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Disaccharide analogues containing amidoxime interglycosidic linkages have been synthesised by
nucleophilic addition of aminomethylene pyranoses to pyranosyl nitrile oxides, generated by dehydro-
chlorination of the corresponding hydroximoyl chlorides. The structure of the C-xylopyranosyl-N-galacto-
pyranosyl amidoxime 1 was established by X-ray crystallography.

� 2010 Elsevier Ltd. All rights reserved.
There has been considerable interest in the chemistry of disac-
charide analogues (pseudodisaccharides) in which the glycosidic
oxygen is replaced by other groups that are more resistant to enzy-
matic and chemical hydrolysis.1–12 C-Disaccharides in which the su-
gar units are joined by a methylene group have been the subject of
detailed study.1 Other bridging units that have been incorporated in-
clude amide,2 urea,3 thiourea,3b,4 carbamate,3c,5 thiocarbamate,6

guanidine,3b,6 sulfonamide,7 thiohydroximate,8 methoxyimino9

and triazole.10 Carbasugar-containing non-glycosidically-linked
disaccharides have also been reported,11 as have dinucleotides with
nitrone, hydroxylamine and amidoxime links.12 We have previously
established a route to carbon-linked pseudodisaccharides based on
nitrile oxide cycloaddition reactions13 and now describe a short
route to (1 ? 6) and (1 ? 1) amidoxime-linked disaccharides that
is also based on nitrile oxide chemistry. The key step (Scheme 1) in-
volves nucleophilic addition of an aminomethylene monosaccharide
to a pyranose-1-carbonitrile oxide.

The approach is illustrated in Scheme 2 for the amidoxime-
bridged disaccharide 1 derived from D-xylose and D-galactose. We
have previously shown14 that pyranosyl nitrile oxides react readily
with primary aliphatic amines (e.g., benzylamine, butylamine) to
afford N-alkyl-pyranosylamidoximes, and the same methodology
was used in the present work. In order to avoid unwanted dimerisa-
tion by-products,15 the xylopyranosyl nitrile oxide 2 was generated
in situ by base-induced dehydrochlorination of the corresponding
hydroximoyl chloride 3, which in turn was prepared by the estab-
lished literature route15,16 from the readily-accessible nitromethyl
compound 4. The amino-D-galactose component 5 was prepared
ll rights reserved.

: +44 31 650 4743.
from di-O-isopropylidene-D-galactose (6) via the azide derivative
7, as described by Reitz et al.;17 the product was isolated (57% overall
yield from 6) as its hydrochloride salt, which was then used in the
final step. In a typical coupling experiment a solution of the
xylose-derived hydroximoyl chloride 3 (0.40 mmol) in dry chloro-
form was added dropwise to a cooled (0 �C) and vigorously stirred
solution of the galactose amine 5 (1.30 mmol) and triethylamine
(7.2 mmol) in dry chloroform (3 ml). After stirring for 1 h the
mixture was diluted with dichloromethane, washed with 0.1 M aq
HCl, and the combined organic layers dried (MgSO4). Removal of
the solvent in vacuo and chromatography (silica, hexane/Et2O gradi-
ent elution) of the residue afforded a white solid (81%), which was
identified by its spectroscopic properties18 as the target amidoxime
1 (Table 1, entry 1). In the 1H and 13C NMR spectra there are, in addi-
tion to the expected signals for the xylopyranosyl and galactopyran-
osyl moieties, characteristic signals14 for the amidoxime unit [dH

7.76 (OH), 5.24 ppm (NH); dC 149.0 ppm]. The furoxan dimer 815

was not detected. Under similar conditions, addition of the amino-
D-galactose 5 to the D-glucopyranosyl nitrile oxide 9, generated from
the hydroximoyl chloride 10, afforded the D-Glc-D-Gal amidoxime
11 in 75% yield (Table 1, entry 2).

The structure of D-Xyl-D-Gal amidoxime 1 was established by
X-ray crystallography (Fig. 1).19 Noteworthy features include the
Z-configuration of the oxime and the s-trans conformation about
the amidic nitrogen with the H of the NH group facing the oxime
OH. The near planarity of the NH–C@N–O unit [torsion angle
2.14�] and the short non-bonded distance [2.531 Å] between the
amidic N and the oxime O are consistent with an intramolecular
H-bond between these atoms. These results also support the previ-
ously proposed mechanism in which the amine adds to the nitrile
oxide in a concerted but non-synchronous manner.14,20
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Scheme 2. Reagents and conditions: (a) PhSH, Et3N, SnCl2, THF, 0 �C; (b) Cl2, CH2Cl2, �78 �C; (c) Et3N; (d) TsCl, pyridine–MeCN; (e) NaN3, DMSO, 115 �C; (f) H2, 10% Pd/C,
EtOH–5% CHCl3.

O
N
H

N
OH

O O
O

H2N+
N

O

Scheme 1.

Figure 1. X-ray crystal structure of compound 1 showing Z-s-trans arrangement of
the amidoxime.

Table 1
Formation of amidoxime-linked disaccharides 1, 11, and 15–18
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Entry RCCl@NOH Amine Amidoxime (yield)

1 D-Xyl (3) D-Gal (5) 1 (81%)

2 D-Glc (10) D-Gal (5) 11 (75%)

3 D-Xyl (3) D-Xyl (13) 17 (44%)

4 D-Xyl (3) D-Glc (14) 18 (40%)

5 D-Glc (10) D-Xyl (13) 19 (31%)

6 D-Glc (10) D-Glc (14) 20 (49%)
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The strategy for the synthesis of the (1 ? 1) amidoxime-linked
pseudodisaccharides involved a dual role for the pyranosyl nitrom-
ethanes as sources of both the nitrile oxide and the amino compo-
nents of the coupling reactions, as illustrated in Scheme 3. Thus the
nitromethyl pyranoses 4 and 12 were converted, not only into the
hydroximoyl chlorides 3 and 10, as described above, but also into
the corresponding aminomethyl pyranoses 13 and 14. Attempts
to prepare the amines 13 and 14 by direct reduction of the nitrom-
ethyl compounds proved to be unreliable, and a two-step approach
was therefore adopted. Initial treatment with PCl3/pyridine affor-
ded the nitriles 15 and 16,21 which were then reduced to the amino
compounds by catalytic hydrogenation, with overall yields of 75%
and 74%, respectively. The amines 13 and 14 were each reacted
with the in situ formed D-xylose and D-glucose nitrile oxides 2
and 9, as outlined above for the (1 ? 6)-linked compounds 1 and
11 (Table 1, entries 3–6). The structures of the resulting (1 ? 1)-
linked compounds 17–20 were established from their spectro-
scopic properties.22 The yields were consistently lower than those
for the (1 ? 6)-linked analogues described above. A likely explana-
tion is the formation, as by-products, of the acetaminomethyl com-
pounds 21 and 22, resulting from O ? N acetyl migration; this was
shown in the case of compound 21 by comparison (NMR, TLC) with
an authentic sample prepared via catalytic hydrogenation of
nitromethyl compound 4.23

In conclusion, a route to (1 ? 6) and (1 ? 1) amidoxime-linked
disaccharides has been established based on 1,3-nucleophilic addi-
tion of amino sugars to pyranosyl nitrile oxides. In view of the
ready availability of the starting materials this approach should
provide easy access to a wide range of such pseudodisaccharides.
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