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Toward Efficient Asymmetric Carbon–Carbon Bond Formation: Continuous
Flow with Chiral Heterogeneous Catalysts
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Preparation of optically active compounds, which are
often observed in pharmaceuticals, liquid crystals, agrochem-
icals, etc., is among the most important tasks in synthetic or-
ganic chemistry.[1] Catalytic asymmetric synthesis provides
one of the most efficient methods for their preparation, be-
cause desired optically active compounds are obtained by
using small amounts of chiral sources.[2] Accordingly, while
many chiral catalysts for asymmetric reactions have been
developed in the past two decades, the efficiency of the cat-
alysts has also been intensively pursued because it is a key
factor for applications in industry. For example, turnover
number (TON) is an index to evaluate efficiency of cata-
lysts. Whereas high TONs have been attained in some reac-
tions such as asymmetric hydrogenation,[3] TONs of asym-
metric C�C bond forming reactions, which construct basic
carbon skeletons of target molecules, are generally lower.[4]

To achieve high TONs, not only are fast catalytic cycles re-
quired, but also issues of catalyst destruction and product in-
hibition have to be addressed. To prevent the catalyst de-
struction, development of robust catalysts that are tolerant
of both water and oxygen is required. As for product inhibi-
tion, we thought that the issue might be solved by using con-
tinuous flow with chiral heterogeneous catalysts, if the inhib-
ition occurred under coordination equilibrium. Herein, we
describe the development of robust catalysts and their use
in continuous flow systems using chiral calcium (Ca)-cata-
lyzed asymmetric 1,4-addition of malonates to nitroalkenes
as examples.

Asymmetric 1,4-addition of 1,3-dicarbonyl compounds to
nitroalkenes is one of the most important methods for the
preparation of chiral g-nitro compounds, which can be con-
verted to chiral g-amino acids and other derivatives.[5] We
have recently reported chiral calcium alkoxide (phenoxide)
(Ca(OR)2)-pyridinebisoxazoline (Pybox) complex-catalyzed
asymmetric 1,4-addition reactions of 1,3-dicarbonyl com-
pounds with nitroalkenes to afford the desired adducts in
high yields with high enantioselectivities (ees).[6] In these re-
actions, TONs were around nine in most cases (Table 1, en-

tries 1, 2).[7] The Ca(OR)2 catalysts were relatively unstable
under air (moisture) because of hydrolysis. In addition,
product inhibition occurred in this asymmetric 1,4-addition
because starting materials and products have 1,3-dicarbonyl
and nitro functional groups.[8] To address these issues, we
first focused on calcium chloride (CaCl2). CaCl2 is a
common and abundant salt; it has low toxicity and is mois-
ture tolerant and inexpensive. It is familiar as a desiccant, as
a deicing and freezing point depressing agent, and as an ad-
ditive to food and medicines. Although CaCl2 is also a very
common compound in laboratories and is employed as a
drying agent for liquid or gas materials in desiccators or
drying tubes, use of CaCl2 as a reagent, in particular as a
catalyst in organic synthesis, is very rare.[9] After screening
several reaction conditions, it was found that CaCl2 with an
amine worked quite well for the reaction of methyl malo-
nate (1 a) with b-trans-nitrostyrene (2 a) under air. At this
stage, TONs were increased to around 18 (Table 1, entries 3,
4). It is noted that the CaCl2-Pybox complex is more stable
than the Ca(OR)2 catalysts and can be handled in air. Fur-
thermore, this is the first example of a CaCl2 complex with a
chiral ligand being successfully used as a chiral catalyst.

Next, we examined an application of the chiral CaCl2

system to continuous flow with a chiral heterogeneous cata-
lyst to address the product inhibition issue and to further in-
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Table 1. 1,4-Addition reaction catalyzed by Pybox-Ca(OR)2 and air-stable
Pybox-CaCl2.

Entry Ca Et3N x Temp
[8C]

Yield
[%]

ee
[%]

TON

1[a] CaACHTUNGTRENNUNG(OiPr)2 0 10 0 84 91 8.4
2[a] CaACHTUNGTRENNUNG(OAr)2 0 10 0 94 91 9.4
3[b] CaCl2·2H2O 5 5 0 90 87 18.0
4[b] CaCl2·2H2O 5 5 �20 92 94 18.4

[a] Reaction was conducted under Ar. [b] Reaction was conducted under
air. Ar=p-MeOC6H4
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crease the TON. Continuous flow systems have several ad-
vantages over batch systems in terms of space, energy and
time savings, and facility and safety in large-scale synthe-
sis.[10] Furthermore, in continuous flow with a heterogeneous
catalyst, a product is removed from a catalyst if a product–
catalyst interaction occurs under coordination equilibrium;
that is, inhibition of catalytic turnover by a product may be
avoided to attain a higher TON compared with that in a
batch system. From this point of view, continuous flow with
chiral heterogeneous catalysts is a promising method to real-
ize high performance of chiral catalysts; indeed, several in-
vestigations have been conducted for over 10 years in labo-
ratory-scale experiments,[11] successful examples are limited.
In chiral metal complex-catalyzed continuous flow reactions,
a serious problem, especially in pharmaceuticals, is the
leaching of precious metals, leading not only to loss of ex-
pensive metals but also to contamination of metals in prod-
ucts.[12] Because of this, use of ubiquitous and nontoxic
metals such as Ca is highly de-
sirable.[13]

Because chiral heterogeneous
catalysts are needed for the
flow systems, we then synthe-
sized polymer-supported Pybox
(PS-Pybox, loading of Pybox:
0.72–0.85 mmol g�1) according
to conventional transforma-
tions.[14] PS-Pybox was first
tested in the reaction of 1 a
with 2 a in a batch reactor.
When Ca ACHTUNGTRENNUNG(OiPr)2 was used, the
desired product was obtained in
high yield with good enantiose-
lectivity (88 %, 74 % ee, Table 2,
entry 1). In addition, the de-
sired 1,4-addition reaction pro-
ceeded smoothly using 5 mol % of CaCl2·2 H2O with PS-
Pybox (5 mol %) and triethylamine (5 mol%) to afford the
product in higher yield with higher enantioselectivity
(Table 2, entry 2).

Encouraged by these results, we then tried the 1,4-addi-
tion reaction using a flow reactor (Figure 1).[15] Two glass
columns (f 1.0 cm � 10 cm)[16] were filled with a mixed cata-
lyst powder, which contained PS-Pybox (750 mg, loading of
Pybox: 0.72–0.85 mmol g�1), CaCl2·2 H2O (375 mg), and
Celite (1.4 g) in each column. A precolumn (f 0.5 cm x
5.0 cm) containing activated MS 4 A (500 mg) was attached
to dry the substrate solution.[17] The substrate toluene solu-
tion (1 a : 0.25 m, 2 a : 0.30 m (1.2 equiv), Et3N: 0.005 m

(0.02 equiv)) was passed through the system. Initially, the
flow rate was 50 mL min�1 (3 mL h�1), and it was found that
a lower temperature showed better enantioselectivity
(Table 3, entries 1–3), although the yield was moderate at
�20 8C. To increase the flow rate, we chose 0 8C, and con-
ducted this flow reaction at the rate of 100 mL min�1

(6 mL h�1) at 0 8C (Table 3, entry 4). After stabilizing the
flow system (12 h), fractions each corresponding to 30 min

of flow (theoretically 0.75 mmol of the product included in
each fraction) were collected; each fraction was quenched
with solid NH4Cl and diluted with dichloromethane. After
filtration, the filtrate was evaporated to remove the solvents
under reduced pressure, and the crude product was purified

Table 2. 1,4-Addition reaction catalyzed by PS-Pybox-calcium.

Entry Ca Et3NACHTUNGTRENNUNG[mol %]
Yield
[%]

ee
[%]

TON

1 Ca ACHTUNGTRENNUNG(OiPr)2 0 88 74 17.6
2 CaCl2·2H2O 5 91 91 18.2

Figure 1. 1,4-Addition reaction using a flow reactor.

Table 3. 1,4-Addition reaction using a flow reactor.

Entry Flow rateACHTUNGTRENNUNG[mLmin�1]
Temp
[8C]

Duration of
experiment
[h]

Yield
[%]

ee
[%]

1 50 RT 13 95–96 85–87
2 50 0 13 93–96 92–93
3 50 �20 13 69–71 94
4 100 0 61 91–93 92–93
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by preparative TLC. We monitored 12 fractions during the
61 h-continuous flow. In each fraction, the desired 1,4-addi-
tion product was obtained in high yield (av. 92.4 %) with
high enantioselectivity (av. 92.8 % ee), and minimal deacti-
vation of the flow system was observed during 12–61 h.
Under these conditions, we obtained a total amount of
67.9 mmol of the product and the TON was 62.6. Then, we
further prolonged the reaction time. During analysis of 11
fractions, we found no deactivation of the catalyst after
216 h. The product was obtained in high yield with high
enantioselectivity (av. 95.5 % yield, 92.0 % ee) during 204 h
(8.5 days). The total amount of the product was 291.4 mmol
and the TON reached 228 (Table 4). When we stopped the
system after 216 h, the catalyst was not deactivated (the cat-
alyst was still “living”). Furthermore, when the flow rate
was increased to 200 mLmin�1 (12 mL h�1), high yield and
high enantioselectivity were still obtained (86–90 %, 91 %
ee).

Finally, the substrate scope of the 1,4-addition reaction
using the continuous flow system was surveyed. Several sub-
stituted nitroalkenes bearing either electron-withdrawing or
electron-donating groups and heteroaromatic and aliphatic
nitroalkenes were examined. The collection, isolation, and
analysis were conducted the same as in the previous experi-
ments. We monitored the reactor from 12 h to 18 h for each
substrate (Scheme 1). For nitroalkenes with p-, m-tolyl, and
p-anisyl groups, high yields and high enantioselectivities
were obtained (3 b, 3 c, 3 d). In particular, the m-tolyl sub-
strate gave the highest enantioselectivity (3 c). p-Bromo-
and p-fluoro-substituted aromatic nitroalkenes also reacted
smoothly to afford the desired compounds (3 e, 3 f) in high
yields with high enantioselectivities. Nitroalkenes bearing
heteroaromatics were also good substrates for this flow
system (3 g, 3 h). For a nonaromatic nitroalkene, the yield
was lower while good enantioselectivity was obtained (3 i).
We also examined a nonsubstituted b-ketoester, which af-
forded the desired product 3 j in high yield with high enan-
tioselectivity. It should also be noted that wide substrate
generality was confirmed in this system, and that this is the

first successful example of asymmetric 1,4-addition reactions
of 1,3-dicarbonyl compounds with nitroalkenes using a con-
tinuous flow system and a chiral heterogeneous catalyst.

In summary, we have developed an asymmetric 1,4-addi-
tion of 1,3-dicarbonyl compounds to nitroalkenes affording
the synthetically useful g-nitro carbonyl compounds in high
yields with high enantioselectivities by using a chiral Ca cat-
alyst based on CaCl2 with a chiral ligand that is tolerant of
moisture and can be handled in air. The catalyst is more
robust than the previous Ca(OR)2 catalysts, and the TON of
the catalyst was improved from about 9 to about 18. More-
over, the catalyst was applied to continuous flow with a
chiral heterogeneous catalyst to solve the issue of product
inhibition. A polymer-supported Pybox was synthesized and
was successfully used in a flow system, which worked well
for 8.5 days without loss of activity. The TON reached 228,
the catalyst was still “living,” and wide substrate scope of
this continuous flow system was shown. Thus, it has been
demonstrated that development of robust catalysts and con-
tinuous flow with chiral heterogeneous catalysts is effective
in increasing TONs of the catalyst. Further investigations to
develop more efficient chiral catalysts for asymmetric C�C
bond forming reactions are now in progress.

Table 4. Long-period experiment.

Time [h] Yield [%] ee [%] Time [h] Yield [%] ee [%]

12–12.5 88 93 132–132.5 98 92
24–24.5 91 93 156–156.5 96 92
36–36.5 97 92 180–180.5 97 92
60–60.5 98 92 204–204.5 95 91
84–84.5 97 92 216–216.5 95 91
108–108.5 98 92

Scheme 1. Substrate scope of the 1,4-addition reactions using a flow reac-
tor. [a] Malonate (0.1 m) was used. [b] Malonate (0.5 m) was used. Flow
rate was 50 mL min�1. Yields were determined by 1H NMR spectroscopy
using an internal standard.
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Experimental Section

Catalytic asymmetric 1,4-addition reaction of malonate with trans-b-ni-
trostyrene in a flow system : Two glass columns (f 1.0 cm � 10 cm) were
used. Celite (1.4 g), calcium chloride dihydrate (375 mg), and polymer-
supported Pybox (0.85 mmol g�1, 750 mg) were charged into each
column. For drying substrates and Et3N solution, a precolumn (f 0.5 cm
� 5 cm), which contained dried activated MS 4 A (500 mg), was connect-
ed between an HPLC pump and the reaction columns. Malonic acid
methyl ester (1a, 0.25 mol L�1), trans-b-nitroalkene (2a, 0.30 mol L�1) and
Et3N (0.005 mol L�1) in toluene was passed through the reaction columns
(flow rate: 100 mLmin�1) at 0 8C. After 12 h, several fractions (Table 4)
were collected during flow of the substrate solution, which contained the-
oretically 0.75 mmol of the product in each fraction. The solid NH4Cl
was added to the fraction and the mixture was diluted with CH2Cl2 and
was filtered. The obtained solution was evaporated under vacuum and
purified by preparative TLC. The enantioselectivity of the obtained prod-
uct was determined by HPLC analysis.
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Toward Efficient Asymmetric Carbon–
Carbon Bond Formation: Continuous
Flow with Chiral Heterogeneous Cata-
lysts

A chiral Ca catalyst based on CaCl2

with a chiral ligand was developed and
applied to the asymmetric 1,4-addition
of 1,3-dicarbonyl compounds to nitro-
alkenes as a model system. To address
product inhibition issues, the Ca cata-
lyst was applied to continuous flow

with a chiral heterogeneous catalyst.
The continuous flow system using a
newly synthesized, polymer-supported
Pybox was successfully employed, and
the TON was improved 25-fold com-
pared with those of the previous
Ca(OR)2 catalysts.
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