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Abstract: Thermo-isomerization of 1-vinyl substituted medium-
and large-ring cycloalkanol derivatives in a flow reactor system at
temperatures of 600 °C to about 650 °C leads directly to the ring-
expanded macrocyclic ketones. Alkyl substituents at the vinylic
moiety are transferred locospecifically to the ring-expanded ketone
as corresponding �-, and �-substituents, respectively. This novel
thermal 1,3-C shift reaction therefore provides a new access to short
syntheses of many alkyl-substituted macrocyclic ketone derivatives
[e.g. (�)-muscone and analogues] in a systematic manner.

Key words: ring expansions, macrocyclic ketones, dynamic gas
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In the preceding communication1 we described a novel
thermo-isomerization process under flash vacuum pyroly-
sis conditions, in which 1-vinylcycloalkanols (or their
corresponding ethynyl forms) can directly be transformed
into the isomeric macrocyclic ketones (or their �,�-unsat-
urated forms) expanded by two C-atoms.2 In order to get
more insight into the general applicability of this two-car-
bon ring expansion procedure, we investigated systemati-
cally the influence of alkyl substituents at the vinyl moiety
of the cycloalkanols.

Thermo-isomerization of the allylic alcohols3 1 with a 1-
methylethen-1-yl substituent (Scheme 1) in the same
manner as described2 gave the known 2-methyl-
cycloalkanones4,7 2 in yields of 65-75%, as well as about
2-10% of the open-chained alkenone isomers 3.8a

The macrocyclic 2-methylketones 2 were used previously
as the precursors for the synthesis of the naturally occur-
ring vegetable macrolides 4 (compounds with musky
odor)5a which were synthesized from 2 by employing a
Baeyer-Villiger oxidation (60-70% yield) as final trans-
formation in multistep ring-enlargement procedures.4a,f

Ketone 2a was also the intermediate in an earlier synthesis
of (�)-muscone (7c) by a two-step regioselective one-car-
bon ring homologation sequence.7

A novel one-carbon insertion reaction was also observed,
when alcohol 1a was heated in the presence of basic alu-

mina which led to the isomeric ketone 2,2-
dimethylcyclotridecanone8b (5a).4f,9 Both ketones 5 can
easily be prepared in about 60% isolated yield by heating
the corresponding allylic alcohols 1 adsorbed on basic
alumina in a kugelrohr oven to 160 °C for 15-30 min un-
der an inert atmosphere at normal pressure. This remark-
able [1,2]C shift reaction10 with formation of the geminal
�-alkylated ketones11 5 represents a new type of a solvent-
free (“dry”), surface-catalyzed12 thermo-isomerization
process.

The ring-expanded 13- to 17-membered 3-methylcycloal-
kanones 7a–e were easily obtained by the dynamic gas
phase thermo-isomerization procedure from both isomers
of the corresponding 1-(propen-1-yl)cycloalkanols 6a-e
in about 45-55% yields (Scheme 2). With (E/Z)-1-(pro-
pen-1-yl)cyclotridecanol 6c as starting material, the valu-
able musk odorant13 (�)-musone 7c (3-methyl-
cyclopentadecanone)14 is directly formed (45-55%). The
homologous 16-membered macrocyclic 3-methylketones
7d (“homomuscone”),15 as well as the 17-membered 7e
(“dihomomuscone”),13g,15c were easily obtained in the
same manner. The corresponding lower muscone homo-
logues, cyclotetradecanone derivative 7b (“normus-
cone”),14k,15c,16 as well as the cyclotridecanone derivative
7a (“dinormuscone”),7,15b,c,17 are each accessible analo-
gously from the alcohols 6a and 6b, respectively. In all

Scheme 1 Reaction conditions: a) Dynamic gas phase thermo-iso-
merization (FVP conditions, ~ 650 °C, 1-4 mbar, N2 flow). b) Trans-
formation of 2a into (�)-7c: ref.7 (one-carbon homologation). c)
Baeyer-Villiger oxidation, see refs.5,6. d) Alumina (Alox basic), 160
°C, 15-30 min.
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cases, the open-chained enone-isomers 8a–e (Scheme 2)
were also formed as side-products [predominantly the
(E)-isomer] in average yields of 5-15%.18

Scheme 2 Reaction conditions: a) Dynamic gas phase thermo-iso-
merization (FVP conditions, ~ 650 °C, 1-4 mbar, N2 flow).

Cyclotridecanone (11) is the essential precursor for the
synthesis of 15-membered cyclic ketones by the two-car-
bon insertion procedure.1 In consideration of the prohibi-
tively high prices of the odd-membered homologous
ketones 11 and also 9, compared with the much lower
price of 12, a one-carbon ring-expansion method starting
from 12 was thought to be a more attractive approach for
the synthesis of larger amounts (200-500 g) of 11 under
economical aspects. We tried to use the known Tiffeneau-
Demjanov homologation procedure19 for this purpose
(Scheme 3), via the protected cyanohydrin 13 and subse-
quent reduction with LiAlH4.

20 The yields of aminoalco-
hol 14 could be raised by changing the solvent (higher

boiling t-BuOMe instead of Et2O), which also made the
work-up procedure more efficient.20d When aminoalcohol
14 was treated with sodium nitrite and acetic acid accord-
ing to the literature procedures for Tiffeneau-Demjanov
ring expansion reactions,19b–19d ketone 11 was formed in
about 50-60% yield, but the isomeric oxirane 15 (about
30%) and the starting ketone 12 (about 5-10%) were also
found and could not be separated efficiently from 11.
Since these unsatisfactory results could not be circum-
vented by systematic variations of the experimental con-
ditions, a method for the separation of the spirooxirane 15
from ketone 11 was developed by selective chemical
modification to form a more polar derivative. A straight-
forward method for directly recovering the aminoalcohol
14 from the reaction mixtures of the Tiffeneau-Demjanov
procedure involves reaction with ammonia.21 By heating
the raw reaction mixtures, which contained the ketone 11
and oxirane 15 (besides minor amounts of 12), in concd.
aqueous ammonia solution (excess) and i-PrOH in an au-
toclave at 140-160 °C for 2-4 h, the by-product 15 was
transformed back into starting material 14 almost quanti-
tatively. The �-aminoalcohol 14 could now easily be sep-
arated from the ketones, either by crystallization in non-
polar solvents, or by filtration after transformation into its
hydrochloride by bubbling gaseous HCl into a stirred an-
hydrous t-BuOMe solution of the components. Finally,
cyclotridecanone (11) can be separated from homologous
ketone 12 by distillation over a Vigreux column under re-
duced pressure (GC purity > 98%). Since aminoalcohol
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Scheme 3 Reaction conditions: a) 1. Anhyd CeCl3 (0.1-0.4 mol-equiv), THF, r.t. 0.5-1 h (precomplexation of the ketone); 2. Grignard reagent
(THF solution), r.t., 0.5 h. b) Dynamic gas phase thermo-isomerization (FVP conditions, ~ 650 °C, 1-4 mbar, N2 flow). c) See ref. 4 and litera-
ture therein. 17* and 21*: (E)/(Z)-Isomers not separated.
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14 could be obtained very efficiently from the spiroep-
oxide 15, we tried to use the latter as a main precursor of
14. The methylene transfer reaction to ketone 12 from the
ylide obtained from trimethylsulfoxonium iodide
(Me3SOI) under basic conditions22 takes place in one step
and in excellent yields to 15. Encouraged by similar liter-
ature procedures,23 this step could be improved further to
nearly solvent-free conditions, so that the use of DMSO as
solvent was not longer necessary.24

A further approach to the synthesis of (�)-muscone 7 from
cycloalkanone 11 via the 3-methyl-2-cyclopentadecenone
(“2-muscenone”) intermediate 21 is also outlined in
Scheme 3. The thermo-isomerization of 1-prop-1-ynyl-
cyclotridecanol 20 gave the ring-enlarged cycloalkenone
isomers 21 in a complex mixture,25 together with open-
chained isomers, starting ketone 11, and dehydration
products. Hydrogenation of the raw thermolysate resulted
in the formation of three main compounds which were
separable by column chromatography (SiO2, hexane–t-
BuOMe, 97:3): (�)-muscone 7c (about 20% isolated
yield), 4-hexadecanone (about 15%), and cyclic ketone 11
(about 10%) as well as non-polar hydrocarbon fractions.
In the same manner, the homologous (E/Z)-3-methyl-2-
cyclotetradecenone isomers25a 17 (20-45%, based on
NMR spectra) were obtained under equivalent conditions
from 1-prop-1-ynylcyclododecanol (16), and gave, also
after hydrogenation of the product mixture, the cyclic ke-
tone 3-methylcyclotetradecanone 7b (about 25%) as well
as the open-chained isomer 4-pentadecanone (about 25%)
as the main products of the isomerization process.

As outlined in Scheme 4, thermo-isomerization of the 2-
methyl-1-propenyl derivative 22 led in 50–60% average
yield to almost 1:2 mixtures of 3,3-dimethylcyclotetrade-
canone 23 and its open-chain isomer 24. A similar behav-
ior was observed with the (E/Z)-2-buten-2-yl-substituted
isomers 25 as starting material. Both isomers gave mix-
tures of the two racemic cis/trans-isomers 26 (ca. 30%)
and the open-chain (E/Z)-isomers 27 (ca. 20%). With the
cyclohexen-1-yl substituent26 in 28, the ring expansion
process led to mixtures (about 1:1:4, 45-55% average
yields) of the known cis/trans isomers of bicyc-
lo[12.4.0]hexadecan-2-one (29)27 and also the cylohexen-
1-yl undecyl ketone (30)28 which were not fully separable
by column chromatography. 

During the past 75 years, since Ruzicka had established
the molecular structure of naturally occurring muscone, a
huge number of syntheses of either (�)-muscone 7c or also
its enantiomers have been published,14 but ring expansion
procedures by two carbon atoms are rare among them.
Only limited examples have been described in earlier re-
ports, where 7c was synthesized in multistep protocols via
[1,3]C shift reactions from more complex 13-membered
cyclic precursor systems by two-carbon insertion reac-
tions.29

Effects of substituents at C(2) as well as further applica-
tions and extensions of this versatile bis-homologation

procedure by dynamic gas phase thermo-isomerization
for the synthesis of macrocyclic musk compounds are un-
der investigation and will be published elsewhere.
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