

Plasmonic Photocatalysis

Gold-Nanoparticle-Loaded Carbonate-Modified Titanium(IV) Oxide Surface: Visible-Light-Driven Formation of Hydrogen Peroxide from Oxygen

Miwako Teranishi, Riyoko Hoshino, Shin-ichi Naya, and Hiroaki Tada*

Abstract: Gold nanoparticle-loaded rutile TiO₂ with a bimodal size distribution around 10.6 nm and 2.3 nm (BM-Au/TiO₂) was prepared by the deposition precipitation and chemical reduction (DP-CR) technique. Visible-light irradiation ($\lambda > 430$ nm) of the BM-Au/TiO₂ plasmonic photocatalyst yields $35 \,\mu$ M H₂O₂ in aerated pure water at irradiation time (t_p) = 1 h, and the H₂O₂ concentration increases to $640 \pm 60 \,\mu$ M by the addition of 4% HCOOH as a sacrificing electron donor. Further, a carbonate-modified surface BM-Au/TiO₂ (BM-Au/TiO₂-CO₃²⁻) generates a millimolar level of H₂O₂ at $t_p = 1$ h with a quantum efficiency (Φ) of 5.4% at $\lambda = 530$ nm under the same conditions. The recycle experiments confirmed the stable performance of BM-Au/TiO₂.

ydrogen peroxide (H_2O_2) has attracted much interest as not only a "green" oxidant for organic synthesis^[1] but also the source for a new fuel cell.^[2] Presently, most H_2O_2 is produced by the anthraquinone oxidation process through the many steps needing large amounts of input energy and organic solvent.^[3] As alternative, various chemical and physical methods have recently been studied.^[4] If H_2O_2 can be produced from O_2 and water, a sustainable energy cycle is completed by combining with the H_2O_2 -based fuel cell (Scheme 1). For this endergonic reaction to proceed, the effective use of sunlight with a broad energy peak locating

Scheme 1. Solar oxygen cycle using the H₂O₂-based fuel cell.

[*] M. Teranishi, Dr. S. Naya Environmental Research Laboratory, Kindai University 3-4-1, Kowakae, Higashi-Osaka, Osaka 577-8502 (Japan)
R. Hoshino, Prof. Dr. H. Tada Department of Applied Chemistry School of Science and Engineering, Kindai University 3-4-1, Kowakae, Higashi-Osaka, Osaka 577-8502 (Japan)
E-mail: h-tada@apch.kindai.ac.jp

Supporting information for this article can be found under: http://dx.doi.org/10.1002/anie.201606734.

Angew. Chem. Int. Ed. 2016, 55, 1–6

© 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

Wiley Online Library

These are not the final page numbers!

from 500 nm to 650 nm is desirable as an energy source [Eq. (1)].

 $1/2 O_2 + H_2 O \rightarrow H_2 O_2 \qquad \Delta_r G^0 = +116.8 \, \text{kJ mol}^{-1}$ (1)

UV-light irradiation of TiO₂ in water yields H₂O₂, but the H₂O₂ concentration is only limited to micromolar levels.^[5] We have reported that a millimolar level of H2O2 can be produced from O₂ by UV-light irradiation of gold nanoparticle (NP)loaded TiO₂ (Au/TiO₂) in an aqueous solution of ethanol.^[6] The photocatalytic synthesis of H_2O_2 has been intensively studied to increase its steady-state concentration by using heterogeneous photocatalysts such as Au-Ag/TiO2,^[7] graphene oxide-TiO2,^[8] and silicon nanowire-TiO2-Au.^[9] A coming challenge is to use the visible light as the energy source for the effective sunlight utilization. So far, several reports on the H₂O₂ synthesis from O₂ using visible-light photocatalysts including graphitic carbon nitride (g-C₃N₄)based photocatalysts^[10,11] have been published. Particularly, a high Φ value of about 10% has been achieved at $\lambda = 420$ nm in the g-C₃N₄ system; however, it is inactive at $\lambda > 500$ nm.^[11] On the other hand, the plasmonic photocatalysts represented by Au/TiO₂ have appeared as a new class of photocatalysts.^[12] By using the Au/TiO₂ plasmonic photocatalyst, various oxidative transformations including alcohol to carbonyl compounds,^[13,14] thiol to disulfide,^[15] benzene to phenol,^[16] and amine to imine^[17] have been developed. A bimodal (BM)-Au/TiO₂ plasmonic photocatalyst has been shown to have a potential for the application to the reductive transformation.^[18] So far, the BM-Au/TiO₂ plasmonic photocatalyzed reaction is only limited to the reduction of nitrobenzene analogs to the corresponding azobenzenes.

Herein we report the visible-light-driven reduction of O₂ to H₂O₂ in pure water by the BM-Au/TiO₂ plasmonic photocatalyst, further showing that carbonate-surface modified BM-Au/TiO₂ (BM-Au/TiO₂-CO₃²⁻) yields a millimolar level of H₂O₂ in the presence of formic acid (HCOOH). BM-Au/TiO₂ was prepared by the DP-CR technique.^[18] The visible-light activity of Au/TiO2 depends on the crystal form of TiO₂, and rutile is superior to anatase^[14] in contrast to the UVlight activity of TiO₂ for most photocatalytic reactions.^[19] At the first step, large Au NPs were loaded on rutile TiO₂ (L-Au/ TiO₂) by the DP method.^[20] At the second step, [Au(OH)₃Cl]⁻ complex ions were adsorbed on the TiO2 surface of L-Au/ TiO₂, and then, they were reduced by NaBH₄ to yield small Au NPs. For comparison, the second CR procedure was applied to unmodified TiO₂ to produce small Au NP-loaded TiO₂ (S-Au/TiO₂). The Au 4f X-ray photoelectron spectra of Au/TiO₂ have two signals at 87.0 and 83.3 eV due to the emissions from the Au 4f 5/2 and Au 4f 7/2 orbitals for metallic Au, respectively.^[21] Evidently, the Au^{III} complex adsorbed on TiO₂ is reduced to metallic Au by NaBH₄ at the second step.

Transmission electron microscopy (TEM) images (see Figure S1 in the Supporting Information) and the Au particle size distribution for L-Au/TiO₂ show that Au particles with a mean size (d) of 9.7 nm (standard deviation $\sigma = 1.6$ nm) are highly dispersed on the TiO₂ surface. In BM-Au/TiO₂, L-and S-Au particles with d values of 10.6 nm ($\sigma = 4.0$ nm) and 2.3 nm ($\sigma = 1.3$ nm), respectively, are separately formed on TiO₂. For S-Au/TiO₂, the d value was 2.3 nm ($\sigma = 1.0$ nm). The Au loading amounts were determined to be 0.52 wt% for S-Au/TiO₂, 0.49 wt% for L-Au/TiO₂, and 0.88 wt% for BM-Au/TiO₂ by inductively coupled plasma spectroscopy.

Further, CO_3^{2-} ions were adsorbed on the BM-Au/TiO₂ surface from a 100 mM Na₂CO₃ aqueous solution (BM-Au/TiO₂-CO₃²⁻). Figure 1A shows diffuse reflectance Fourier

Figure 1. A) DRIFT spectra for CO_3^{2-} ion-adsorbed BM-Au/TiO₂, and TiO₂ for comparison. B) UV/Vis absorption spectra for the unmodified TiO₂ and Au/TiO₂ samples and the solar spectrum.

transform infrared (DRIFT) spectra for BM-Au/TiO₂-CO₃²⁻, and TiO₂ for comparison. In the spectrum of TiO₂, a signal assignable to the stretching vibration of the surface Ti-OH groups [ν (Ti_s-OH)] is observed at 3695 cm⁻¹, while in the $1200-1800 \text{ cm}^{-1}$ region, a signal due to the deformation vibration of adsorbed water $[\delta(H_2O)]$ is situated at 1637 cm⁻¹. The spectrum of BM-Au/TiO₂-CO₃²⁻ has additional two characteristic signals at 1520 and 1448 cm⁻¹, which can be assigned to the antisymmetric $[v_a(OCO)]$ and symmetric $[\nu_{\rm s}({\rm OCO})]$ stretching vibrations for the CO₃²⁻ ions adsorbed on the TiO₂ surface with a bidentate structure.^[22] Also, the ν (Ti_s-OH) signal significantly weakens with the adsorption of CO_3^{2-} ions. Evidently, CO_3^{2-} ions are adsorbed on the Ti_s-OH sites of BM-Au/TiO₂- CO_3^{2-} through chelation. Figure 1B shows UV/Vis absorption spectra of TiO₂ and Au/TiO₂, and the solar spectrum. While rutile TiO₂ only has absorption at $\lambda < 410$ nm, the Au NP loading induces strong and broad absorption due to the localized surface plasmon resonance (LSPR) in the visible region. The LSPR peaks for S-Au/TiO₂ and L-Au/TiO2 are located around 550 nm and 580 nm, respectively. The spectrum of BM-Au/TiO2 is likely the sum of the absorptions of S-Au/TiO2 and L-Au/TiO2 with an apparent LSPR peak at 566 nm, well matching with the solar spectrum. The spectrum hardly changes with the CO₃²⁻ adsorption, which also supports the conclusion that $\mathrm{CO}_3{}^{2-}$ ions are selectively adsorbed on the TiO₂ surface of BM-Au/ TiO_2 - CO_3^{2-} . The larger Au loading amount is responsible for the stronger absorption intensity.

We examined the photocatalytic activity of BM-Au/TiO₂ for the O₂ reduction reaction (ORR) to H₂O₂ without and with sacrificing electron donors (4% C₂H₅OH or HCOOH), and that of BM-Au/TiO₂-CO₃²⁻ in the presence of 4% HCOOH. Catalyst was added in an aerated aqueous solution (10 mL), and H₂O₂ generated under irradiation of visible light ($\lambda > 430$ nm) at 298 K was quantified by the iodometric titration. To evaluate the activity at the comparable Au amount, 20 mg of S- and L-Au/TiO₂ was added in each run, while 10 mg of BM-Au/TiO₂ and BM-Au/TiO₂-CO₃²⁻ were used. Figure 2A shows time courses for the H₂O₂ generation

Figure 2. A) Time courses for the BM-Au/TiO₂-phatocatalytized H₂O₂ generation in the absence (black) and presence of 4% C₂H₃OH (green) and 4% HCOOH (red), and for the BM-Au/TiO₂-CO₃²⁻-photo-catalyzed H₂O₂ generation with 4% HCOOH (purple) under irradiation of visible light (λ > 430 nm, light intensity integrated from 420 to 485 nm = 4.0 mWcm⁻²) at 298 K. B) Photocatalytic activity of S-Au/TiO₂, L-Au/TiO₂, BM-Au/TiO₂, and BM-Au/TiO₂-CO₃²⁻ for the reduction of O₂ to H₂O₂ in an aqueous solution containing 4% HCOOH (pH 1.7) in the dark and under irradiation of visible light (λ > 430 nm, light intensity integrated from 420 to 485 nm = 4.0 mWcm⁻²) at 298 K.

in the BM-Au/TiO₂ system. No H₂O₂ was generated in the dark. Visible-light irradiation of BM-Au/TiO₂ in pure water yields $35 \pm 5 \,\mu\text{M}$ H₂O₂ at $t_p = 20$ minutes. Since the Au/TiO₂ plasmonic photocatalyst oxidizes water under visible-light irradiation,^[23,24] the total reaction is expressed by Equation (1). The addition of the electron donors greatly enhances the reaction, and the H_2O_2 concentration increases with increasing t_p . In the HCOOH-added system, the H₂O₂ concentration reaches $640 \pm 60 \,\mu\text{M}$ at $t_p = 1 \,\text{h}$. We have recently reported that a decreasing pH of the reaction solution accelerates the Au/TiO2 photocatalytic ORR to H₂O₂ under UV-light irradiation.^[25] The pH values of the C₂H₅OH- and HCOOH-added solutions were 7.2 and 1.7, respectively. Thus, HCOOH works as not only a good electron donor but also as a pH-regulating agent. Gas chromatography confirmed the formation of CO₂ during the reaction (Figure S2). The total reaction is exergonic, and written by Equation (2).

$$O_2 + HCOOH \rightarrow H_2O_2 + CO_2$$
 $\Delta_r G^0 = -153.4 \text{ kJ mol}^{-1}$ (2)

Surprisingly, BM-Au/TiO₂-CO₃²⁻ exhibits much higher activity than BM-Au/TiO₂ under the same conditions, and the H_2O_2 concentration increases with an increase in t_p . Since the pH of the solution remained at 1.7, the possibility can be

www.angewandte.org

© 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

These are not the final page numbers!

excluded that the carbonate effect is due to a pH change.

The photocatalytic activities of the Au/TiO₂ samples were examined in the presence of 4% HCOOH. Figure 2B compares the concentration of H₂O₂ generated at $t_p = 1$ h. The H₂O₂ concentration in the BM-Au/TiO₂ system (640 ± 60 µM) far exceeds the sum of the H₂O₂ concentrations in S-Au/TiO₂ (50 µM) and L-Au/TiO₂ (75 µM). Further, in the BM-Au/TiO₂-CO₃²⁻ system, the H₂O₂ concentration reaches about 1 mM. Further, the reaction was performed in the BM-Au/TiO₂-CO₃²⁻ system using a green light emitting diode as a light source, and a quantum efficiency was calculated from the equation of $\Phi = 2 \times$ (molecule number of H₂O₂ formed)/ (incident photon number) to be 5.4% at $\lambda = 530$ nm.

The life time as well as the activity is the key factor for the catalysts. To examine the stability of the BM-Au/TiO₂ photocatalyst, recycle experiments were carried out (Figure S3). When the catalyst was not washed after the reaction, the activity gradually decreased with an increase in the recycle number (*N*). Then, the catalyst was reused by washing with water after each run. Unexpectedly, the photocatalytic activity increases at N=2 to be maintained at least $N \leq 5$. These intriguing results are discussed in more detail later in connection with the action mechanism of the present plasmonic photocatalyst.

Mesoporous TiO₂ nanocrystalline films were formed on fluorine-doped tin oxide electrodes (TiO₂/FTO) by the doctor blade method (see the Supporting Information), and CO_3^{2-} ions were chemisorbed on the surface (CO_3^{2-} -TiO₂/FTO). To gain information about the surface modification effect by CO_3^{2-} ions, electrochemical (EC) measurements were carried out for a three-electrode EC cell containing the TiO2/FTO structure with and without carbonate surface modification (working electrode) | Ag/AgCl (reference electrode) | aerated 0.1 M NaClO₄ aqueous solution with and without 1 mM H₂O₂ glassy carbon (counter electrode). Figure 3A shows linear sweep voltammograms for the TiO₂/FTO and CO₃²⁻-TiO₂/ FTO electrodes in the absence and presence of O_2 and H_2O_2 . In the unmodified TiO₂/FTO electrode system, the current onset potential (E_{on}) is located at -0.1 V without O₂ and H_2O_2 , at 0 V with O_2 and without H_2O_2 , and at +0.2 V

Figure 3. A) Dark current–potential (*E/V* vs. standard hydrogen electrode, SHE) curves for TiO₂/FTO electrodes without and with the carbonate surface modification in 0.1 M NaClO₄ aqueous solution in the absence and presence of O₂ and 1 mm H₂O₂ (pH \approx 6.2). B) IPCE action spectra for the three-electrode PEC cells with a structure of S-Au/TiO₂/FTO and L-Au/TiO₂/FTO (photoanode) |Ag/AgCl (reference electrode) |0.1 m NaClO₄ electrolyte solution containing 4% formic acid |glassy carbon (cathode), and the absorption spectra for the photoanodes for comparison.

without O₂ and H₂O₂. The E_{on} with O₂ and H₂O₂ remains + 0.2 V. These results indicate that the reductions start for H₂O₂ at + 0.2 V [E_{on} (H₂O₂)], for O₂ at + 0 V [E_{on} (O₂)], and for TiO₂ at -0.1 V [E_{on} (TiO₂)]. In the CO₃²⁻-TiO₂/FTO electrode system, the current with O₂ and H₂O₂ significantly decreases, and the E_{on} is almost in agreement with the E_{on} (O₂). Also, the value with O₂ and without H₂O₂ is rather close to the E_{on} (TiO₂). Clearly, the surface modification with CO₃²⁻ ions effectively suppresses the reductions of H₂O₂ by the TiO₂/FTO electrode.

Further to clarify which of S- and L-Au NPs acts as the oxidation site in BM-Au/TiO2, we carried out photoelectrochemical (PEC) measurements by using S- and L-Au/TiO₂ nanocrystalline films formed on FTO (Au/TiO2/FTO) as the photoanode (see the Supporting Information). A threeelectrode PEC cell with the structure of photoanode | Ag/ AgCl (reference electrode) | 0.1M NaClO₄ electrolyte solution containing 4% HCOOH | glassy carbon (cathode) was fabricated. In the photocurrent time curves for the S- and L-Au/ TiO₂/FTO photoanode cells at the rest potential in the dark, irradiation of visible light ($\lambda > 430$ nm) causes anodic photocurrent in each system (Figure S4). A much larger photocurrent is observed for the S-Au/TiO₂/FTO system than the L-Au/TiO₂/FTO system. As suggested by the results on the particulate system, HCOOH should be oxidized on the surface of Au NPs of the Au/TiO2/FTO photoanode, while O_2 is reduced at the cathode in this PEC cell. The action spectrum is also important for elucidating the reaction mechanism. The action spectra of the incident photon-tocurrent efficiency (IPCE) for the Au/TiO₂/FTO photoanode cells were measured using optical filters with varying cut-off wavelength.^[26] Figure 3B shows the action spectra of IPCE for the present PEC cells, and the absorption spectra of the photoanodes for comparison. The IPCE value for the S-Au/ TiO₂/FTO system is significantly larger than that for the L-Au/TiO₂/FTO system in the 475-660 nm range. The IPCE in each system increases with decreasing wavelength of incident light with only a weak shoulder near the LSPR peak, whereas a peak is observed near the LSPR-peak wavelength in the action spectra for several Au/MO-plasmonic photocatalytic reactions.^[14,15,17,27] A similar action spectrum has recently been reported for the water oxidation by a PEC cell employing Au/SrTiO₃ as the photoanode.^[28] The absorption intensity of the interband transition monotonically increases with decreasing wavelength, and thus, the reaction may be triggered by the excitation of the 5d-6sp transition of Au NP in addition to its LSPR. These results are consistent with the previous conclusion that the excited electrons are transferred from S-Au NPs to L-Au NPs by way of TiO2.^[18] As a result of the decrease in d from 10.6 to 2.3 nm, the density of states (DOS) of Au NPs greatly lowers.^[29] While in the small Au NPs, the small DOS increases the entropic driving force for the forward electron transfer from Au NP to TiO₂ with that for the back electron transfer simultaneously decreased, the opposite situation is valid for L-Au NPs.^[30] The difference in the entropic driving force for the electron transfer at the S-Au NP/TiO₂ and the L-Au NP/TiO₂ interfaces rationalizes the electron transport from S-Au NPs to L-Au NPs through TiO₂ in BM-Au/TiO₂.

Angew. Chem. Int. Ed. 2016, 55, 1-6

© 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

These are not the final page numbers!

www.angewandte.org

On the basis of these results above, the mechanism of the BM-Au/TiO₂ plasmonic photocatalyzed-reduction of O₂ to H_2O_2 is proposed (Scheme 2). Visible-light irradiation of BM-Au/TiO₂ gives rise to the interfacial electron transfer from small-to-large Au NP through the conduction band (CB) of

Scheme 2. A mechanism proposed for the BM-Au/TiO₂- CO_3^{2-} plasmonic photocatalyzed-reduction of O₂ to H₂O₂.

 TiO_2 .^[18] The Fermi energy (E_F) of S-Au NPs lowers, while the $E_{\rm F}$ of L-Au NPs rises up. As a result, the oxidizing and reducing abilities are induced on S- and L-Au NPs, respectively. In pure water, H_2O is oxidized to O_2 and H^+ on the S-Au NP surface of Au/TiO₂, of which visible-light activity steeply increases at the Au mean particle size < 4 nm.^[30] In the presence of HCOOH, it is preferentially oxidized to CO2 and H⁺ on the S-Au NP surface. On the other hand, the ORR proceeds on the L-Au NP surface. Thermodynamically, the potential of the electrons in the CB of rutile TiO₂ (flat-band potential, $E_{\rm fb} = +0.04$ V at pH 1.0 vs. SHE)^[31] is insufficient for the one-electron ORR $(E^0(O_2/HO_2) = -0.046 \text{ V} \text{ vs.})$ SHE)^[32] to proceed, but is sufficient for the two-electron ORR $(E^{0}(O_{2}/H_{2}O_{2}) = +0.695 \text{ V vs. SHE})^{[32]}$ In this system, due to the electron pool effect^[33] and electrocatalysis for the two-electron ORR of the L-Au NP,^[34] O₂ would be effectively reduced to H₂O₂ on the surface. Similar effects have been suggested for the Cu^{II} ions in a visible-light-responsive Cu^{II}grafted rutile TiO₂ system.^[35] Eventually, in the BM-Au/TiO₂ system, S-Au NPs highly dispersed on TiO₂ work as an antenna for the incident light to inject electrons into TiO₂, and the collected electrons in L-Au NPs are effectively used for the two-electron ORR because the Au/TiO₂-catalyzed H₂O₂ decomposition is significantly suppressed at d < 3 nm and d >8 nm.^[6] The much higher photocatalytic activity of BM-Au/ TiO₂ than S- Au/TiO₂ and L-Au/TiO₂ can be mainly attributed to the long-range charge separation by the visible-lightinduced vectorial interfacial electron transfer (S-Au -> CB-(TiO₂) \rightarrow L-Au). However, H₂O₂ once produced undergoes degradation via the reduction of the surface peroxide species (Ti_s-OOH), resulting from the reaction of H_2O_2 with the surface Ti-OH (Tis-OH) groups, by the CB-electrons in TiO₂.^[36] CO₃²⁻ ions chemisorbed on TiO₂ suppress the Ti_s-OH-mediated reductive degradation pathway. Consequently, the extremely high visible-light activity of BM-Au/TiO₂- $\rm CO_3^{2-}$ would stem from the compatibility of the effective charge separation in the BM-Au/TiO₂ heterostructure and the suppression of the TiO₂ surface-mediated H₂O₂ decomposition by the surface modification with $\rm CO_3^{2-}$ ions. The reaction in the presence of HCOOH yields $\rm CO_2$ [Eq. (2)], which could partly be adsorbed on the TiO₂ surface during the reaction. These considerations explain the increase in the activity at $N \ge 2$ (Figure S3). The surface-fluorination of TiO₂ was previously reported to be effective in increasing the H₂O₂ concentration under irradiation of UV light.^[37,38]

In summary, this study has shown that irradiation of visible light ($\lambda > 430 \text{ nm}$) of BM-Au/TiO₂ in aerated pure water yields 35 μ M H₂O₂, and the generation of a millimolar level of H₂O₂ with a Φ value of 5.4% at $\lambda = 530$ nm has been achieved in the BM-Au/TiO₂-CO₃²⁻system with HCOOH as an electron donor. We anticipate that this study presents the useful information about the design of the photocatalyst for the solar H₂O₂ synthesis.

Acknowledgements

This work was partially supported by a Grant-in-Aid for Scientific Research (C) (grant number 15K05654) and MEXT-Supported Program for the Strategic Research Foundation at Private Universities.

Keywords: hydrogen peroxide · oxygen reduction reaction · plasmonics · photocatalysis · solar chemical transformations

- [1] K. Sato, M. Aoki, R. Noyori, Science 1998, 281, 1646-1647.
- [2] Y. Yamada, S. Yoshida, T. Honda, S. Fukuzumi, *Energy Environ. Sci.* 2011, *4*, 2822–2825.
- [3] H. Reidl, G. Pfleiderer, Hydrogen peroxide. US Pat. 2215883, **1940**.
- [4] J. M. Campos-Martin, G. Blanco-Brieva, J. L. G. Fierro, Angew. Chem. Int. Ed. 2006, 45, 6962–6984; Angew. Chem. 2006, 118, 7116–7139.
- [5] R. Cai, Y. Kubota, A. Fujishima, J. Catal. 2003, 219, 214-218.
- [6] M. Teranishi, S. Naya, H. Tada, J. Am. Chem. Soc. 2010, 132, 7850-7851.
- [7] D. Tsukamoto, A. Shiro, Y. Shiraishi, Y. Sugano, S. Ichikawa, S. Tanaka, T. Hirai, ACS Catal. 2012, 2, 599–603.
- [8] G.-H. Moon, W. Kim, A. D. Bokare, N.-E. Sung, W. Choi, *Energy Environ. Sci.* 2014, 7, 4023–4028.
- [9] N. Kaynan, B. A. Berke, O. Hazut, R. Yerushalmi, J. Mater. Chem. A 2014, 2, 13822-13826.
- [10] Y. Shiraishi, S. Kanazawa, Y. Kofuji, H. Sakamoto, S. Ichikawa, S. Tanaka, T. Hirai, Angew. Chem. Int. Ed. 2014, 53, 13454– 13459; Angew. Chem. 2014, 126, 13672–13677.
- [11] Y. Shiraishi, S. Kanazawa, Y. Sugano, D. Tsukamoto, H. Sakamoto, S. Ichikawa, T. Hirai, ACS Catal. 2014, 4, 774–780.
- [12] C. Wang, D. Astruc, Chem. Soc. Rev. 2014, 43, 7188-7216.
- [13] E. Kowalska, R. Abe, B. Ohtani, Chem. Commun. 2009, 241– 243.
- [14] K. Kimura, S. Naya, Y. Jin-nouchi, H. Tada, J. Phys. Chem. C 2012, 116, 7111-7117.
- [15] S. Naya, M. Teranishi, T. Isobe, H. Tada, Chem. Commun. 2010, 46, 815–817.

www.angewandte.org

© 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

Angew. Chem. Int. Ed. 2016, 55, 1-6

These are not the final page numbers!

GDCh

- [16] Y. Ide, M. Matsuoka, M. Ogawa, J. Am. Chem. Soc. 2010, 132, 16762–16764.
- [17] S. Naya, K. Kimura, H, Tada, ACS Catal. 2013, 3, 10-13.
- [18] S. Naya, T. Niwa, T. Kume, H. Tada, Angew. Chem. Int. Ed. 2014, 53, 7305-7309; Angew. Chem. 2014, 126, 7433-7437.
- [19] A. Y. Ahmed, T. A. Kandiel, T. Oekermann, D. Bahnemann, J. Phys. Chem. Lett. 2011, 2, 2461–2465.
- [20] S. Tsubota, M. Haruta, T. Kobayashi, A. Ueda, Y. Nakahara, *Preparation of Catalysis V*, Elsevier, Amsterdam, 1991.
- [21] M. Someno, I. Yasumori, H. Bunseki, *Surface Analysis*, Kodansha, Tokyo, **1976**, p. 328.
- [22] W. Su, J. Zhang, Z. Feng, T. Chen, P. Ying, C. Li, J. Phys. Chem. C 2008, 112, 7710–7716.
- [23] Z. Liu, W. Hou, P. Pavaskar, M. Aykol, S. B. Cronin, *Nano Lett.* 2011, 11, 1111–1116.
- [24] E. Thimsen, F. L. Formal, M. Grätzel, S. C. Warren, *Nano Lett.* 2011, 11, 35–43.
- [25] M. Teranishi, S. Naya, H. Tada, J. Phys. Chem. C 2016, 120, 1083–1088.
- [26] S. Naya, A. Inoue, H. Tada, ChemPhysChem 2011, 12, 2719– 2723.
- [27] Y. Tian, T. Tatsuma, J. Am. Chem. Soc. 2005, 127, 7632-7637.
- [28] L. Liu, P. Li, B. Adisak, S. Ouyang, N. Umezawa, J. Ye, R. Kodiyath, T. Tanabe, G. V. Ramesh, S. Ueda, H. Abe, *J. Mater. Chem. A* 2014, *2*, 9875–9882.

- [29] R. W. Murray, Chem. Rev. 2008, 108, 2688-2720.
- [30] M. Teranishi, M. Wada, S. Naya, H. Tada, *ChemPhysChem* http://dx.doi.org/10.1002/cphc.201600269.
- [31] G. Cooper, J. A. Turner, A. J. Nozik, J. Electrochem. Soc. 1982, 129, 1973–1977.
- [32] Denki Kagaku Binran, 5th ed., Electrochem. Soc. Jpn., Maruzen, Tokyo, 2000.
- [33] H. Tada, T. Kiyonaga, S. Naya, Chem. Soc. Rev. 2009, 38, 1849– 1858.
- [34] C. M. Sánchez-Sánchez, A. J. Bard, Anal. Chem. 2009, 81, 8094– 8100.
- [35] H. Irie, K. Kamiya, T. Shibanuma, S. Miura, D. A. Tryk, T. Yokoyama, K. Hashimoto, J. Phys. Chem. C 2009, 113, 10761– 10766.
- [36] X. Li, C. Chen, J. Zhao, Langmuir 2001, 17, 4118-4122.
- [37] C. Minero, G. Mariella, V. Maurino, E. Pelizzetti, *Langmuir* 2000, 16, 2632-2641.
- [38] H. Park, W. Choi, J. Phys. Chem. B 2004, 108, 4086-4093.

Received: July 11, 2016 Revised: August 2, 2016 Published online:

Angew. Chem. Int. Ed. 2016, 55, 1-6

© 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

einheim www.angewandte.org
These are not the final page numbers!

Communications

Communications

Plasmonic Photocatalysis

M. Teranishi, R. Hoshino, S. Naya, H. Tada* _____

Gold-Nanoparticle-Loaded Carbonate-Modified Titanium(IV) Oxide Surface: Visible-Light-Driven Formation of Hydrogen Peroxide from Oxygen

Solar hydrogen peroxide formation:

Hydrogen peroxide was produced from molecular oxygen at millimolar level over bimodal gold-nanoparticle-decorated rutile by visible-light irradiation (see picture). Formic acid was used as electron donor and carbonate molecules were absorbed onto the rutile surface to minimize the simultaneous loss of hydrogen peroxide (LSPR=localized surface plasmon resonance).

6 www.angewandte.org

© 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

Angew. Chem. Int. Ed. 2016, 55, 1-6

These are not the final page numbers!