FULL PAPERS

Gold Catalysis: Mild Conditions for the Transformation of Alkynyl Epoxides to Furans

A. Stephen K. Hashmi,* Pradipta Sinha

Institut für Organische Chemie, Universität Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany Fax: (+49)-711-685-4321, e-mail: hashmi@hashmi.de

Received: November 5, 2003; Accepted: February 11, 2004

Abstract: Gold(III) chloride catalyzes the isomerization of alkynyl epoxides to furans under mild conditions. Additional functional groups like hydroxy groups or aryl bromides do not need to be protected. **Keywords:** alkynes; epox neous catalysis

Keywords: alkynes; epoxides; furans; gold; homogeneous catalysis

Introduction

Furans are an important class of heterocyclic compounds which are extensively used as synthetic building blocks^[1] and appear as a subunit in many natural products and substances of relevance for industry.^[2] Thus the synthesis of furans has always been of importance.^[3]

Since alkynyloxiranes are nowadays easily accessible by either a Sonogashira coupling^[4] of an alkyne and a vinyl halide and a subsequent epoxidation^[5] or nucleophilic ring closure of propargylic alcohols with a leaving group in the homopropargylic position,^[6] the isomerization of alkynyloxiranes to furans looks quite attractive, especially for highly substituted furans. Thus several groups have already addressed this rearrangement. In 1975 Queguiner et al.^[7] and in 1981 Berbalk et al. described the Hg(II)/acid-catalyzed reaction.^[8] Queguiner et al. also reported an isomerization by NaOEt in ethanol.^[7b] Ten years later Marshall et al. discovered that this rearrangement can also be induced by stoichiometric amounts of base using either potassium hydride in THF/HMPA at room temperature or KOt-Bu/18-crown-6 in t-BuOH at 60°C.^[9] This reaction is initiated by an elimination to an cumulenyl alkoxide and thus depended on the propargylic position. Similar results with in situ formed alkynyloxiranes were obtained by Katrizky et al.^[10] A related class of starting materials, alkynyloxiranes with leaving groups in the propargylic position, furnished furans upon treatment with stoichiometric amounts of SmI₂ and catalytic amounts of Pd(0) or Pd(II) in the case of a sequential procedure developed by Aurrechoechea et al.[11] Finally, in 1994 McDonald et al.^[12] reported a molybdenumcatalyzed and last year Liu et al.^[13] reported a ruthenium-catalyzed isomerization of alkynyloxiranes with a terminal alkyne to the corresponding furan. Another reaction that converts alkynyl epoxides to furans, not by isomerization but rather by the reaction with an external carbon nucleophile, is palladium-catalyzed and was published by Tsuji et al. in 1987.^[14]

These approaches to furan in principle allow a perfect regiocontrol in the synthesis of 2-, 3-, 2,3-, 2,4-, 2,5-, 2,3,5- and even 2,3,4,5-substituted furans. But the reactions mentioned above also have some limitations. The disadvantages of the Hg-catalysis are obvious, the base-catalysis depends on a C-H bond in the propargylic position and therefore allows the synthesis of furans which possess a substituent in the 2-position, the latter is also true for the SmI₂. Furthermore, the catalysis by the strong bases will also be problematic when other eliminations are possible or epimerizations of chiral centers are possible. The molybdenum and ruthenium catalysts are limited to a terminal alkyne in the substrate for the formation of the intermediate vinylidene species. We were looking for a catalyst that had the potential of the Hg catalyst without using this problematic metal, would not need terminal alkynes and would work under less acidic or, respectively, less basic conditions. In the context of the recent investigation of the addition of heteronucleophiles to alkynes,^[15] we have now investigated AuCl₃ as a catalyst for this transformation.

Results and Discussion

The synthesis of the starting materials followed the sequence mentioned above. Sonogashira coupling of **1** and **2** afforded the 1,3-enynes **3**. Epoxidation of the latter with mCPBA yielded the alkynyloxiranes **4** (Scheme 1).

Compound 4 was then subjected to a catalytic amount of $AuCl_3$ in acetonitrile at room temperature. The conversions of 4a (entry 1) and 4b (entry 2) proceeded in high yields, the primary alcohol group did not cause any problems (Table 1).

Table 1. Yield of the gold-catalyzed isomerization of 4 to 5.

Entry	Starting material	Product (isolated yield)
1	4 a	5a (80%)
2	4b	5b (84%)
3	4c	5c (56%)
4	4d	5d (53%)
5	4 e	5e (25%)
6	4 f	5f (25%)
7	4g	5g (0%), 6 (69%)

Scheme 1. Sequence to the alkynyl epoxides **4** and their gold-catalyzed isomerization to **5**.

With the aryl substituent in 4c and 4d, the yield dropped to 56% (entry 3) and 53% (entry 4). The same is true for 4e and 4f (25%, entries 5 and 6), which suggests that the low yield is connected to the (CH₂)OH substituent in all the substrates 4c-f (for example, an elimination followed by a polymerization of the vinyl-furan).

Quite nice is the reaction of the diethyl acetal 4g, where the isomerization to the furan is connected with a deprotection of the furylic acetal to the furylaldehyde 6in 67% yield over both steps (entry 7). The NMR spectra taken during the reaction provide evidence for the

Adv. Synth. Catal. 2004, 346, 432-438

asc.wiley-vch.de

deprotection of the aldehyde taking place in the second phase of the reaction when the furan was already formed and the acetal is activated by the furyl (benzyl-like) position. Usually it is synthetically challenging to position a formyl group in the 4-position of the furan ring.

For the mechanism of the reaction we assume that like in many other cases^[16] the gold activates the carboncarbon triple bond for the addition of a nucleophile by co-ordination as shown in **7**. In this case the epoxideoxygen would attack at the distal position of the alkyne, the gold will form a σ -bond to the other carbon atom of the alkyne and the resulting species **8** only has to loose a proton to form the aromatic furan **9** and finally the product **5** after proto-demetallation (Scheme 2).

If the mechanism depicted in Scheme 2 is correct, one proton must migrate to the 3- or 4-position of the furan ring during the reaction. Thus the maximum number of substituents on the furan ring tolerated by this reaction would be three. Further studies are needed to clarify this point.

Scheme 2. Mechanistic proposal for the gold-catalyzed isomerization of 4 to 5.

© 2004 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

Conclusion

In conclusion, with gold(III) chloride the isomerization is possible under mild conditions and tolerates a number of functional groups.

Experimental Section

6-Methylhept-6-en-4-yn-1-ol (3a)

To a stirred solution of 2-bromopropene (1a; 1.81 g, 15.0 mmol) and triethylamine (1.52 g, 15.0 mmol) in THF (5 mL), CuI (76.1 mg, 400 µmol) and (PPh₃)₂PdCl₂ (140 mg, 200 µmol) were added. A solution of 4-pentyn-1-ol (2a; 84.1 mg, 10.0 mmol) in THF (5 mL) was added dropwise at room temperature. The reaction mixture was allowed to stir at room temperature for 17 h. The solvent was evaporated and the column chromatography of the crude product (silica gel, 10% EtOAC-hexane) afforded **3a** as a yellow viscous oil; yield: 1.13 g (91%). IR (film): v = 3350, 3080, 2930, 2860, 2200, 1610 cm⁻¹; ¹H NMR (CDCl₃, 500 MHz): $\delta = 5.19$ (d, J =1.7 Hz, 1H), 5.14 (d, J = 1.7 Hz, 1H), 3.76 (t, J = 6.1 Hz, 2H), 2.43 (t, J = 6.1 Hz, 2H), 1.86 (s, 3H), 1.79 (m, 2H), 1.58 (s, 1H, OH); ¹³C NMR (CDCl₃, 125 MHz): $\delta = 127.39$ (s), 121.02 (d), 88.76 (s), 82.76 (s), 62.14 (t), 31.66 (t), 24.09 (q), 16.18 (t); MS (EI, 70 eV): m/z (%): 124 (36)[M⁺], 105 (25), 91 (100), 79 (56), 65 (23), 53 (23), 41 (16); anal. calcd. for C₈H₁₂O: C77.38, H 9.74; found: C 77.26, H 9.73.

5-(2-Methyloxiranyl)pent-4-yn-1-ol (4a)

To a stirred solution of **3a** (124 mg, 1.00 mmol) and Na₂HPO₄ (350 mg, 2.47 mmol) in DCM (5 mL) was added mCPBA (362 mg, 2.10 mmol) at 0 $^{\circ}$ C. The reaction mixture was stirred at 0°C for 3 h and then allowed to warm to room temperature, whereupon it was diluted with ether and quenched with aqueous saturated NaHCO₃ solution. The organic layer was washed with 10% NaOH, brine and finally dried over anhydrous MgSO₄. The solvent was evaporated and column chromatography (silica gel, 15% EtOAC-hexane) afforded 4a as a colorless viscous oil; yield: 82.0 mg (59%). IR (film): v =3360, 3040, 2920, 2860, 2220, 1260 cm⁻¹; ¹H NMR (CDCl₃, 500 MHz): $\delta = 3.66$ (t, J = 6.2 Hz, 2H), 2.92 (d, J = 5.6 Hz, 1H), 2.69 (d, J = 5.6 Hz, 1H), 2.27 (t, J = 7.1 Hz, 2H), 2.21 (br s, 1H, OH), 1.69 (m, 2H), 1.48 (s, 3H); ¹³C NMR (CDCl₃, 125 MHz): $\delta = 82.59$ (s), 80.15 (s), 61.56 (t), 55.82 (t), 47.83 (s), 31.29 (t), 23.51 (q), 15.38 (t); MS (EI, 70 eV): m/z (%) = 140 (3)[M⁺], 125 (3), 109 (27), 95 (11), 82 (100), 70 (3); anal. calcd. for C₈H₁₂O₂: C 68.55, H 8.63; found: C 68.72, H 8.57.

3-(4-Methylfuran-2-yl)propan-1-ol (5a)

A solution of AuCl₃ in MeCN (66.1 mg; 5% w/w; 3.30 mg, 10.8 μ mol AuCl₃) was added to a solution of **4a** (30.0 mg, 214 μ mol) in MeCN (0.5 mL) at 25 °C. After 17 h (the reaction was monitored by thin layer chromatography) the solvent was evaporated and the residue was purified by column chromatography (silica gel, 12% EtOAC-hexane). The pure com-

A. Stephen K. Hashmi, Pradipta Sinha

pound **5a** was obtained as a yellow viscous liquid; yield: 24.1 mg (80%). IR (film): v = 3375, 2946, 2887, 2363, 1141, 1072, 1037 cm⁻¹; ¹H NMR (CDCl₃, 500 MHz): $\delta = 7.06$ (s, 1H), 5.88 (s, 1H), 3.68 (t, J = 7.45 Hz, 2H), 2.68 (m, 2H), 1.98 (s, 3H), 1.88 (m, 2H), 1.48 (br s, 1H, OH); ¹³C NMR (CDCl₃, 125 MHz): $\delta = 155.89$ (s), 137.85 (d), 120.84 (s), 108.26 (d), 62.46 (t), 31.33 (t), 24.73 (t), 10.12 (q); MS (EI, 70 eV): m/z (%) = 140 (62) [M⁺], 122 (37), 109 (12), 95 (100); HRMS (70 eV): calcd. for C₈H₁₂O₂: C 68.55, H 8.63; found: C 67.54, H 8.62.

7-Methyloct-7-en-5-yn-1-ol (3b)

The compound **3b** was obtained from 5-hexyn-1-ol (**2b**; 393 mg, 4.00 mmol) and triethylamine (911 mg, 9.00 mmol) in THF (4 mL), CuI (45.7 mg, 240 µmol), (PPh₃)₂PdCl₂ (84.2 mg, 120 µmol) and 1a (1.45 g, 12.0 mmol) in THF (4 mL) as described for **3a**. Column chromatography (silica gel, 10% EtOAC-hexane) afforded **3b** as a yellow viscous liquid; yield: 459 mg (83%). IR (film): v = 3320, 3070, 2920, 2840, 2190, 1610 cm⁻¹; ¹H NMR (CDCl₃, 500 MHz): $\delta = 5.19$ (d, J = 1.65 Hz, 1H), 5.13 (d, J = 1.65 Hz, 1H), 3.68 (t, J = 6.2 Hz, 2H), 2.34 (t, J = 6.8 Hz, 2H), 1.86 (s, 3H), 1.69 (m, 2H), 1.63 (m, 2H), 1.48 (s, 1H, OH); ¹³C NMR (CDCl₃, 125 MHz): $\delta = 127.53$ (s), 120.83 (d), 89.23 (s), 82.54 (s), 62.78 (t), 32.19 (t), 25.31 (t), 24.15 (q), 19.36 (t); MS (EI, 70 eV): m/z (%) = 138 (26) [M⁺], 123 (19), 109 (29), 91 (57), 79 (100); anal. calcd. for C₉H₁₄O: C 78.21, H 10.21; found: C 78.61, H 10.11.

6-(2-Methyloxiranyl)hex-5-yn-1-ol (4b)

The compound **4b** was obtained using **3b** (276 mg, 2.00 mmol) and Na₂HPO₄ (710 mg, 5.00 mmol) in DCM (8 mL) and mCPBA (725 mg, 4.20 mmol) as described for **4a**. Column chromatography (silica gel, 15% EtOAC-hexane) furnished pure compound **4b** as a colorless viscous liquid; yield: 212 mg (69%). IR (film): v = 3360, 3040, 2920, 2850, 2210, 1260 cm⁻¹; ¹H NMR (CDCl₃, 500 MHz): $\delta = 3.63$ (t, J = 6.1 Hz, 2H), 2.93 (d, J = 5.6 Hz, 1H), 2.71 (d, J = 5.6 Hz, 1H), 2.21 (t, J = 6.9 Hz, 2H), 1.71 (br s, 1H, OH), 1.63 (m, 2H), 1.56 (m, 2H), 1.50 (s, 3H); ¹³C NMR (CDCl₃, 125 MHz): $\delta = 82.99$ (s), 80.11 (s), 61.56 (t), 55.88 (t), 47.85 (s), 32.03 (t), 24.96 (t), 23.60 (q), 16.70 (t); MS (EI, 70 eV): m/z (%) = 154 (21) [M⁺], 123 (55), 109 (25), 95 (92), 91 (100), 81 (26), 67 (53), 57 (9); anal. calcd. for C₉H₁₄O₂: C 70.10, H 9.15; found: C 69.74, H 9.07.

4-(4-Methylfuran-2-yl)butan-1-ol (5b)

A solution of AuCl₃ in MeCN (255 mg; 5% w/w, 12.8 mg, 42.0 µmol AuCl₃) was added to a solution of **4b** (130 mg, 843 µmol) in MeCN (1 mL) at 25 °C. After 17 h (the reaction was monitored by thin layer chromatography) the solvent was evaporated and residue was purified by column chromatography (silica gel, 10% EtOAC-hexane). The pure compound **5b** was obtained in as a colorless viscous liquid; yield: 109 mg (84%). IR (film): $v = 3320, 2920, 2850, 1610, 1100, 1040 \text{ cm}^{-1}$; ¹H NMR (CDCl₃, 500 MHz): $\delta = 7.05$ (s, 1H), 5.86 (s, 1H), 3.66 (t, J = 6.4 Hz, 2H), 2.60 (m, J = 7.3 Hz, 2H), 1.97 (s, 3H), 1.69 (m, 2H), 1.61 (m, 2H), 1.36 (br s, 1H, OH); ¹³C NMR (CDCl₃, 125 MHz): $\delta = 156.35$ (s), 137.69 (d), 120.78 (s), 108.09 (d),

434 © 2004 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

```
asc.wiley-vch.de
```

63.02 (t), 32.51 (t), 28.09 (t), 24.59 (t), 10.14 (q); MS (EI, 70 eV): m/z (%) = 154 (54) [M⁺], 108 (49), 95 (100), 84 (15), 67 (15), 41 (13); anal. calcd. for C₉H₁₄O₂: C 70.10, H 9.15; found: C 69.57, H 9.18.

3-Methylene-5-phenylpent-4-yn-1-ol (3c)

The compound 3c was obtained from 3-bromo-3-buten-1-ol (1b; 604 mg, 4.00 mmol) and triethylamine (607 mg, 6.00 mmol) in THF (3 mL), CuI (30.5 mg, 160 µmol), $(PPh_3)_2PdCl_2$ (56.2 mg, 80.0 µmol) and phenylacetylene (2c; 540 mg, 6.00 mmol) in THF (3 mL) in analogy to 3a. Column chromatography (silica gel, 10% EtOAC-hexane) furnished pure compound 3c as a yellow viscous liquid; yield: 490 mg (71%). IR (film): v = 3070, 3040, 2860, 2220, 1650, 1600 cm⁻¹; ¹H NMR (CDCl₃, 500 MHz): $\delta = 7.43$ (m, 2H), 7.32 (m, 3H), 5.55 (d, J = 1.1 Hz, 1H), 5.41 (d, J = 1.1 Hz, 1H), 3.88 (t, J =6.0 Hz, 2H), 2.52 (t, J=6.1 Hz, 2H), 1.62 (br s, 1H, OH); ¹³C NMR (CDCl₃, 125 MHz): $\delta = 131.94$ (d, 2C), 128.74 (d), 128.67 (d, 2C), 128.34 (s), 124.15 (t), 123.22 (s), 90.27 (s), 89.16 (s), 61.23 (t), 40.88 (t); MS (EI, 70 eV): m/z (%) = 172 (100) [M⁺], 141 (70), 115 (46), 102 (17), 77 (17); anal. calcd. for C₁₂H₁₂O: C 83.69, H 7.02; found: C 83.28, H 7.08.

2-(2-Phenylethynyloxiranyl)ethanol (4c)

The compound **4c** was obtained using **3c** (172 mg, 1.00 mmol) and Na₂HPO₄ (350 mg, 2.46 mmol) in DCM (5 mL) and mCPBA (362 mg, 2.10 mmol) as described for **4a**. Column chromatography (silica gel, 15% EtOAC-hexane) furnished **4c** as a colorless viscous liquid; yield: 58.4 mg (31%). IR (film): v = 3620 (OH), 3040, 2940, 2860, 2220, 1650, 1590 cm⁻¹; ¹H NMR (CDCl₃, 500 MHz): $\delta = 7.39$ (m, 2H), 7.28 (m, 3H), 3.92 (m, 2H), 3.10 (d, J = 5.4 Hz, 1H), 2.93 (d, J = 5.4 Hz, 1H), 2.15 (br s, 1H, OH), 2.11 (m, 1H), 2.01 (m, 1H); ¹³C NMR (CDCl₃, 125 MHz): $\delta = 132.18$ (d), 129.14 (d, 2C), 128.69 (d, 2C), 122.05 (s), 87.17 (s), 83.96 (s), 59.79 (t), 54.81 (t), 49.99 (s), 39.05 (t); MS (EI, 70 eV): m/z (%) = 188 (21) [M⁺], 172 (5), 145 (3), 127 (100), 102 (20), 77 (20); anal. calcd. for C₁₂H₁₂O₂: C 76.57, H 6.43; found: C 76.02, H 6.32.

2-(5-Phenylfuran-3-yl)ethanol (5c)

A solution of AuCl₃ in MeCN (96.0 mg; 5% w/w, 4.80 mg, 15.8 μ mol AuCl₃) was added to a solution of 4c (39.9 mg, 212 µmol) in MeCN (0.5 mL) at 25 °C. After 27 h (the reaction was monitored by thin layer chromatography) the solvent was evaporated and residue was purified by column chromatography (silica gel, 8% EtOAC-hexane). Compound 5c was obtained as a yellow viscous liquid; yield: 22.4 mg (56%). IR (film): v = 3383, 2925, 2885, 1617, 1580, 1123 cm⁻¹; ¹H NMR $(CDCl_3, 500 \text{ MHz}): \delta = 7.52 \text{ (m, 2H)}, 7.26 \text{ (s, 1H)}, 7.24 \text{ (m, 2H)},$ 7.14 (m, 1H), 6.48 (s, 1H), 3.72 (t, J = 6.3 Hz, 2H), 2.61 (t, J =6.3 Hz, 1H), 1.57 (br s, 1H, OH); ¹³C NMR (CDCl₃, 125 MHz): $\delta = 154.76$ (s), 139.76 (d), 131.14 (s), 129.01 (d, 2C), 127.74 (d), 124.07 (d, 2C), 123.73 (s), 106.73 (d), 62.85 (t), 28.83 (t); MS (EI, 70 eV): m/z (%) = 187 (49) [M⁺], 159 (9), 105 (100), 91 (5), 77 (32); anal. calcd. for $C_{12}H_{12}O_2$: C 76.57, H 6.43; found: C 76.72, H 6.07.

Adv. Synth. Catal. 2004, 346, 432-438

asc.wiley-vch.de

© 2004 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

435

5-(4-Bromophenyl)-3-methylenepent-4-yn-1-ol (3d)

The compound 3d was obtained using 1b (680 mg, 4.50 mmol) and triethylamine (683 mg, 6.75 mmol) in THF (3 mL), CuI (34.3 mg, 180 µmol), (PPh₃)₂PdCl₂ (63.2 mg, 90.0 µmol) and 1bromo-4-ethynylbenzene (2d; 905 mg, 5.00 mmol) in THF (3 mL) as described for **3a**. Column chromatography (silica gel, 10% EtOAC-hexane) afforded **3d** as a yellow solid; yield: 418 mg (37%). IR (film): $v = 3360, 2840, 1600, 800, 580 \text{ cm}^{-1}$; ¹H NMR (CDCl₃, 500 MHz): $\delta = 7.39$ (d, J = 8.4 Hz, 2H), 7.26 (d, J = 8.4 Hz, 2H), 5.51 (d, J = 1.2 Hz, 1H), 5.39 (d, J = 1.2 Hz, 1000 Hz)1H), 3.82 (t, J = 6.2 Hz, 2H), 2.46 (t, J = 6.2 Hz, 2H), 1.74 (br s, 1H, OH); ¹³C NMR (CDCl₃, 125 MHz): $\delta = 133.32$ (d, 2C), 131.92 (d, 2C), 128.09 (s), 124.56 (t), 122.94 (s), 122.16 (s), 90.29 (s), 89.07 (s), 61.12 (t), 40.69 (t); MS (EI, 70 eV): m/z (%) = 252 (98)/250 (100) [M⁺], 206 (8), 171 (15), 153 (19), 128 (89), 95 (14), 77 (3); anal. calcd. for $C_{12}H_{11}BrO: C 57.39$, H 4.42, Br 31.82; found: C 58.07, H 4.17, Br 30.23.

2-[2-(4-Bromophenylethynyl)oxiranyl]ethanol (4d)

The compound 4d was obtained using 3d (309 mg, 1.23 mmol) and Na₂HPO₄ (436 mg, 3.07 mmol) in DCM (6 mL) and mCPBA (425 mg, 2.46 mmol)as described for 4a. Column chromatography (silica gel, 15% EtOAC-hexane) afforded 4d as a yellow solid; yield: 53.6 mg (16%). IR (film): v = 3370, 3060, 2912, 2852, 2190, 820 cm⁻¹; ¹H NMR (CDCl₃, 500 MHz): $\delta = 7.39$ (d, J = 8.4 Hz, 2H), 7.26 (m, J = 8.4 Hz, 2H), 3.91 (m, 2H), 3.09 (d, J = 5.4 Hz, 1H), 2.94 (d, J = 5.4 Hz, 1H), 2.08 (m, 1H), 2.02 (m, 1H), 1.22 (br s, 1H, OH); ¹³C NMR (CDCl₃, 125 MHz): $\delta = 133.62 \text{ (d, 2C)}, 131.95 \text{ (d, 2C)}, 123.53 \text{ (s)}, 121.09$ (s), 88.48 (s), 82.85 (s), 59.75 (t), 54.75 (t), 49.90 (s), 38.96 (t); MS (EI, 70 eV): m/z (%) = 268 (28)/266 (29) [M⁺], 238 (76), 236 (77), 207 (80), 205 (66), 182 (15), 157 (6), 129 (54), 126 (85), 73 (100); HRMS (70 eV): calcd. for $C_{12}H_{11}^{-79}BrO_2$ (M⁺): 265.9942; found: 265.9928/calcd. for $C_{12}H_{11}^{81}BrO_2(M^+)$: 267.9922; found: 267.9908.

2-[5-(4-Bromophenyl)-furan-3-yl]ethanol (5d)

A solution of AuCl₃ in MeCN (54.1 mg; 5% w/w, 2.71 mg, 8.92 μ mol AuCl₃) was added to a solution of 4d (32.1 mg, 120 µmol) in MeCN (0.5 mL) at 25 °C. After 27 h (the reaction was monitored by thin layer chromatography) the solvent was evaporated and residue was purified by column chromatography (silica gel, 10% EtOAC-hexane). The pure compound 5d was obtained as yellow solid; yield: 17.1 mg (53%). IR (film): $v = 3411, 3061, 2924, 2854, 1584, 1265, 1067, 822 \text{ cm}^{-1}$; ¹H NMR $(CDCl_3, 500 \text{ MHz}): \delta = 7.49 \text{ (m, 4H)}, 7.34 \text{ (s, 1H)}, 6.59 \text{ (s, 1H)},$ 3.83 (t, J = 6.3 Hz, 2H), 2.72 (t, J = 6.3 Hz, 2H), 1.56 (brs, 1H, OH); ¹³C NMR (CDCl₃, 125 MHz): $\delta = 153.66$ (s), 140.08 (d), 132.15 (d, 2C), 130.06 (s), 125.57 (d, 2C), 123.99 (s), 121.48 (s), 107.36 (d), 62.82 (t), 28.76 (t); MS (EI, 70 eV): m/z (%) = 268 (99)/266 (28) [M⁺], 237 (24), 235 (24), 200 (13), 183 (33), 128 (83); HRMS (70 eV): calcd. for C₁₂H₁₁⁷⁹BrO₂ (M⁺): 265.9942; found: 265.9943/calcd. for C₁₂H₁₁⁸¹BrO₂ (M⁺): 267.9922; found: 267.9922.

Pent-4-ynoic Acid 2-Isopropyl-5-methylcyclohexyl Ester (2e)

To a solution of 4-pentynoic acid (491 mg, 5.00 mmol) in CCl₄ (15 mL), L-menthol (859 mg, 5.50 mmol) and 4-toluenesulfonic acid monohydrate (24.7 mg, 130 µmol) were added. The reaction mixture was refluxed for 20 h. The reaction mixture was cooled to room temperature and then diluted with ether. The organic layer was washed with saturated NaHCO₃, brine and finally dried over anhydrous MgSO₄. The solvent was evaporated and column chromatography (silica gel, 1% EtOAC-hexane) furnished 2e as a colorless viscous liquid; yield: 1.01 g (85%). IR (film): v = 3300, 2940, 2850, 2080, 1750, 1360 cm⁻¹; ¹H NMR (CDCl₃, 500 MHz): $\delta = 4.70$ (m, 1H), 2.52 (m, 4H), 1.99 (s, 1H), 1.96 (m, 1H), 1.87 (m, 1H), 1.69 (m, 2H), 1.58 (m, 1H), 1.49 (m, 1H), 1.47 (m, 1H), 0.98 (m, 2H), 0.89 (m, 6H), 0.76 (m, 3H); ¹³C NMR (CDCl₃, 125 MHz): $\delta = 171.68$ (s), 82.90 (s), 74.97 (d), 69.29 (d), 47.36 (d), 41.23 (t), 34.57 (t), 34.08 (t), 31.72 (d), 26.57 (d), 23.75 (t), 22.36 (q), 21.09 (q), 16.66 (q), 14.87 (t); MS (CI): m/z (%) = 237 (100) [M⁺], 221 (6), 138 (59), 95 (22), 81 (15); anal. calcd. for C₁₅H₂₄O₂: C 76.23, H 10.24; found: C 76.15, H 10.11.

6-(2-Hydroxyethyl)hept-6-en-4-ynoic Acid 2-Isopropyl-5-methylcyclohexyl Ester (3e)

The compound **3e** was obtained using **1b** (755 mg, 5.00 mmol) and triethylamine (607 mg, 6.00 mmol) in THF (3 mL), CuI (30.5 mg, 160 µmol), (PPh₃)₂PdCl₂ (56.2 mg, 80.0 µmol) and 2e (945 mg, 4.00 mmol) in THF (3 mL) as described for 3a. Column chromatography (silica gel, 5% EtOAC-hexane) furnished 3e as a colorless viscous liquid; yield: 1.32 mg (86%). IR (film): v = 3440, 3080, 2940, 2850, 2190, 1730 cm⁻¹; ¹H NMR (CDCl₃, 500 MHz): $\delta = 5.35$ (d, 1H), 5.26 (d, 1H), 4.70 (m, 1H), 3.77 (t, J = 5.9 Hz, 2H), 2.62 (m, 2H), 2.53 (m, 2H), 2.37 (m, 2H), 1.97 (m, 1H), 1.86 (m, 1H), 1.66 (m, 2H), 1.62 (m, 2H), 1.48 (m, 1H), 1.37 (m, 1H), 1.04 (m, 2H), 0.89 (m, 6H), 0.76 (m, 3H); ¹³C NMR (CDCl₃, 125 MHz): $\delta = 171.78$ (s), 128.49 (s), 123.17 (t), 89.19 (d), 81.15 (s), 74.92 (d), 61.15 (t), 47.30 (d), 41.25 (t), 40.94 (t), 34.55 (t), 34.29 (t), 31.70 (d), 26.63 (d), 23.75 (t), 22.35 (q), 21.11 (q), 16.66 (q), 15.73 (t); MS (EI, 70 eV): m/z (%) = 306 (2) [M⁺], 265 (28), 168 (41), 138 (100), 83 (82); anal. calcd. for C₁₉H₃₀O₃: C 74.47, H 9.87; found: C 74.33, H 9.77.

5-[2-(2-Hydroxyethyl)oxiranyl]-pent-4-ynoic Acid 2-Isopropyl-5-methylcyclohexyl Ester (4e)

The compound **4e** was obtained using **3e** (306 mg, 1.00 mmol) and Na₂HPO₄ (355 mg, 2.50 mmol) in DCM (5 mL) and mCPBA (362 mg, 2.10 mmol) as described for **4a**. Column chromatography (silica gel, 12% EtOAC-hexane) furnished **4c** as a colorless viscous liquid; yield: 230 mg (71%). IR (film): v = 3440, 3040, 2940, 2860, 2210, 1730, 1250 cm⁻¹; ¹H NMR (CDCl₃, 500 MHz): $\delta = 4.62$ (m, 1H), 3.76 (m, 2H), 2.89 (d, J = 5.5 Hz, 1H), 2.76 (d, J = 5.5 Hz, 1H), 2.51 (m, 1H, OH), 2.44 (m, 4H), 1.88 (m, 3H), 1.77 (m, 1H), 1.62 (m, 2H), 1.41 (m, 1H), 1.30 (m, 1H), 1.35 (m, 1H), 0.97 (m, 2H), 0.83 (m, 6H), 0.68 (m, 3H); ¹³C NMR (CDCl₃, 125 MHz): $\delta = 171.39$ (s), 82.79 (s), 79.04 (s), 74.82 (d), 59.45 (t), 54.39 (t), 49.47 (s), 47.09 (d), 41.04 (t), 39.09 (t), 34.35 (t), 33.73 (t), 31.52 (d), 26.47 (d), 23.58 (t),

22.17 (q), 20.89 (q), 16.49 (q), 14.89 (t); MS (EI, 70 eV): m/z (%) = 322 (3) [M⁺], 184 (4), 138 (5), 95 (5); anal. calcd. for $C_{19}H_{30}O_4$: C 70.77, H 9.38; found C 70.12, H 9.38.

5-[2-(2-Hydroxyethyl)furan-2-yl]propionic Acid 2-Isopropyl-5-methylcyclohexyl Ester (5e)

A solution of AuCl₃ in MeCN (258 mg; 5% w/w, 12.9 mg, 42.5 µmol AuCl₃) was added to a solution of 4e (183 mg, 567 µmol) in MeCN (1 mL) at 25 °C. After 28 h (the reaction was monitored by thin layer chromatography) the solvent was evaporated and residue was purified by column chromatography (silica gel, 18% EtOAC-hexane). Product 5e was obtained as a yellow viscous liquid; yield: 46.3 mg (25%). IR (film): v = 3420, 2940, 2850, 1750, 1160, 1030 cm⁻¹; ¹H NMR $(CDCl_3, 500 \text{ MHz}): \delta = 7.15 \text{ (s, 1H)}, 5.94 \text{ (s, 1H)}, 4.68 \text{ (m, 1H)},$ 3.75 (t, J = 6.35 Hz, 2H), 2.92 (t, J = 7.6 Hz, 2H), 2.61 (m, 4H), 1.96 (m, 1H), 1.79 (m, 1H), 1.66 (m, 3H), 1.53 (br s, 1H), 1.46 (m, 1H), 1.35 (m, 1H), 1.24 (m, 1H), 1.03 (m, 1H), 0.87 (m, 6H), 0.73 (m, 3H); ${}^{13}C$ NMR (CDCl₃, 125 MHz): $\delta = 172.42$ (s), 155.22 (s), 138.71 (d), 122.18 (s), 107.12 (d), 74.71 (d), 62.75 (t), 47.31 (d), 41.21 (t), 34.56 (t), 33.25 (t), 31.69 (d), 28.80 (t), 26.55 (d), 24.02 (t), 23.74 (t), 22.35 (q), 21.09 (q), 16.62 (q); MS (EI, 70 eV): *m*/*z* (%) = 322 (13) [M⁺], 184 (95), 138 (100), 95 (94); anal calcd. for $C_{19}H_{30}O_4$: C 70.77, H 9.38; found: C 70.77, H 9.40.

3-Methylenoct-4-yn-1-ol (3f)

The compound **3f** was obtained using 1b (604 mg, 4.00 mmol) and triethylamine (607 mg, 6.00 mmol) in THF (3 mL), CuI (30.5 mg, 160 µmol), (PPh₃)₂PdCl₂ (56.2 mg, 80.0 µmol) and 1-pentyne (**2f**; 489 mg, 8.00 mmol) in THF (3 mL) as described for **3a**. Column chromatography (silica gel, 2% EtOAC-hexane) afforded **3f** as a yellow viscous liquid; yield: 226 mg (41%). IR (film): v = 3330, 3080, 2940, 2850, 2190, 1600 cm⁻¹; ¹H NMR (CDCl₃, 500 MHz): $\delta = 5.34$ (d, J = 1.2 Hz, 1H), 5.24 (d, J = 0.8 Hz, 1H), 3.79 (m, 2H), 2.39 (t, J = 6.0 Hz, 2H), 2.28 (t, J = 7.05 Hz, 2H), 1.66 (br s, 1H, OH), 1.54 (m, 2H), 0.99 (t, J = 7.45 Hz, 3H); ¹³C NMR (CDCl₃, 125 MHz): $\delta = 128.79$ (s), 122.58 (t), 91.38 (s), 80.64 (s), 62.25 (t), 41.13 (t), 22.45 (t), 21.56 (t), 13.83 (q); MS (EI, 70 eV): m/z (%) = 138 (100) [M⁺], 109 (38), 95 (75), 81 (22); anal. calcd. for C₉H₁₄O: C 78.21, H 10.21; found: C 77.85, H 10.43.

2-(2-Pent-1-ynyloxiranyl)ethanol (4f)

The compound **4f** was obtained using **3f** (258 mg, 1.87 mmol) and Na₂HPO₄ (664 mg, 4.68 mmol) in DCM (8 mL) and mCPBA (678 mg, 3.93 mmol) as described for **4a**. Column chromatography (silica gel, 12% EtOAC-hexane) afforded **4f** as a yellow oil; yield: 170 mg (59%). IR (film): $v = 3400, 3040, 2940, 2860, 2205, 1250 \text{ cm}^{-1}; ^1\text{H} NMR (CDCl_3, 500 \text{ MHz}): \delta = 3.78 (m, 2H), 2.68 (d,$ *J*= 5.4 Hz, 1H), 2.76 (d,*J*= 5.4 Hz, 1H), 2.67 (br s, 1H, OH), 2.09 (t,*J*= 7.05 Hz, 2H), 1.88 (m, 2H), 1.44 (m, 2H), 0.89 (t,*J* $= 7.3 Hz, 3H); ¹³C NMR (CDCl_3, 125 MHz): <math>\delta = 84.79$ (s), 78.29 (s), 59.49 (t), 54.51 (t), 49.62 (s), 39.22 (t), 21.94 (t), 20.69 (t), 13.54 (q); MS (EI, 70 eV): *m/z* (%) = 154 (2) [M⁺], 139 (4), 111 (14), 95 (65), 79 (199), 67 (36); anal. calcd. for C₉H₁₄O₂: C 70.10, H 9.15; found: C 70.40, H 9.05.

```
asc.wiley-vch.de
```

2-(5-Propylfuran-3-yl)ethanol (5f)

A solution of AuCl₃ in MeCN (472 mg; 5% w/w, 23.6 mg, 77.8 µmol AuCl₃) was added to a solution of **4f** (160 mg, 1.04 mmol) in MeCN (1 mL) at 25 °C. After 9 h (the reaction was monitored by thin layer chromatography) the solvent was evaporated and residue was purified by column chromatography (silica gel, 8% EtOAC-hexane). The pure compound **5f** was obtained as a yellow viscous liquid; yield: 40.3 mg (25%). IR (film): $v = 3411, 2964, 2871, 1613, 1256, 1053 \text{ cm}^{-1}; ^1\text{H NMR}$ (CDCl₃, 500 MHz): $\delta = 7.15$ (s, 1H), 5.91 (s, 1H), 3.76 (t, *J* = 6.35 Hz, 2H), 2.63 (t, *J* = 6.4 Hz, 2H), 2.55 (t, *J* = 7.6 Hz, 2H), 1.64 (m, 2H), 1.62 (br s, 1H, OH), 0.95 (t, 3H); ¹³C NMR (CDCl₃, 125 MHz): $\delta = 154.44$ (s), 138.25 (d), 122.01 (s), 106.54 (d), 62.78 (t), 30.44 (t), 28.84 (t), 21.61 (t), 14.09 (q); MS (EI, 70 eV): m/z (%) = 154 (56) [M⁺], 136 (2), 125 (100), 111 (5), 95 (9), 67 (12).

6-Diethoxymethylhept-6-en-4-yn-1-ol (3g)

The compound 3g was obtained using 2-bromo-3,3-diethoxypropene (1c; 2.09 g, 10.0 mmol) and triethylamine (911 mg, 9.00 mmol) in THF (4 mL), CuI (45.7 mg, 240 µmol), $(PPh_3)_2PdCl_2$ (84.2 mg, 120 µmol) and 2a (505 mg, 6.00 mmol) in THF (4 mL) as described for 3a. Column chromatography (silica gel, 10% EtOAC-hexane) furnished **3g** as a yellow viscous liquid; yield: 695 mg (55%). IR (film): $v = 3400, 3090, 2960, 2860, 2250, 1610, 1110 \text{ cm}^{-1}; {}^{1}\text{H NMR}$ $(CDCl_3, 500 \text{ MHz}): \delta = 5.79 \text{ (s, 1H)}, 5.71 \text{ (s, 1H)}, 5.02 \text{ (s, 1H)},$ 3.96 (t, J = 5.8 Hz, 2H), 3.84 (m, 2H), 3.71 (m, 2H), 2.65 (t, J = 6.9 Hz, 2H), 2.15 (br s, 1H, OH), 1.99 (m, 2H), 1.42 (t, J =7.1 Hz, 6H); ¹³C NMR (CDCl₃, 125 MHz): $\delta = 130.12$ (s), 122.79 (t), 101.53 (d), 91.24 (s), 78.99 (s), 62.14 (t), 61.89 (t, 2C), 31.44 (t), 16.54 (t), 15.43 (q, 2C); MS (EI, 70 eV): m/z (%) = 212 (2) [M⁺], 167 (8), 103 (100), 75 (60), 47 (57); anal. calcd. for C₁₂H₂₀O₃: C 67.89, H 9.50; found: C 67.15, H 9.64.

5-[(2-Diethoxymethyloxiranyl)]pent-4-yn-1-ol (4g)

The compound **4g** was obtained using 3 g (425 mg, 2.00 mmol) and Na₂HPO₄ (710 mg, 5.00 mmol) in DCM (8 mL) and mCPBA (725 mg, 4.20 mmol) as described for **4a**. Column chromatography (silica gel, 18% EtOAC-hexane) furnished **4g** as a yellow oil; yield: 139 mg (30%). IR (film): $v = 3420, 3050, 2960, 2860, 2220, 1100, 900 \text{ cm}^{-1}$; ¹H NMR (CDCl₃, 500 MHz): $\delta = 4.36$ (s, 1H), 3.68 (m, 4H), 3.55 (m, 2H), 2.96 (d, J = 5.8 Hz, 1H), 2.89 (d, J = 5.8 Hz, 1H), 2.31 (t, J = 6.9 Hz, 2H), 2.29 (br s, 1H, OH), 1.71 (m, 2H), 1.17 (m, 6H); ¹³C NMR (CDCl₃, 125 MHz): $\delta = 101.69$ (d), 85.04 (s), 76.57 (s), 63.79 (t), 63.60 (t), 61.57 (t), 51.62 (s), 51.18 (t), 31.11 (t), 15.73 (t), 15.37 (q), 15.34 (q); MS (EI, 70 eV): m/z (%) = 228 (3) [M⁺], 183 (12), 125 (6), 103 (100), 75 (27), 47 (26); anal. calcd. for C₁₂H₂₀O₄: C 63.14, H 8.83; found: C 63.11, H 8.65.

5-(3-Hydroxypropyl)furan-2-carbaldehyde (6)

A solution of AuCl₃ in MeCN (88.3 mg; 5% w/w, 4.41 mg, 14.5 μ mol AuCl₃) was added to a solution of **4g** (66.2 mg, 290 μ mol) in MeCN (0.5 mL) at 25 °C. After 1 h (the reaction was monitored by thin layer chromatography) the solvent was

Adv. Synth. Catal. 2004, 346, 432-438

asc.wiley-vch.de

evaporated and residue was purified by column chromatography (silica gel, 30% EtOAC-hexane). Compound **6** was obtained as a yellow viscous liquid; yield: 30.7 mg (69%). IR (film): v = 3400, 2920, 2860, 2710, 2240, 1680, 1120, 1040 cm⁻¹; ¹H NMR (CDCl₃, 500 MHz): $\delta = 9.85$ (s, 1H), 7.95 (s, 1H), 6.41 (s, 1H), 3.69 (t, J = 6.3 Hz, 2H), 2.76 (t, J = 7.6 Hz, 2H), 1.90 (m, 2H), 1.88 (br s, 1H, OH); ¹³C NMR (CDCl₃, 500 MHz): $\delta =$ 184.99 (d), 159.09 (s), 150.91 (d), 129.81 (s), 102.48 (d), 61.93 (t), 30.73 (t), 24.48 (t); MS (EI, 70 eV): m/z (%) = 154 (49) [M⁺], 136 (100), 109 (60), 79 (22); HRMS (70 eV): calcd. for C₈H₁₀O₃ (M⁺): 154.0630; found: 154.0630.

Acknowledgements

P. S. thanks the DAAD for a scholarship (A/02/29759). We also are indebted to the Fonds der Chemischen Industrie and the Karl-Ziegler Stiftung.

References

- [1] M. Maier, in: *Organic Synthesis Highlights II*, (Ed.: H. Waldmann), VCH, Weinheim, **1995**, pp. 231–242.
- [2] D. M. X. Donnelly, M. J. Meegan, in: *Comprehensive Heterocyclic Chemistry*, (Eds.: A. R. Katritzky, C. W. Rees), Pergamon: New York, **1984**, Vol. 4, pp. 657–712.
- [3] a) B. H. Lipshutz, Chem. Rev. 1986, 86, 795-819; b) T. L. Gilchrist, Contemp. Org. Synth. 1994, 1, 205-217; c) T. L. Gilchrist, Contemp. Org. Synth. 1995, 2, 337-356; d) T. L. Gilchrist, J. Chem. Soc. Perkin Trans. 1 1998, 615-628; e) X. L. Hou, H. Y. Cheung, T. Y. Hong, P. L. Kwan, T.-H. Lo, S.-Y. Tong, H. N. C. Wong, Tetrahedron 1998, 54, 1955-2020.
- [4] a) K. Sonogashira, Y. Tohda, N. Hagihara, *Tetrahedron Lett.* 1975, 4467–4470; b) R. R. Tykwinski, *Angew. Chem.* 2003, 115, 1604–1606; *Angew. Chem. Int. Ed.* 2003, 42, 1566–1568.
- [5] a) Y. Yamano, M. Ito, J. Chem. Soc. Perkin Trans. 1 1993, 1599–1610; b) G.-A. Cao, Z.-X. Wang, Y. Tu, Y. Shi, Tetrahedron Lett. 1998, 39, 4425–4428.
- [6] a) T. Kanger, P. Niidas, A.-M. Müürisepp, T. Pehk, M. Loop, *Tetrahedron: Asymmetry* 1998, 9, 2499–2508;
 b) R. Sánchez-Obregón, B. Ortiz, F. Walls, F. Yuste, J. L. García Ruano, *Tetrahedron: Asymmetry* 1999, 10, 947–955.
- [7] a) P. Ribereau, G. Queguiner, *Can. J. Chem.* 1983, *61*, 334–342; b) P. Ribereau, G. Nevers, G. Queguiner, P. Pastour, *Compt. Rend. Hebd. Seances Acad. Sci. Ser. C* 1975, 280, 293–296.
- [8] a) H. Berbalk, K. Eichinger, W. Winetzhammer, *Helv. Chim. Acta* 1981, 64, 1026–1031; b) H. Berbalk, K. Eichinger, R. Schuster, *Synthesis* 1981, 613–616; c) H. Berbalk, K. Eichinger, R. Schuster, *Arch. Pharm.* 1982, 315, 79–82; d) K. Eichinger, H. Berbalk, E. Machat, J. Wimmer, *J. Chem. Res. Miniprint* 1983, 7, 1625–1649.
- [9] a) J. A. Marshall, W. J. DuBay, J. Org. Chem. 1991, 56, 1685–1687; b) J. A. Marshall, W. J. DuBay, J. Am. Chem. Soc. 1992, 114, 1450–1456.
- [10] A. R. Katritzky, J. Li, J. Org. Chem. 1995, 60, 638-643.

- [11] a) J. M. Aurrecoechea, M. Solay-Ispizua, *Heterocycles* 1994, 37, 223–226; b) J. M. Aurrecoechea, E. Pérez, *Tetrahedron Lett.* 2001, 42, 3839–3841; c) J. M. Aurrecoechea, E. Pérez, M. Solay, *J. Org. Chem.* 2001, 66, 564–569.
- [12] F. E. McDonald, C. C. Schultz, J. Am. Chem. Soc. 1994, 116, 9363–9364.
- [13] C.-Y. Lo, H. Guo, J.-J. Lian, F.-M. Shen, R.-S. Liu, J. Org. Chem. 2002, 67, 3930–3932.
- [14] a) I. Minami, M. Yuhara, J. Tsuji, *Tetrahedron Lett.* 1987, 28, 629–632; b) I. Minami, M. Yuhara, H. Watanabe, J. Tsuji, J. Organomet. Chem. 1987, 334, 225–242.
- [15] a) Y. Fukuda, K. Utimoto, H. Nozaki, *Heterocycles* 1987, 25, 297–300; b) Y. Fukuda, K. Utimoto, *Synthesis* 1991, 975–978; c) Y. Fukuda, K. Utimoto, *J. Org. Chem.* 1991, 56, 3729–3731; d) Y. Fukuda, K. Utimoto, *Bull. Chem. Soc. Jpn.* 1991, 64, 2013–2015; e) J. H. Teles, S. Brode, M. Chabanas, *Angew. Chem.* 1998, 110, 1475–1478;

Angew. Chem. Int. Ed. 1998, 37, 1415-1418; f) A. S. K. Hashmi, L. Schwarz, J.-H. Choi, T. M. Frost, Angew. Chem. 2000, 112, 2382-2385; Angew. Chem. Int. Ed. 2000, 39, 2285-2288; g) T. E. Müller, M. Grosche, E. Herdtweck, A.-K. Pleier, E. Walter, Y.-K. Wan, Organometallics 2000, 19, 170-183; h) A. Arcadi, S. Di Giuseppe, F. Marinelli, E. Rossi, Adv. Synth. Catal. 2001, 343, 443-446; i) A. Hoffmann-Röder, N. Krause, Org. Lett. 2001, 3, 2537-2538; j) S. Kobayashi, K. Kakumoto, M. Sugiura, Org. Lett. 2002, 4, 1319-1322; k) E. Mizushima, K. Sato, T. Hayashi, M. Tanaka, Angew. Chem. 2002, 114, 4745-4747; Angew. Chem. Int. Ed. 2002, 41, 4563-4565; 1) A. Arcadi, G. Bianchi, S. Di Guiseppe, F. Marinelli, Green Chem. 2003, 5, 64-67; m) E. Mizushima, T. Hayashi, M. Tanaka, Org. Lett. 2003, 5, 3349-3352.

[16] A. S. K. Hashmi, Gold Bull. 2003, 36, 3-9.