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Abstract—A lead discovery library and a follow-up focused library of a-acylaminoketones were designed based on known diben-
zoylhydrazine ecdysone agonists, including GSTM–E. The compounds were assayed in mammalian cells expressing the ecdysone
receptor from Bombyx mori for their ability to cause expression of a reporter gene downstream of an ecdysone response element.
The most potent a-acylaminoketones were comparable to GSTM–E in this assay.
# 2002 Elsevier Science Ltd. All rights reserved.

The ability to control the level and timing of gene
expression is a powerful tool in biological systems and
has potential applications in human gene therapy and
the production of therapeutic proteins.1�3 A number of
such ‘gene-switch’ systems have been described, among
them some based on the insect ecdysone receptor
(EcR).4�8 These have the advantage that they are
intrinsically orthogonal to mammalian steroid hormone
receptors and can be activated by certain ecdysteroids
and by non-steroidal ecdysone agonist ligands.9,10 As
part of our effort to develop the RheoPlexTM system of
orthogonal ‘gene switches’ based on natural and muta-
ted ecdysone receptors, we sought novel chemotypes
with ecdysone agonist activity.11

Dibenzoyl derivatives of t-butylhydrazine e.g., RH-5849
(1a) and GSTM–E (1d) are well known as ecdysone ago-
nists (Fig. 1).10 Examination of structure 1 suggested
that replacement of the N-t-butyl moiety with an
appropriately chosen dialkylmethylene group (CR1R2)
to afford a-acylaminoketone 2 might lead to a new class
of ecdysone agonists. To test the validity of this concept,
we prepared a lead discovery library of a-acylamino-

ketones 2 in which X was varied, R1 and R2 were either
both methyl or were joined to form a cyclopentane ring,
and Y was fixed as hydrogen. The geminal dimethyl
compounds were prepared from Boc-Aib–OH (3) as
shown in Scheme 1.12 Thus, 3 was coupled with N,O-
dimethylhydroxylamine to afford Weinreb amide 4.
Reaction of 4 with PhMgBr gave aminoketone 5a
directly in modest yield, rather than the expected Boc
derivative. Coupling of 5a with benzoic acids using
standard protocols afforded the desired a-acylaminoke-
tones 2aa–2af (Table 1).13 Similarly, acylation of 1-
amino-1-benzoylcyclopentane (5b), which is available
by amination of cyclopentyl phenyl ketone,14 afforded
compounds 2ba–2bf.

The compounds were assayed at a single dose in a cell
line engineered to express Bombyx mori EcR and to
contain a b-galactosidase gene under the control of an
ecdysone response element.5,15 The assay results are
presented as fold induction relative to a DMSO control
(Table 1). No increase in the expression of b-galactosi-
dase above background levels was observed with the
geminal dimethyl compounds 2aa–2ac or 2ae; however,
a 2-fold increase in expression was observed with 2ad and
2af. These compounds bear the X=4-ethyl and 2-
methyl-3-methoxy substitution patterns seen in the com-
mercial ecdysone agonist insecticides tebufenozide (1b)
and methoxyfenozide (1c). Similarly, in the cyclopentane
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series, 2bd and 2bf stood out, causing substantial
increases in gene expression. These results suggested
that, for 2 to effectively promote gene expression,
greater bulk was necessary at R1 and R2 than was pro-
vided by the geminal dimethyl moiety and, possibly,
that R1 and R2 should be constrained in a ring.

To further optimize potency, a focused library of a-
acylaminoketones 2 in which X was fixed as 2-Me-3–
MeO was designed. The substitution pattern X=2-Me-
3–MeO, rather than X=4-Et, was used in the focused
library to render the resulting target compounds 2
somewhat less lipophilic. R1 and R2 were selected to be
–(CH2)4-; Et, Et; or Me, i-Pr. Finally Y was chosen to
include methyl and methoxy at the 2-, 3- and 4-positions
as well as the 3,5-dimethyl group that is present in the
commercial ecdysone agonist insecticides 1b and 1c, and
in GSTM–E (1d).

Initially Weinreb amides 8 (Scheme 2) were anticipated
to be pivotal intermediates in this synthesis. Thus,
treatment of the commercially available a,a-dis-
ubstituted amino acids 6b–d with 2.5 equiv of 2-methyl-
3-methoxybenzoyl chloride in pyridine afforded azlac-
tones 7b–d. These were ring opened by treatment with
N,O-dimethylhydroxylamine in the presence of pyridine
to afford 8b–d.16 Treatment of 8b with 3-methoxy-
phenylmagnesium bromide in THF at room tempera-
ture afforded the desired a-acylaminoketone 2bj in 63%
yield; however, when the more sterically congested 8d
was treated under similar conditions the major product
was N-(hydroxymethyl)-N-methylamide 9d; 13C NMR
indicated that little or none of the desired ketone 2dj
was present.17 Given this result the reaction of Weinreb
amides 8 with Grignard reagents was deemed insuffi-
ciently general for library production.

As an alternative, we undertook the longer sequence
depicted in Scheme 3. The previously prepared azlac-
tones 7b–d were reduced with sodium borohydride in
THF to provide the primary alcohols 10b–d.18 These

Figure 1. Dibenzoylhydrazine ecdysone agonists 1a–d and isosteric
a-acylaminoketones 2.

Scheme 1. Synthesis of lead discovery library of a-acylaminoketones.
(a) MeNHOMe, EDC, i-Pr2NEt, CH2Cl2, rt, 24 h; (b) R4MgBr
(5 equiv), THF, rt, 5 h; (c) PS–HOBt–O2CPhX, i-Pr2NEt, CH2Cl2,
12 h, rt.

Table 1. Single dose transactivation assay resultsa

Fold Inductionb,c (33mM)

2a 2b

X Y Me, Me –(CH2)4–

a H H 1 2
b 2-Me H 1 2
c 3-MeO H 1 2
d 4-Et H 2 133
e 3,4-OCH2O H 1 1
f 2-Me–3-MeO H 2 71

aSee ref 15 for assay protocol.
bRatio of light measured in treated cells versus a DMSO control.
cAverage of two replicates.

Scheme 2. Weinreb amide route to a-acylaminoketones. (a) 2-Me–3-
MeO–PhCOCl (2.5 equiv), pyridine, rt; (b) MeNHOMe.HCl, pyridine,
CH2Cl2, rt; (c) 3-MeOPhMgBr (4 equiv), THF, rt, 5 h.

Scheme 3. Amidoaldehyde route to a-acylaminoketones. (a) NaBH4,
THF, rt: (b) Dess–Martin periodinane, CH2Cl2, rt; (c) Y–PhMgBr
(4 equiv), THF, �70 �C ! rt; (d) Dess–Martin periodinane,
CH2Cl2, rt.
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were cleanly oxidized to the corresponding aldehydes
11b–d using the Dess–Martin periodinane. The overall
yields of aldehydes 11b–d from the corresponding ami-
noacids 6b–d were 62, 47 and 88%, respectively. Alde-
hydes 11b–d were reacted with a variety of
phenylmagnesium bromides in THF at low temperature
to afford the secondary alcohols 12, which were once
again oxidized with the Dess–Martin periodinane to
afford the desired a-acylaminoketones 2 (Table 2).19

The last two steps of the sequence proved to be amen-
able to manual parallel synthesis. Aqueous workups
were performed using Varian Chem-Elut cartridges20

and polymer supported tosyl hydrazide was used to
scavenge unreacted aldehyde from ketone product.
Fractionation of the final products on silica gel
SPE cartridges routinely afforded material of
>85% purity. Yields for conversion of aldehydes
11 to a-acylaminoketones 2 were not optimized
and ranged from 9 to 60%. The lowest yields
were encountered with products derived from hin-
dered aldehyde 11d. All compounds were characterized
by 1H and 13C NMR and selected compounds were
more fully characterized.21

The initial screening results of the focused library of a-
acylaminoketones are shown in Table 2. Library mem-
bers which caused >50-fold induction of b-galactosi-
dase expression at 33 mM were screened in a dose
response assay in the same cell line. The results are
reported in Table 3 in terms of LC50 and maximum fold
induction compared to GSTM–E (1d). An effective ligand
must combine a low LC50 value with a high maximum
fold induction. By these criteria, a-acylaminoketones
2bo and 2do, which can be considered as isosteres of the
commercial insecticide methoxyfenozide (1c), were the
best compounds in the library.

In conclusion, we have described the discovery of a new
class of ecdysone agonists useful for the control of gene
expression in ecdysone responsive systems. Levels of
reporter gene expression induced by the most potent
compounds 2bo and 2do approached those seen with the
GSTM–E (1d).
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