

Letter
pubs.acs.org/OrgLett

Copper-Catalyzed Cascade Aminoalkynylation—Oxidation of Propargylic Alcohols: Stereospecific Synthesis of (Z)-2-Amino Conjugated Enynals/Enynones

Jiaqiong Sun, Guangfan Zheng, Yongmei Fu, Lihong Wang, Yan Li,*[®] and Qian Zhang

Key Laboratory of Functional Organic Molecule Design & Synthesis of Jilin Province, Department of Chemistry, Northeast Normal University, Changchun, 130024, China

Supporting Information

ABSTRACT: Copper-catalyzed cascade aminoalkynylation—oxidation of propargylic alcohols has been realized, sterospecifically providing an array of (*Z*)-2-amino conjugated enynals/enynones in good yields under mild conditions. This transformation involves a rare 1,3-alkynyl migration of propargylic alcohols and simultaneously forms C–C, C–N, and C==O bonds. Furthermore, (*Z*)-2-amino conjugated enynals were applied to efficiently synthesize 3,5-disubstituted-1*H*-pyrrole-2-carbaldehyde and conjugated enynol derivatives.

onjugated enynals/enynones are important structural units that are widely encountered in synthetic chemistry, medicinal chemistry, and materials science.¹ Consequently, efficient synthesis of these compounds has been increasingly explored.²⁻⁵ The condensation reaction of ynals with ketones with α -H² (Scheme 1ia) and the reaction of ynals with Wittig reagents³ (Scheme 1ib) could efficiently provide access to Econjugated enynals/enynones. Sonogashira coupling reaction of terminal alkynes with β -substituted $\alpha_{,\beta}$ -unsaturated ketone derivatives could form the conjugated enynones with retention of the unsaturated ketone configuration⁴ (Scheme 1ic), but easily coordinating groups were usually incompatible in the presence of Pd-catalyst. Despite these achievements, it is necessary to develop novel methods that allow rapid access to diversely functionalized conjugated enynals/enynones starting from readily available starting materials.

Recently, our group⁶ realized aminoarylation and aminovinylation of alkynes via 1,4-aryl or 1,3-vinyl migration triggered by nitrogen-centered radical addition to alkynes. Lately, Zhu^{7a} and Studer^{7b} described a perfluoroalkylative alkynylation of alkenes via 1,4- or 1,5-alkynyl migration initiated by perfluoroalkyl radical addition to alkenes. As part of our continued interest in functional group migration, we considered the possibility of extending this strategy to functionalization of gem-diyne via 1,3-alkynyl migration, thus realizing the alkynylation of unactivated alkynes. Herein, we report a copper-catalyzed cascade radical amination-alkynyl migration-oxidation of 1,4-diyn-3-ols with high stereoselectivity under mild conditions, leading to facile synthesis of (Z)-2-amino conjugated enynals/enynones (Scheme 1ii), which are important building blocks for the synthesis of other complex organic structures.

Initially, 1,5-diphenylpenta-1,4-diyn-3-ol (1a) was chosen as the model substrate. Treatment of 1a and N-fluorobenzenesulfonimide (NFSI, 2a 1.2 equiv) with CuCl (10 mol %) and pyridine in CHCl₂ at 50 °C led to formation of the desired aminoalkynylation/oxidation product (Z)-2-amino conjugated enynal 3a in 19% isolated yield as the sole stereoisomer (Table 1, entry 1). Upon increasing the amount of NFSI to 2.0 equiv, the yield of 3a increased to 34% (Table 1, entry 2). Evaluation of the solvent effect was subsequently carried out. Switching to DCE and CH₃CN solvent only diminished the efficiency (Table 1, entries 3-4), while THF, 1,4-dioxane, and toluene were unsuitable for this transformation (Table 1, entries 5-7). Among the various copper catalysts (CuI, CuCN, CuCl₂, $CuBr_2$, $Cu(OAc)_2$, and $Cu(OTf)_2$) examined, CuCN gave the best result (Table 1, entries 8-13). Both increasing and decreasing the temperature failed to improve the yield (Table 1, entries 14 and 15). With the screening of other additives such as 4-methylpyridine, 3-bromopyridine, 4-acetylpyridine, 3-nitropyridine, and 2-acetylpyridine, a satisfactory yield of 69% was achieved when 4-acetylpyridine was employed (Table 1, entries 16-20).^{8a} Finally, the yield of 3a was increased to 76% when 4 Å molecular sieves (0.2 g) were introduced (Table 1, entry 21).^{8b} It should be noted that this novel reaction involved a rare 1,3-alkynyl migration of propargylic alcohols⁹ and simultaneously formed C–C, C–N, and C=O bonds.

With the optimized conditions in hand, we next investigated the scope and the limitation of this aminoalkynylation oxidation reaction (Scheme 2). First, variation of 1,4-diyn-3-ols

```
Received: July 20, 2018
```

Scheme 1. Synthetic Methods of Conjugated Enynals/ Enynones

1 was performed, with the data being summarized in Scheme 2. Gratifyingly, a range of 1,5-diarylpenta-1,4-diyn-3-ols 1a-10 bearing electron-withdrawing and -donating substituents, such as alkyl, alkoxyl, halide, and trifluoromethyl, led to desired (Z)-2-amino conjugated enynals 3a-30 in moderate to high yields. The configuration of 3a was further confirmed by X-ray analysis (CCDC 1562685). Halogen atoms were tolerant (3g, 3h, 3j, 3k, 3n, 3o), which offers an opportunity for further transformation. Substrate 1p with different substituents on the benzene ring of 1,4-divn-3-ol reacted with NFSI smoothly and formed the desired product 3p and 3p' in a total yield of 51% with a 5:1 ratio. Furthermore, unsymmetrical 1,4-diyn-3-ols with an aryl substituted alkynyl and alkyl substituted alkynyl group could react smoothly affording product 3q (51%) and 3r (43%) with excellent selectivity. Dialkynyl substituted substrate 2,2,8,8-tetramethylnona-3,6-diyn-5-ol (1s) were also found to be compatible and afforded product 3s in 59% yield. In addition, tertiary propargyl alcohols 1t-1y were also tested. To our delight, expected (Z)-2-amino conjugated enynones 3t-3y were obtained in moderate yields (61-76%). Notably, during the reactions of tertiary alcohols, 1,3-alkynyl migration was exclusive. Moreover, the novel aminoalkynylation of alkynes showed good stereoselectivity, only giving a *cis*-isomer.

The generality of this aminoalkynylation-oxidation of propargylic alchohols was then examined by screening amination sources. Different NFSI derivatives 2 were investigated under the standard reaction conditions (Scheme 3). NFSI derivatives bearing both electron-donating and -withdrawing substituents at the *para* position (2b-2g) all reacted smoothly with 1,5-diphenylpenta-1,4-diyn-3-ol (1a), and the corresponding Z-2-amino conjugated enynals 4b-4g were isolated in 77%-85% yields.

Table 1.	Copper-Catalyzed .	Aminoalkynylation	of	1a	and
NFSI ^{<i>a</i>,<i>b</i>}					

	\bigcirc			
ĺ		+ NFSI catalyst additives, solven temperature		0 ₂ Ph) ₂
	1a		3a	
entry	catalyst	additive	solvent	3a (%) ^b
1 ^c	CuCl	pyridine	CHCl ₃	19
2	CuCl	pyridine	CHCl ₃	34
3	CuCl	pyridine	DCE	30
4	CuCl	pyridine	CH ₃ CN	25
5	CuCl	pyridine	1,4-dioxane	0
6	CuCl	pyridine	THF	0
7	CuCl	pyridine	toluene	trace
8	CuI	pyridine	CHCl ₃	12
9	CuCN	pyridine	CHCl ₃	42
10	CuCl ₂	pyridine	CHCl ₃	30
11	CuBr ₂	pyridine	CHCl ₃	28
12	$Cu(OAc)_2$	pyridine	CHCl ₃	20
13	$Cu(OTf)_2$	pyridine	CHCl ₃	24
14 ^d	CuCN	pyridine	CHCl ₃	36
15 ^e	CuCN	pyridine	CHCl ₃	34
16	CuCN	4-methylpyridine	CHCl ₃	33
17	CuCN	3-bromopyridine	CHCl ₃	41
18	CuCN	4-acetylpyridine	CHCl ₃	69
19	CuCN	3-nitropyridine	CHCl ₃	31
20	CuCN	2-acetylpyridine	CHCl ₃	19
21 ^f	CuCN	4-acetylpyridine	CHCl ₃	76

^{*a*}Reaction conditions: **1a** (0.2 mmol), NFSI (**2a**, 2.0 equiv), catalyst (10 mol %), additive (1.5 equiv), solvent (2 mL), 50 °C for 8 h under a nitrogen atmosphere. ^{*b*}The yield was determined after isolation of products by column chromatography. ^{*c*}1.2 equiv NFSI was used. ^{*d*}The reaction was conducted at 40 °C. ^{*c*}The reaction was conducted at 70 °C. ^{*f*}4 Å Molecular sieves (0.2 g) were used.

The synthetic utility of the reaction was investigated by performing gram-scale preparation of the conjugated enynals. Under identified conditions, the reaction of **1a** (3 mmol) and **2a** provided 1.10 g of **3a** (Scheme 4). To further demonstrate synthetic applications of this method, we next investigated the follow-up chemistry using **3a** as the starting material (Scheme 5). Desulfonylation was conducted by treatment of **3a** with *n*-Bu₄NF in THF 70 °C. Pleasingly, desulfonylation and cyclization product 3,5-diphenyl-1*H*-pyrrole-2-carbaldehyde **5** was smoothly isolated in 42% yield.¹⁰ Chemoselective reduction of the carbonyl group in **3a** was achieved using NaBH₄ at room temperature to provide conjugated enynol **6** in 75% yield.

To gain insight into the reaction mechanism, radical inhibition experiments were performed (see Supporting Information). When 2,6-di-*tert*-butyl-4-methylphenol (BHT, 1.5 equiv) or 2,2,6,6-tetramethyl-1-piperidinyloxy (TEMPO, 1.5 equiv) was added under the standard conditions, the reaction of 1a and NFSI was completely suppressed and no desired 3a was observed. These results suggested that the transformation might involve radical intermediates. On the basis of the experimental results and our previous studies, ^{6,11} a possible mechanism is proposed in Scheme 6. Initially, nitrogen-centered radical A' was generated through the interaction of CuCN and NFSI. Oxygen coordination of the propargylic alcohol 1a with HF removal gives intermediate B.

"Reaction conditions: 1 (0.2 mmol), 2a (NFSI, 2.0 equiv), CuCN (10 mol %), 4-acetylpyridine (1.5 equiv), 0.2 g of 4 Å molecular sieves, CHCl₃ (2 mL), 50 °C, N_2 , 8 h. The yield was determined after isolation of products by column chromatography.

Next, highly selective intermolecular addition of the nitrogencentered radical to the C \equiv C bond takes place to generate a linear vinyl radical C. For the unsymmetrical 1,4-diyn-3-ols **1p-1r**, the radical addition preferentially occurs at the (electron-rich) aryl alkynyl unit. Then, C rapidly undergoes 1,3-alkynyl migration to form a radical D, which is further transformed into a more stable radical F through resonance structure E.¹² Finally, homolysis of Cu–O bond of F affords stable Z-2-amino conjuated enynal **3a** together with conScheme 3. Reaction of NFSI Derivatives^a

^{*a*}Reaction conditions: **1a** (0.2 mmol), **2** (2.0 equiv), CuCN (10 mol %), 4-acetylpyridine (1.5 equiv), 0.2 g of 4 Å molecular sieves, CHCl₃ (2 mL), 50 °C, N₂, 8 h. The yield was determined after isolation of products by column chromatography.

Scheme 5. Follow-up Chemistry

Scheme 6. Plausible Mechanism

comitant regeneration of the Cu(I) species, thus completing the catalytic cycle.

In conclusion, an unprecedented aminoalkynylation oxidation of propargylic alcohols has been realized with copper as catalyst, stererospecifically providing access to various Z-2amino enynals/enynones. This novel transformation involves a rare 1,3-alkynyl migration of propargylic alcohols and simultaneously forms C–C, C–N, and C=O bonds. The reactions proceed under mild conditions and show good functional group compatibility. The strategy for alkyne aminoalkynylation via 1,3-alkynyl migration might provide a new avenue toward alkynylative functionalization of unsaturated substrates. Furthermore, (Z)-2-amino conjugated enynals were applied to efficiently synthesize 3,5-disubstituted-1*H*pyrrole-2-carbaldehyde and conjugated enynol derivatives.

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.or-glett.8b02272.

Experimental procedures, spectral data for new compounds, and crystallographic data for 3a (PDF)

Accession Codes

CCDC 1562685 contains the supplementary crystallographic data for this paper. These data can be obtained free of charge via www.ccdc.cam.ac.uk/data_request/cif, or by emailing data_request@ccdc.cam.ac.uk, or by contacting The Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK; fax: +44 1223 336033.

AUTHOR INFORMATION

Corresponding Author

*E-mail: liy078@nenu.edu.cn. ORCID [®]

Yan Li: 0000-0003-2083-6991

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

We acknowledge the financial support from the Jilin Province Natural Science Foundation (20160519003JH) and the Changbai Mountain Scholarship Program.

REFERENCES

(1) (a) Xia, Y.; Liu, Z.; Ge, R.; Xiao, Q.; Zhang, Y.; Wang, J. Chem. Commun. 2015, 51, 11233. (b) Hojo, D.; Tanaka, K. Org. Lett. 2012, 14, 1492. (c) Miki, K.; Yokoi, T.; Nishino, F.; Kato, Y.; Washitake, Y. J. Org. Chem. 2004, 69, 1557. (d) Clark, J. S.; Boyer, A.; Aimon, A.; García, P. E.; Lindsay, D. M.; Symington, A. D. F.; Danoy, Y. Angew. Chem., Int. Ed. 2012, 51, 12128. (e) Zhan, H.; Lin, X.; Qiu, Y.; Du, Z.; Li, P.; Li, Y.; Cao, H. Eur. J. Org. Chem. 2013, 2013, 2284. (f) Xia, Y.; Qu, S.; Xiao, Q.; Wang, Z.-X.; Qu, P.; Chen, L.; Liu, Z. J. Am. Chem. Soc. 2013, 135, 13502. (g) Kuroda, H.; Hanaki, E.; Izawa, H.; Kano, M.; Itahashi, H. Tetrahedron 2004, 60, 1913. (h) Hu, F.; Xia, Y.; Ma, C.; Zhang, Y.; Wang, J. J. Org. Chem. 2016, 81, 3275. (i) Dong, J.; Bao, L.; Hu, Z.; Ma, S.; Zhou, X.; Hao, M.; Li, N.; Xu, X. Org. Lett. 2018, 20, 1244. (j) Xu, C.; Wittmann, S.; Gemander, M.; Ruohonen, V.; Clark, J. S. Org. Lett. 2017, 19, 3556.

(2) (a) Periasamy, M.; Karunakar, G. V. J. Chem. Res. 2006, 2006, 566. (b) Golovanova, A. A.; Latypovab, D. R.; Bekina, V. V.; Pisarevaa, V. S.; Vologzhaninac, A. V.; Dokichevb, V. A. Russ. J. Org. Chem. 2013, 49, 1282.

(3) Hack, D.; Chauhan, P.; Deckers, K.; Hermann, G. N.; Mertens, L.; Raabe, G.; Enders, D. *Org. Lett.* **2014**, *16*, 5188.

(4) (a) Yu, S.; Cho, E.; Kim, J.; Lee, S. J. Org. Chem. 2017, 82, 11150. (b) Molander, G. A.; Brown, H. C. J. Org. Chem. 1977, 42, 3106. (c) Hoshi, M.; Yamazaki, H.; Okimoto, M. Synlett 2010, 2010, 2461.

(5) (a) Chinta, B. S.; Baire, B. J. Org. Chem. 2015, 80, 10208.
(b) Chen, J.; Fan, G.; Liu, Y. Org. Biomol. Chem. 2010, 8, 4806.
(c) Trost, B. M.; Masters, J. T.; Taft, B. R.; Lumb, J.-P. Chem. Sci. 2016, 7, 6217.

(6) (a) Sun, J.; Zheng, G.; Xiong, T.; Zhang, Q.; Zhao, J.; Li, Y.; Zhang, Q. ACS Catal. 2016, 6, 3674. (b) Sun, J.; Zheng, G.; Zhang, Q.; Wang, Y.; Yang, S.; Zhang, Q.; Li, Y.; Zhang, Q. Org. Lett. 2017, 19, 3767. For another recent vinyl migration example via a radical pathway, see: (c) Li, L.; Li, Z.-L.; Gu, Q.-S.; Wang, N.; Liu, X.-Y. Sci. Adv. 2017, 3, e1701487. (7) (a) Xu, Y.; Wu, Z.; Jiang, J.; Ke, Z.; Zhu, C. Angew. Chem., Int. Ed. 2017, 56, 4545. (b) Tang, X.; Studer, A. Chem. Sci. 2017, 8, 6888. (8) (a) Inorganic bases such as K_2CO_3 and NaOAc did not work, and 1a was recovered completely. (b) 4 Å Molecular sieves might remove a very small amount of water in the reaction to improve the yield of 3a.

(9) (a) Wang, T.; Shi, S.; Rudolph, M.; Hashmi, A. S. K. Adv. Synth. Catal. 2014, 356, 2337. (b) Wang, T.; Huang, L.; Shi, S.; Rudolph, M.; Hashmi, A. S. K. Chem. - Eur. J. 2014, 20, 14868. (c) Wang, T.; Shi, S.; Hansmann, M. M.; Rettenmeier, E.; Rudolph, M.; Hashmi, A. S. K. Angew. Chem., Int. Ed. 2014, 53, 3715. (d) Namba, T.; Kawauchi, S.; Shibata, Y.; Kanno, H.; Tanaka, K. Angew. Chem., Int. Ed. 2017, 56, 3004. (e) Wang, J.; Shen, C.; Wang, T.; Mo, S.; Li, X.; Zhang, Z. Adv. Synth. Catal. 2016, 358, 3943. (f) Eisler, S.; Chahal, N.; McDonald, R.; Tykwinski, R. R. Chem. - Eur. J. 2003, 9, 2542.

(10) Yasuhara, A.; Kameda, M.; Sakamoto, T. Chem. Pharm. Bull. 1999, 47, 809.

(11) (a) Zhang, H.; Pu, W.; Xiong, T.; Li, Y.; Zhou, X.; Sun, K.; Liu, Q.; Zhang, Q. Angew. Chem., Int. Ed. 2013, 52, 2529. (b) Zhang, H.; Song, Y.; Zhao, J.; Zhang, J.; Zhang, Q. Angew. Chem., Int. Ed. 2014, 53, 11079. (c) Zheng, G.; Li, Y.; Han, J.; Xiong, T.; Zhang, Q. Nat. Commun. 2015, 6, 7011. (d) Zhang, G.; Xiong, T.; Wang, Z.; Xu, G.; Wang, X.; Zhang, Q. Angew. Chem., Int. Ed. 2015, 54, 12649. (e) Li, Y.; Zhou, X.; Zheng, G.; Zhang, Q. Beilstein J. Org. Chem. 2015, 11, 2721. (f) Sun, J.; Zheng, G.; Fu, Y.; Zhang, Q.; Wang, Y.; Zhang, Q. Chin. J. Catal. 2018, 39, 138–145.

(12) For the substrate **1w**, the ring-opening reaction of cyclopropyl group was not observed, which might be attributed to the better stability of radical intermediate **D** generated from **1w** than that of the resultant radical via ring openging of **D**. For some radical clocks, ring-opening reactions are reversible, and the cyclic forms are thermodynamically favored; see:Newcomb, M. In *Radicals in Organic Synthesis*, Vol. 2; Renaud, P., Sibi, M. P., Eds.; Wiley-VCH, Weinheim, 2001; pp 317–336.