91, 126.02, 126.68, 138.28, 141.67, 142.07, 142.53 (2 signals missing).

PAPER

MS (EI, 80 eV, 200 °C): m/z (%) = 1085 (1, [M]⁺), 1070 (8, [M – CH₃]⁺), 1028 (100, [M – *t*-Bu]⁺).

Anal. Calcd. for $C_{66}H_{116}O_4Si_4$ (1085.97): C, 73.00; H, 10.77. Found: C, 72.97; H, 10.69.

Poly-{9-[3-(3,5-diiodophenyl)propyl]-9-borabicyclo[3.3.1]nonane} (36); Typical Procedure

A mixture of 9-BBNH (3.20 mL of a 0.5 M solution in THF, 1.60 mmol, 1.02 equiv) and 1-allyl-3,5-diiodobenzene (**19**; 0.58 g, 1.57 mmol) was stirred for one day at r.t. After addition of aq NaOH (3 M, 1.50 mL, 4.50 mmol, 2.87 equiv) and additional THF (10 mL), the suspension was degassed. The catalyst precursor Pd(Ph₃P)₄ (38.3 mg, 3.31×10^{-5} mol, 1.05 mol% per coupling) was added and the suspension was stirred under gentle reflux for 20 h. The reaction mixture was poured into MeOH (200 mL), and the polymer was allowed to stand for one day for precipitatation. The turbid suspension was centrifuged, and the resulting solid was lyophilized from benzene to yield 0.38 g (94%) of polymer **36** as a creamy white solid. The solubility of polymer **36** was too low to obtain a well resolved ¹³C NMR spectra.

¹H NMR (500 MHz, $CDCl_3$): $\delta = 1.85$ (s, 2 H, H-7), 2.52 (s, br, 4 H, H-6), 6.76 (s, br, H-5), 6.88 (s, br, H-4), 7.30 (s, br, H-3), 7.42 (s, br, H-2), 7.82 (s, br, H-1).

 $\begin{array}{ll} \text{MS} & (\text{MALDI-TOF}, \ \text{DHB}): \ m/z = 2333 \ [\text{M}_n \ (n=9)]^+, \ 2207 \\ [\text{M}_n \ (n=9) - I]^+, \ 2089 \ [\text{M}_n \ (n=8)]^+, \ 1963 \ [\text{M}_n \ (n=8) - I]^+, \\ 1845 \ [\text{M}_n \ (n=7)]^+, \ 1719 \ [\text{M}_n \ (n=7) - I]^+, \ 1601 \ [\text{M}_n \ (n=6)]^+, \\ 1475 \ [\text{M}_n \ (n=6) - I]^+, \ 1357 \ [\text{M}_n \ (n=5)]^+, \ 1231 \ [\text{M}_n \ (n=5) - I]^+, \\ 1113 \ [\text{M}_n \ (n=4)]^+, \ 987 \ [\text{M}_n \ (n=4) - I]^+, \ 869 \ [\text{M}_n \ (n=3)]^+, \ 743 \\ [\text{M}_n \ (n=3) - I]^+. \end{array}$

Anal. Calcd for $(C_{10}H_{11}I)_n$ (258.20): C, 44.29; H, 3.72. Found: C, 46.46; H, 3.89.

Acknowledgements

Support of this work by the *Deutsche Forschungsgemeinschaft* (Sfb 448, Teilprojekt A1) and the *Fonds der Chemischen Industrie* is gratefully acknowledged. We wish to thank Dr. A. Schäfer for help with 2D NMR spectroscopy.

References

- For general information about dendrimers, see for example:

 (a) Newkome, G. R.; Moorefield, C. N.; Vögtle, F.
 Dendrimers and Dendrons Concepts, Syntheses,
 Applications; Wiley-VCH: Weinheim, 2001.
 (b) Dendrimers and other Dendritic Polymers; Fréchet, J. M.
 J.; Tomalia, D. A., Eds.; Wiley: New York, 2001.
- (2) For a review, see: Schlüter, A. D.; Rabe, J. P. Angew. Chem.
 2000, 112, 860; Angew. Chem., Int. Ed. 2000, 39, 864.
- (3) Peez, R. F.; Dermody, D. L.; Franchina, J. G.; Jones, S. J.; Bruening, M. L.; Bergbreiter, D. E.; Crooks, R. M. *Langmuir* 1998, 14, 4232; and references cited therein.
- (4) Klopsch, R.; Franke, P.; Schlüter, A. D. *Chem.–Eur. J.* **1996**, 1330.
- (5) Klopsch, R.; Schlüter, A. D. Eur. J. Org. Chem. 1998, 2551.
- (6) (a) Klopsch, R.; Koch, S.; Schlüter, A. D. *Eur. J. Org. Chem.* 1998, 1275. (b) Modrakowski, C.; Camacho Flores, S.; Beinhoff, M.; Schlüter, A. D. *Synthesis* 2001, 2143.
 (c) Zhang, A.; Vetter, S.; Schlüter, A. D. *Macromol. Chem. Phys.* 2001, 202, 3301.
- (7) (a) Shu, L.; Schäfer, A.; Schlüter, A. D. *Macromolecules* 2000, *33*, 4321. (b) Shu, L.; Schlüter, A. D. *Macromol. Chem. Phys.* 2000, 201, 239.
- (8) Vetter, S.; Koch, S.; Schlüter, A. D. J. Polym. Sci. Part A: Polym. Chem. 2001, 39, 1940.

- (9) Beinhoff, M.; Weigel, W.; Jurczok, M.; Rettig, W.; Modrakowski, C.; Brüdgam, I.; Hartl, H.; Schlüter, A. D. *Eur. J. Org. Chem.* 2001, 3819.
- (10) (a) Miller, T. M.; Neenan, T. X.; Zayas, R.; Bair, H. E. J. Am. Chem. Soc. 1992, 114, 1018. (b) Wiesler, U.-M.; Weil, T.; Müllen, K. Top. Curr. Chem. 2001, 212, 1.
- (11) See for example: (a) Xu, Z.; Moore, J. S. *Acta Polym.* 1994, 45, 83. (b) Bharati, P.; Patel, U.; Kawaguchi, T.; Pesak, D. J.; Moore, J. S. *Macromolecules* 1995, 28, 5955.
- (12) (a) Deb, S. K.; Maddux, T. M.; Yu, L. J. Am. Chem. Soc. 1997, 119, 9079. (b) Pillow, J. N. G.; Halim, M.; Lupton, J. M.; Burn, P. L.; Samuel, I. D. W. Macromolecules 1999, 32, 5985. (c) Meier, H.; Lehmann, M.; Kolb, U. Chem.-Eur. J. 2000, 6, 2462. (d) Segura, J. L.; Gomez, R.; Martin, N.; Guldi, D. M. Org. Lett. 2001, 3, 2645.
- (13) Newcome, G. R.; Moorefield, C. N.; Baker, G. R.; Johnson,
 A. L.; Behera, R. K. Angew. Chem., Int. Ed. Engl. 1991, 30, 1176; Angew. Chem. 1991, 103, 1205.
- (14) In a similar approach phenylenealkylene dendrons with *m*terphenylene branching units were constructed: Bo, Z.; Schlüter, A. D. *J. Org. Chem.* **2002**, *67*, 5327.
- (15) (a) Miyaura, N.; Ishiyama, T.; Sasaki, H.; Ishikawa, M.; Satoh, M. J. Am. Chem. Soc. **1989**, 111, 314. (b) Chemler, S. R.; Trauner, D.; Danishefsky, S.Angew. Chem., Int. Ed.; **2001**, 40: 4544; Angew. Chem. **2001**, 113, 4676.
- (16) (a) Voit, B. I. Acta Polym. 1995, 46, 87. (b) Hult, A.;
 Johansson, M.; Malmstöm, E. Adv. Polym. Sci. 1999, 143, 1.
- (17) Wang, F.; Kon, A. B.; Rauh, R. D. *Macromolecules* **2000**, *33*, 5300.
- (18) For a statistical one-pot procedure, see: Wrobel, D.; Wannagat, U. J. Organomet. Chem. 1982, 225, 203.
- (19) (a) Félix, G.; Dunoguès, J.; Pisciotti, F.; Calas, R. Angew. Chem. 1977, 89, 502. (b) Weber, W. P. Reactivity and Structure, Vol. 14; Springer: Berlin, 1983, 115–118.
- (20) Since TMS groups are not protective groups in the common sense, we prefer to use the term place holder, which precisely defines their function.
- (21) (a) Brown, H. C. Organic Synthesis via Boranes; Wiley: New York, 1975, 41. (b) For an overview concerning hydroborations, see: Zaidlewicz, M. In Comprehensive Organometallic Chemistry, Vol. 7; Wilkinson, G., Ed.; Pergamon: Oxford, 1982, 143–160.
- (22) Two-dimensional Heteronuclear Multiple Quantum Coherence NMR experiment.
- (23) For recent overviews on(accelerated) convergent methods, see: (a) Grayson, S. M.; Fréchet, J. M. J. *Chem. Rev.* 2001, *101*, 3819. (b) Freeman, A. W.; Fréchet, J. M. J. *Dendrimers and other Dendritic Polymers*; Fréchet, J. M. J.; Tomalia, D. A., Eds.; Wiley: New York, 2001, 91–110.
- (24) Recently a one-pot synthesis of an almost defect-free G4 dendron was reported: (a) Brauge, L.; Magro, G.; Caminade, A.-M.; Majoral, J.-P. *J. Am. Chem. Soc.* 2001, *123*, 6698. (b) Brauge, L.; Magro, G.; Caminade, A.-M.; Majoral, J.-P. *J. Am. Chem. Soc.* 2001, *123*, 8446.
- (25) For 3,5-dibromoallylbenzene, see also: Ek, F.; Wistrand, L.
 G. EP1013636, **2000**; *Chem. Abstr.* **2000**, *133*, 58600.
- (26) A more practical reason was the unfavorable synthesis protocol of the dibromo compound by Pd-catalyzed allylation of (3,5-dibromophenyl)trimethylstannane. In order to avoid the handling of tin compounds the diiodo analog was prepared by a different procedure.
- (27) Boudjouk, P.; Kapfer, C. A. J. Organomet. Chem. 1985, 296, 339.
- (28) (a) Willgerodt, C.; Arnold, E. *Ber. Dtsch. Chem. Ges.* 1901, *34*, 3343. (b) Schöberl, U.; Magnera, T. F.; Harrison, R. M.; Fleischer, F.; Pflug, J. L.; Schwab, P. F. H.; Meng, X.;

Lipiak, D.; Noll, B. C.; Allured, V. S.; Rudalevige, T.; Lee,
S.; Michl, J. *J. Am. Chem. Soc.* **1997**, *119*, 3907.
(c) Nishide, H.; Miyasaka, M.; Tsuchida, E. *J. Org. Chem.* **1998**, *63*, 7399.

- (29) (a) Benkeser, R. A.; Hickner, R. A.; Hoke, D. J.; Thomas, O. H. J. Am. Chem. Soc. 1958, 80, 5289. (b) McDonagh, A. M.; Humphrey, M. G.; Samoc, M.; Luther-Davies, B. Organometallics 1999, 18, 5195. (c) Lustenberger, P.; Diederich, F. Helv. Chim. Acta 2000, 83, 2865.
- (30) Chen, L. S.; Chen, G. J.; Tamborski, C. J. Organomet. Chem. **1981**, 215, 281.
- (31) Tanemura, K.; Suzuki, T.; Horaguchi, T. J. Chem. Soc., Chem. Commun. 1992, 979.
- (32) Coppola, G. M. Synthesis 1984, 1021.
- (33) (a) Ford, K. L.; Roskamp, E. J. *Tetrahedron Lett.* **1992**, *33*, 1135. (b) Ford, K. L.; Roskamp, E. J. J. Org. Chem. **1993**, *58*, 4142.
- (34) Target molecule **28** was also synthesized by reaction of the(expensive) 3,5-dibromobenzyl bromide with allylmagnesium bromide.
- (35) See for example: (a) Jefferey, T. J. Chem. Soc., Chem. Commun. 1984, 1287. (b) Kang, S.-K.; Lee, H.-W.; Jang, S.-B.; Kim, T.-H.; Pyun, S.-J. J. Org. Chem. 1996, 61, 2604.
- (36) The Suzuki–Miyaura cross-coupling of 34 with vinylic halides has been previously described: (a) Ridgway, B. H.; Woerpel, K. A. J. Org. Chem. 1998, 63, 458. (b) Trost, B. M.; Probst, G. D.; Schoop, A. J. Am. Chem. Soc. 1998, 120, 9228.

- (37) Preliminary investigations on the corresponding G3 dendron (not shown) encountered the additional problem that the molar mass of this molecule could not be confirmed, since the applied methods (EI, FAB, MALDI-TOF) only showed much smaller fragments. The mass spectral analyses of TBDMS-protected dendrons **3** and **4** point to the sensitivity of the silyl group with the loss of methyl and *tert*-butyl groups.
- (38) Kim, Y. H.; Webster, O. W. *Macromolecules* **1992**, *25*, 5561.
- (39) The molar mass distribution of hyperbranched poly(phenylene)s, obtained by Suzuki cross-coupling of 3,5dibromophenylboronic acid, was reported to show a large dependence from the used solvent system. The average number of repeating units was between 13 and 42 (7 examples), in one example 206 repeating units were achieved.³⁸
- (40) According to: Hölter, D.; Burgath, A.; Frey, H. *Acta Polym.* 1997, 48, 30.
- (41) Nicolaou, K. C.; Patron, A. P.; Ajito, K.; Richter, P. K.; Khatuya, H.; Bertinato, P.; Miller, R. A.; Tomaszewski, M. J. *Chem.–Eur. J.* **1996**, *2*, 847.
- (42) Day, G. M.; Howell, O. T.; Metzler, M. R.; Woodgate, P. D. Austr. J. Chem. 1997, 50, 425.
- (43) Coulson, D. R. Inorg. Synth. 1972, 13, 121.
- (44) For an analogous procedure, see: Chen, G. J.; Tamborski, C. J. Organomet. Chem. 1983, 251, 149.
- (45) No reference data were found.