Accepted Manuscript

Neodymium immobilized on Fe_3O_4 : A new and recoverable catalyst for oxidation reactions and synthesis of 5-substituted 1H–tetrazoles in green condition

Taiebeh Tamoradi, Samira Taherabadi, Mohammad Ghadermazi

PII:	S0277-5387(19)30463-2
DOI:	https://doi.org/10.1016/j.poly.2019.06.052
Reference:	POLY 14043
To appear in:	Polyhedron
Received Date:	12 April 2019
Revised Date:	12 June 2019
Accepted Date:	26 June 2019

Please cite this article as: T. Tamoradi, S. Taherabadi, M. Ghadermazi, Neodymium immobilized on Fe₃O₄: A new and recoverable catalyst for oxidation reactions and synthesis of 5-substituted 1H–tetrazoles in green condition, *Polyhedron* (2019), doi: https://doi.org/10.1016/j.poly.2019.06.052

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

Neodymium immobilized on Fe₃O₄: A new and recoverable catalyst for oxidation reactions and synthesis of 5-substituted 1H-tetrazoles in green condition

Taiebeh Tamoradi,^{a,*} Samira Taherabadi,^a Mohammad Ghadermazi,^{a,*}

^a University of Kurdistan, Department of Chemistry, Faculty of Science, Sanandaj, Iran E-mail: t.tabss@yahoo.com (T.Tamoradi) and mghadermazi@yahoo.com (M. Ghadermazi)

Abstract

Magnetic nanoparticle functionalized with neodymium complex as catalyst and characterized by SEM, XRD, FT-IR, TGA, EDX and ICP techniques. Then, catalytic activity of prepared catalyst was examined in the synthesis of tetrezoles and oxidation reactions in which observed short reaction time and high yield in these reactions.

Keywords Fe₃O₄, Nd, Green, 5-substituted tetrazoles, Sulfoxides, Disulfides

Introduction

According to a green chemistry, one of the most important principles of chemistry, the use of heterogeneous catalysts is nowadays a well-established method for control of pollution. Thus, heterogeneous catalysts have extensively developed in organic synthesis compared to homogenous catalysts their because of economic and industrial aspects [1-4]. In order to preparing heterogeneous catalysts, various supports have been proposed [5-8]. In this regard, magnetic nanoparticles are one of the important supports due to facilitate the access of substrates to active sites, easy access to surface in order to support functionalized, high dispersion, excellent stability (chemical and

thermal), easy synthesis and easy separation [9-18]. In the last few years, superparamagnetic Fe₃O₄ nanoparticles modified with several metal complexes such as Ni, Cu, Pd, Co, VO, Zn, Zr, Cd, Mn and Cr in order to synthesis of heterogeneous catalysts for organic synthesis such as oxidation reactions and synthesis of 5-substituted tetrazoles [19-24]. On the other hand, 5-substituted tetrazoles, sulfides and disulfides as versatile organic reagent are important and necessary component in biological processes, chemical and pharmaceutical industry. The product of oxidation of sulfides and thiols have received considerable importance in the development of sensors, oil-sweetening processes and vulcanizing agents, etc [25-27]. Tetrazole compounds have been widely used for more than one hundred because they are nitrogen-rich heterocycles with a wide range of applications such as catalysis technology, ligands in coordination chemistry, heterocyclic chemistry, effective stabilizers of metallopeptide structures in organometallic chemistry, stable surrogates for carboxylic acids [28-32].

Herein, we interest to report of the synthesis and characterization of Nd complex supported on Fe_3O_4 as a thermostable catalyst for synthesis of 5-substituted tetrazoles, disulfides and sulfoxides in neat condition. It was also indicated that up to date, the reports was not from Nd complex supported on Fe_3O_4 in synthesis above-mentioned compounds neat condition.

Experimental

Materials and physical measurements

All solvents and materials for performance of this project are purchased from Merck and Sigma-Aldrich and used without further purification. The elemental analysis and exact amount of Nd were determined by Energy-dispersive X-ray spectroscopy (EDAX, TSCAN) and inductively coupled plasma-optical emission spectrometry (ICP-OES), respectively. The surface morphology of nanostructures and texture properties were determined by SEM using FESEM-TESCAN MIRA3 and Powder Xray diffraction (XRD) measurements using Co radiation source with a wave length = 1.78897 Å, 40 kV, respectively. Melting points of all products were determined with an Electrothermal 9100 apparatus. Thermal stability of the nanocatalyst and fourier transform infrared (FT-IR) spectra of all samples performed by TGA measurement Shimadzu DTG-60 instrument and a Bruker VERTEX 80 v, respectively.

Preparation of Fe₃O₄@Nd nanocatalyst

Following the method reported in the literature, we obtained Fe_3O_4 nanoparticles according to a previous report by Darabi et al [22]. Then, the modification of Fe_3O_4 was performance using the reflux of mixture contain 1 g of MNPs powder and 1.5 g of tryptophan ligand in distilled water (30 mL) for 24 h. After the reflux of mentioned mixture, the final product was separated by an external magnet, and washed with ethanol/water and dried to give functionlized Fe_3O_4 by tryptophan. Then, $Fe_3O_4@Nd$ nanocatalyst was obtained by mixing 1 g of functionlized Fe_3O_4 by tryptophan and 1.09 g Nd (NO₃)₃.6H₂O in 30 mL absolute ethanol at reflux condition for 16 h.

General procedure for the oxidation reactions

To a stirred suspension of Fe_3O_4 @Nd in H_2O mmol) was added under solvent-free condition. After the completion of reaction (monitored by TLC) in appropriate time, the separated catalyst (using by magnetic) washed with ethyl acetate to obtained pure sulfoxide or disulfide derivatives.

General procedure for the synthesis of 5-substituted tetrazoles

To a stirred suspension of Fe_3O_4 @Nd (5 mg) in H₂O (2 mL) at 100 °C, nitrile (1 mmol) and sodium azide (1.2 mmol) added to reaction mixture in appropriate time. After the completion of reaction (monitored by TLC), the catalyst separated by magnetic and then mixture was diluted with HCl (4 N, 10 mL). Finally, the resultant organic layer extracted and washed with ethyl acetate to obtain corresponding tetrazoles.

Selected spectral data

Methyl phenyl sulfoxide ¹H NMR (400 MHz, CDCl₃, ppm): δ_H= 2.65 (s, 3H), 7.54– 7.69 (m, 2H), 7.61–7.64 (m, 3H).

5-(4-Nitrophenyl)-1H-tetrazole ¹H NMR (400 MHz, DMSO, ppm): δ_H= 8.28–8.31 (m, 2H), 8.39–8.43 (m, 2H).

5-(3-Nitrophenyl)-1H-tetrazole ¹H NMR (400 MHz, DMSO, ppm): δ_H= 7.93 (t, *J*= 8.4, 2H), 8.43–8.50 (m, 2H), 8.51–8.52 (s, 1H).

5-(4-Chorophenyl)-1H-tetrazole ¹H NMR (400 MHz, DMSO, ppm): δ_{H} = 7.85–8.1 (m, 4H).

1,2-Di(naphthalen-2-yl)disulfane ¹H NMR (400 MHz, DMSO): δ_{H} = 7.50–7.54 (m,

4H), 7.66–7.77 (m, 2H), 7.92–7.96 (m, 4H), 7.98-8.03 (m, 2H), 8.05 (s, 2H) ppm.

Results and discussion

Catalyst characterization

After successful synthesis of Fe₃O₄@Nd, SEM, FT-IR, EDX, XRD, TGA, ICP and VSM techniques were used to obtain the structure of nanocatalyst.

Scheme 1. Synthesis of Fe₃O₄@Nd.

In order to successful synthesis of catalyst, FT-IR spectra of Fe₃O₄, functionlized Fe₃O₄ by tryptophan and Fe₃O₄@Nd nanoparticles was recorded in the 400–4000 cm⁻¹. As shown in Fig. 1, the O-H and Fe-O stretching vibration at approximately 3400-3500 and 580 cm⁻¹, respectively, in the FT-IR spectra of Fe₃O₄, functionlized Fe₃O₄ by tryptophan and Fe₃O₄@Nd was confirmed the presence of Fe₃O₄ at all samples. In the spectrum of

functionlized Fe_3O_4 by tryptophan, the characteristic absorption bands around 2850-2950 and 1620 cm⁻¹ is corresponded of the aliphatic C-H and C=N stretching vibration, respectively.

Wavenumber (cm⁻¹)

Fig. 1. FT-IR spectrum of Fe₃O₄ (blue), functionlized Fe₃O₄ by tryptophan (red),

Fe₃O₄@Nd catalyst (green).

Thermo-gravimetric analysis (TGA) of the organic groups supported on the surface of bare Fe_3O_4 nanostructure is indicated in Fig. 2. In TGA curve of catalyst, the first step of weight loss below 100 °C corresponds to the removal of the physically and chemically adsorbed solvents or surface hydroxyl groups, and the other weight loss in the range of 100-600 °C (9%) corresponds to the decomposition of the organic

layers on the surface of Fe_3O_4 in which verified the well grafting of organic groups on the magnetic nanopartcles.

Fig. 2. The TGA diagram of Fe₃O₄@Nd.

SEM images of the Fe₃O₄@Nd in Fig. 3 at different magnifications were indicated that the mentioned nanocatalyst was made up of uniform spherical particles with size approximately 34 nm. It should be noted that the obtained morphology assisted to maximize the simultaneous increasing of the catalyst efficiency and frequency of molecular interactions or decreasing activation energy of rate determining step.

Fig. 3. SEM images of Fe₃O₄@Nd catalyst at 1μ (a), 500 nm (b) and 200 nm (c) magnifications.

The energy-dispersive X-ray spectroscopy (EDX) analysis of Fe_3O_4 @Nd nanocatalyst was confirmed the presence of Fe, O, N, C and Nd specie in the obtained catalyst (Fig. 4), and amount of Nd loaded on modified magnetic nanoparticles was obtained 0.22 mmol g⁻¹.

Fig. 4. EDX spectrum of Fe_3O_4 (a)Nd.

The structural and textural properties of the Fe₃O₄@Nd nanocatalyst was determined by powder X-ray diffraction. As seen in Fig.5, the presence of a six peaks assigned to (2 2 0), (3 1 1), (4 0 0), (4 2 2), (5 1 1), and (4 4 0) reflections was verified the magnetite phase (JCPDS#01-075-0449) of Fe₃O₄ which crystallized in the cubic system. Also, the XRD pattern of prepared nanocatalyst indicated that the Fe₃O₄ phase has not been changed during the modifications [22].

Fig.5. XRD pattern of Fe₃O₄@Nd.

Catalytic studies

Also, we tested catalytic activity of Fe_3O_4 @Nd in the oxidation reactions (Scheme 2 and 3) and 5-substituted tetrazoles (Scheme 4). After the design of various experiments in order to optimize of the reaction conditions such as solvent, amount of catalyst and H_2O_2 , the best results were obsvered in the presence of 5 mg Fe_3O_4 @Nd and 0.5 mL H_2O_2 under solvent free (Table 1).

Scheme 2. Fe₃O₄@Nd catalyzed the oxidation of sulfides to sulfoxide.

Table 1	I. Optimization	of oxidat	tion of sulfid	es to the c	corresponding			
sulfoxides using Fe ₃ O ₄ @Nd nanoparticles under various conditions								
Entry	Solvent	H_2O_2	Catalyst (mg)	Time (min)	Yield (%) ^a			
1	Solvent-Free	0.5	3	45	65			
2	Solvent-Free	0.5	5	10	96			
3	Solvent-Free	0.5	7	10	99			
4	Solvent-Free	0.4	7	15	92			
5	Ethanol	0.5	7	55	81			
6	Ethyl acetate	0.5	7	60	60			
7	Acetonitrile	0.5	7	80	55			
^a Isolated yields.								

Then, Fe_3O_4 (a) Nd catalytic activity investigated in the wide range of sulfides with different functional groups in which observed results good to excellent (Table 2).

More importantly, because of mild conditions of described heterogeneous systems, there is no overoxidation to sulfone for oxidation of sulfides.

Scheme 3. Oxidation of sulfides to the corresponding sulfoxides.

Table 2.	Oxidation of sulfides to	the sulfor	kides in t	he presenc	ce of Fe ₃ O ₄	@Nd.	
Entry	Substrate	Product	Time	Yield	TON	TOF	M.p.
			(min)	(%) ^a			(°C)
			. ,			(h ⁻¹)	
1	Dipropylsulfide	2a	22	94	854	2308	Oil [11]
2	Diethylsulfide	2b	25	95	864	2057	Oil [11]
3	Dibenzylsulfide	2c	17	88	800	2857	127 [19]

4	Benzylphenylsulfide	2d	35	95	864	1490	117-120
	51 5						[11]
5	Tetrahydrothiophene	2e	5	93	845	10181	Oil [21]
6	Ethylphenylsulfide	2f	12	92	836	4180	Oil [21]
7	Diphenylsulfide	2g	25	94	854	2033	61 [21]
8	3,3'-Thiodipropionic	2h	20	88	800	2424	206-208
	acid					0	[21]
9	Methylphenylsulfide	2i	10	96	873	5456	Oil [21]
^a Isolated yields							

Also, the synthesis of disulfide derivatives was investigated in the presence of Fe_3O_4 @Nd catalyst (Scheme 4). Initially, condition of oxidation of 4methylthiophenol was optimized that the best results were obtained in the presence of 5 mg of catalyst and 0.4 mL H₂O₂ under solvent free (Table 3). Melting points of the obtained products in Table 3 were 40-44 °C.

Scheme 4. Fe₃O₄@Nd catalyzed the oxidation of thiols to disulfides.

Table 3. Optimization of oxidative coupling of thiols into disulfides								
using Fe ₃ O ₄ @Nd under various conditions.								
Entry	Solvent	H_2O_2	Catalyst (mg)	Time (min)	Yield (%) ^a			
1	Solvent-Free	0.5	3	40	55			
2	Solvent-Free	0.5	7	17	98			
3	Solvent-Free	0.5	5	20	94			
4	Solvent-Free	0.4	5	22	94			
5	EtOH	0.5	5	50	80			

6	Ethyl acetate	0.5	5	85	88		
7	Acetonitrile	0.5	5	80	81		
^a Isolated yields.							

Then, in order to expand our study on synthesis of disulfides, a wide range of thiols was oxidated under the optimized condition in which indicated that products obtained in short time and good to excellent yiels (Table 4).

Table 4	. Oxidative coupling of	thiols into	disulfides	using H ₂ C	D_2 in the p	presence of	f Fe ₃ O ₄ @Nd.
Entry	Substrate	Product	Time	Yield	TON	TOF	M.p. (°C)
			(min)	(%) ^a		(h ⁻¹)	
1	4-Methylbenzenethiol	4a	22	94	854	2308	41-43 [21]
2	Naphthalene-2-thiol	4b	20	94	854	2588	133 [11]
3	2-Mercaptobenzoic	4c	80	92	836	629	273 [11]
	acid						
4	Benzo[d]thiazole-2-	4d	40	96	873	1323	173-176
	thiol						[21]
5	2-Mercaptoethanol	4e	35	88	800	1379	Oil [21]
6	Benzo[d]oxazole-2-	4f	35	97	882	1521	92 [11]
	thiol						
7	Benzyl mercaptan	4g	25	98	891	2121	57 [21]
^a Isolate	ed yields						

Finally, the synthesis of 5-(3-nitrophenyl)-1H-tetrazole was investigated in the different conditions such as solvent, temperature and amount of catalyst (Scheme 5) in which observed

that the best results were obtained with 4 mg of Fe₃O₄@Nd and H₂O as green solvent 80 $^{\circ}$ C (Table 5).

Scheme 5. Fe₃O₄@Nd catalyzed the one-pot synthesis of 5-substituted tetrazoles.

Table 5 Optimization of reaction conditions for synthesis of 5-(3-nitrophenyl)-1H-									
tatmamala	tates also in the massage of Eq. (1) (2) 14								
tetrazoie	in the presence of	$\operatorname{Fe}_{3}\operatorname{O}_{4}(w)\operatorname{Ind}.$							
Entry	Solvent	Temp (°C)	Catalyst	Time	Yield (%) ^a				
			(mg)	(min)					
1	PEG	80	6	15	90				
	EtOH	80	6	25	92				
2	DMSO	80	6	20	90				
4	H ₂ O	80	6	15	92				
5	H ₂ O	80	8	10	95				
6	H ₂ O	80	4	8	92				
7	H ₂ O	80	2	35	75				
8	H_2O	60	4	20	80				
9	H_2O	100	4	8	94				
aIsolated	^a Isolated yields.								

After optimization of reaction condition, a scope of the reaction, a series of aromatic tetrazoles was synthesized at same condition and results of this study were summarized in Table 6.

Table 6 Synthesis of 5-substituted 1H-tetrazole derivatives in the presence of Fe ₃ O ₄ @Nd								
under optimized reaction conditions.								
Entry	Substrate	Product	Time	Yield	TON	TOF	M.p. (°C)	
-			(min)	(%) ^a		(h ⁻¹)		
1	Phthalonitrile	4a	25	90	1000	2380	202-205	
							[21]	
3	3-Nitrobenzonitrile	4b	8	92	1022	7861	156-158	
						0	[11]	
4	2-Chlorobenzonitrile	4c	55	95	1055	1152	182 [11]	
5	2-Hydroxybenzonitrile	4d	30	91	1011	2022	221-223[11]	
6	4-Hydroxybenzonitrile	4e	15	94	1044	4176	236-238	
							[21]	
7	4-Chorobenzonitrile	4f	55	88	978	1068	257 [21]	
8	4-Nitrobenzonitrile	4g	10	97	1078	6737	223 [11]	
9	Benzonitrile	4h	80	88	978	735	21-212 [21]	
aIsolat	^a Isolated yields.							

Consideration the reusability of catalyst is a one of important factors in dustry, the reusability of the oxidation of methyl phenyl sulfide, coupling of 4-methylthiophenol and 5-(4-nitrophenyl)-1H-tetrazole was investigated. (Fig. 6).

Fig. 6. Reusability of Fe₃O₄@Nd in the oxidation of methyl phenyl sulfide (a), coupling of 4methylthiophenol (b) and 5-(4-nitrophenyl)-1H-tetrazole (c).

The nature of the recovered catalyst was investigated by EDX (Fig. 7) and FT-IR (Fig. 8) analysis. It was be observed that the catalyst can be recycled without any significant change in its structure.

Fig. 7. EDX spectrum of recovered Fe₃O₄@Nd catalyst.

Fig. 8. FT-IR spectrum of recovered Fe₃O₄@Nd catalyst.

Comparison of the catalyst

Also, the obtained results of the oxidation of methylphenyl sulfide in this methodology were shown ease of operation, short reaction time, commercially available materials and high yield in the compare with previously reported methods (Table 7).

Table 7. Comparison of Fe_3O_4 (a) Nd for the oxidation of methylphenyl sulfide with previously reported							
procedui	e.						
Entry	Substrate	Catalyst	Time (min)	Yield (%) ^a			
1	Methylphenylsulfide	Silica sulfuric acid/H ₂ O ₂	60	72 [33]			
2	Methylphenylsulfide	Fe ₃ O ₄ -Adenine-Ni	55	98 [34]			
3	Methylphenylsulfide	Cu(II)–Schiff base	45	90 [35]			
		complex- Fe ₃ O ₄ /H ₂ O ₂					
4	Methylphenylsulfide	VO-2A3HP-MCM-41	120	96 [36]			
5	Methylphenylsulfide	2NaBO ₃ .4H ₂ O(I)/KBr	120	57 [37]			
6	Methylphenylsulfide	Zr-oxide@MCM-41	300	98 [38]			
7	Methylphenylsulfide	VO 2F(dmpz) ₂	300	95 [39]			
8	Methylphenylsulfide	Fe ₃ O ₄	10	Trace			
9	Methylphenylsulfide	Fe ₃ O ₄ @Tryptophan	10	Trace			
10	Methylphenylsulfide	Fe ₃ O ₄ @Nd	10	96 [this work]			
^a Isolated	yields.						

Conclusion

In summary, in order to synthesis of Nd magnetic catalyst, Nd complex was successfull immobilized on Fe_3O_4 . Then this nanocatalyst characterized by versatile chemical and

physical techniques such as SEM, XRD, FT-IR, TGA, EDX and ICP and its catalytic behavier studied in the synthesis of 5-substituted tetrazoles and the oxidation reactions in green condition in which observed outstanding properties from present procedure such as ease of separation via magnetic field, high yield, the use of Nd as a new active site in organic reaction, high reusability of the catalyst.

Acknowledgements

We gratefully acknowledge the support of this work by University of Kurdistan.

References

 A, Michrowska, L. Gułajski, Z. Kaczmarska, K. Mennecke, A. Kirschningd, K. Grela, Green Chem. 8 (2006) 685.

T. Tamoradi, M. Ghadermazi, A. Ghorbani-Choghamarani, New. J. Chem 42 (2018)
 5479.

3. Rafiee E, Eavani S, Green Chem 13 (2011) 2116.

T. Tamoradi, M. Ghadermazi, A. Ghorbani-Choghamarani, Catal Lett 148 (2018)
 857.

5. J. Davarpanah, A.R. Kiasa, Catal Commun 46 (2014) 75.

6. M. A. Zolfigol, M. Yarie, Appl. Organometal. Chem 31 (2017) e3598.

 T. Tamoradi, A. Ghorbani-Choghamarani, M. Ghadermazi, Appl. Organometal. Chem 32 (2018) e4340.

8. W.Y. Hao, j.c. Sha, S.R. Sheng, M.Z. Cai, Catal. Commun 10 (2008) 257.

9. D. Saberi, M. Sheykhan, K. Niknam, A. Heydari, Catal. Sci. Technol, 3 (2013) 2025.

- A. Maleki, P. Ravaghi, M. Aghaei, H. Movahed, Res. Chem. Intermed 43 (2017) 5485.
- A. Maleki, J. Rahimi, O.M. Demchuk, A.Z. Wilczewska, R. Jasiński, Ultrason. Sonochem. 43 (2018) 262.
- 12. A. Maleki, Polycycl. Aromat. Compd. 38 (2018) 402.
- 13. A Maleki, R Rahimi, S Maleki, Environ. Chem. Lett. 14 (2016,) 195.
- Polshettiwar V, Luque R, Fihri A, Zhu H, Bouhrara M, Basset JM, Chem. Rev. 111 (2011) 3036.
- T. Tamoradi, A. Ghorbani-Choghamarani, M. Ghadermazi, New. J. Chem 41 (2017) 11714.
- M.A. Zolfigol, M. Kiafar, M. Yarie, A. Taherpour, M. Saeidi-Rad, RSC Adv 6 (2016) 50100.
- A. Maleki, J. Rahimi, Z. Hajizadeh, M. Niksefat, J. Organomet. Chem. 881 (2019) 58.
- 18. A Maleki, M Niksefat, J Rahimi, S Azadegan, Polyhedron. 167 (2019) 103.
- M.A. Zolfigol, V. Khakyzadeh V, A.R. Moosavi-Zare, A. Rostami, A. Zare, N. Iranpoor, M.H. Beyzavi, R. Luque, Green Chem 15 (2013) 2132.
- 20. T. Tamoradi, B. Mehraban-Esfandiari, M. Ghadermazi, A. Ghorbani–Choghamarani, Res Chem Intermed 44 (2018) 1363.
- A. Ghorbani-Choghamarani, Z. Darvishnejad, B. Tahmasbi, Inorg. Chim. Acta 435 (2015) 223.
- 22. M. Darabi, T. Tamoradi, M. ghadermazi, A. Ghorbani-Choghamaran,, Trans Metal Chem 42 (2017) 703.
- A. Ghorbani-Choghamarani, B. Tahmasbi, P. Moradi, Appl Organometal Chem 30 (2016) 422.

- 24. T. Tamoradi, A. Ghorbani-Choghamarani, M. Ghadermazi, Polyhedron 145 (2018)120.
- M. Azizi, A. Maleki, F. Hakimpoor, R. Ghalavand, A. Garavand, Catal. Lett. 147 (2017) 2173.
- 26. H. Veisi, S. Sajjadifar, P.M. Biabri, S Hemmati, Polyhedron, 153 (2018) 240
- 27. A. Maleki, A. Sarvary, RSC Adv. 5 (2015) 60938.
- 28. M. Bagherzadeh, M. Zare, Adv Heretocyclic Chem 123 (2017) 1.
- 29. U.B. Patil, K.R. Kumthekar, J.M. Nagarkar, Tetrahedron. Lett 53 (2012) 3706.
- M. Esmaeilpour, J. Javidi, F. Nowroozi Dodeji, M. Mokhtari Abarghoui, J Mol Catal A 393 (2014) 18.
- 31. F. Abrishami, M. Ebrahimikia, F. Rafiee, Appl Organometal Chem 29 (2015) 730.
- 32. A Sarvary, A Maleki, Mol. Divers. 19 (2015) 189.
- 33. A. Shaabani, A.H. Rezayan, Silica sulfuric acid promoted selective oxidation of sulfides to sulfoxides or sulfones in the presence of aqueous H₂O₂, Catal. Commun. 8 (2007) 1112.
- T. Tamoradi, M. Ghadermazi, A. Ghorbani-Choghamarani, Ghorbani-Choghamarani
 A, Appl. Organometal. Chem 32 (2018) e3974.
- 35. A. Ghorbani-Choghamarani, Z. Darvishnejad, M. Appl. Organomet. Chem. 29 (2015) 170.
- M. Nikoorazm, A. Ghorbani-Choghamarani, M. Khanmoradi, Appl. Organometal. Chem 30 (2016) 236.
- 37. A. Dhakshinamoorthy, K. Pitchumani, Catal Commun 10 (2009) 872.
- 38. M. Hajjami, L. Shiri, A. Jahanbakhshi, Appl. Organometal. Chem 29 (2015) 668.
- S. Hussain, D. Talukdar, S.K. Bharadwaj, M.K. Chaudhuri, Tetrahedron Lett. 53 (2012) 6512.

Graphical Abstract

Neodymium immobilized on Fe₃O₄ as recoverable catalyst

Taiebeh Tamoradi,^{a,*} Samira Taherabadi,^a Mohammad Ghadermazi,^{a,*}

^a University of Kurdistan, Department of Chemistry, Faculty of Science, Sanandaj, Iran E-mail: t.tabss@yahoo.com (T.Tamoradi) and mghadermazi@yahoo.com (M. Ghadermazi)

Graphical Abstract - Synopsis

The present work, we prepared a novel catalyst by linking Nd complex on Fe₃O₄ nanoparticles as green catalyst and characterized by FT-IR, SEM, EDX, ICP-OES, XRD and TGA methods. Then, catalytic activity of this catalyst was tested in the oxidation reactions and synthesis of tetrazoles. Easy preparation and easy separation, chemical and hydrothermal stability, the use of inexpensive materials, high reusable are outstanding properties of this