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Abstract—This letter describes a two-step photochemical rearrangement of a conjugated pentaene. The results provide evidence
that the marine product photodeoxytridachione is formed in two sequential photochemical reactions.
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Biosynthetically, it is believed that photodeoxytrida-
chione 1 arises from the assembly of seven propionate
units (Scheme 1), the same building blocks used in the
biosynthesis of spectinabilin and the SNF family of
compounds.' 3

Furthermore, it has been demonstrated that
photodeoxytridachione 1 can be generated from the
metabolite 9,10-deoxytridachione 2 both in vitro and in
vivo photochemically (Scheme 2).! However, there has
been some uncertainty regarding the mechanism of
formation of 2. Faulkner'® suggested the non-isolated
molecule 3 might be a possible precursor of both 9,10-
deoxytridachione 2 and photodeoxytridachione 1, via a
photochemical 6n conrotatory and consecutive c2a+
n2a electrocyclisation,* respectively (Scheme 2).

This prompted us to investigate further the biomimetic
synthesis of photodeoxytridachione 1.

Recently, a synthetic model study of this compound has
been reported by our laboratory;® tetraene 4 has been
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synthesised and photolysed. The photochemical rear-
rangement, which took place, allowed the formation of
photodeoxytridachione’s core 6 in 60% yield. Since no
intermediate was isolated, we previously could only
suggest a mechanism for this transformation (Scheme
3).

Our proposed mechanism involved initial selective E~Z
isomerisation to give 5, the presence of which has been
confirmed by NMR during irradiation. This would be
followed by a mds+m2a electrocyclisation to give bicy-
clo[3.1.0]hexene 6. However, our findings did not seem
to be in agreement with Faulkner’s proposals and
observations.!®

Therefore, we investigated a more appropriate pentaene
model system analogous to 3. With this in mind, the
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Scheme 4. Reagents and conditions: (a) Ref. 3; (b) toluene,
reflux; (c) Dibal-H, Et,O, 0°C; (d) MnO,, CHCIl,, rt; (e)
benzene, reflux.
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(E,E.E,E ,E)-pentaene ester 13 has been synthesised
using the strategy previously reported.> Thus aldehyde
8 was coupled to the stabilised ylide 9 to give the fourth
propionate unit (Scheme 4). After reduction of the ester
10 to the alcohol stage, an oxidation gave the aldehyde
11. Finally a Wittig reaction with the functionalised
ylide 12 afforded the expected all (E£)-pentaene 13 in
good overall yield.

As was found with tetraene 4, ester 13 is transformed,
under photochemical conditions (UVpenm: 130 Anax=
373 nm, ¢=35200, 2 days irradiation with a 600 W
tungsten bulb), to give the photodeoxytridachione core
16 (Scheme 5).

Moreover, while the bicyclo[3.1.0] hexene 16 (deter-
mined by two-dimensional NMR and NOE) has been
obtained in 40% yield, compound 15 was also isolated
in 17% yield after 2 days irradiation of 13 (Scheme 6).
This structure was corroborated by X-ray analysis of
the derivatised ester 17° (Scheme 6, Fig. 1). Further-
more, ester 15 was shown to be an intermediate in the
formation of 16. An NMR study clearly showed a
direct and complete conversion of 15 (UVpey: 15:
Amax =264 nm, ¢=18400) into 16 upon irradiation of 15
under direct sunlight. No evidence for 14 by retro-elec-
trocyclisation was observed. The stereochemistry of 15
results from a double isomerisation followed by an
electrocyclisation. Indeed, together with the Cg—C,
alkene the C,,—C,; double bond must undergo a photo-
chemically induced E-Z isomerisation to generate 14.
This intermediate can undergo a symmetry-allowed
photochemically induced 6m conrotatory electrocyclisa-
tion* to give cyclohexadiene 15. This is followed by a
photochemical allowed oc2a+m2a electrocyclisation*®
which completely converts the cyclodiene 15 into 16,
raising the yield of 16 to 57%.
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Figure 1. X-Ray structure of cyclohexadiene 17.3
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In conclusion, we have demonstrated the connection
between the linear all E-pentaene 13, intermediate 15
and the bicyclic[3.1.0] compound 16. The established
mechanism supports a conversion of metabolite 3 into
9,10-deoxytridachione 2, which then undergoes a direct
photochemically induced c2a+mn2a electrocyclisation to
afford photodeoxytridachione 1. This is fully in accor-
dance with the proposed biological pathway.' Full
detail of these and other results of polyenic compounds
will be reported in due course.
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