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A Double-walled Thorium-based Metal-Organic 

Framework (MOF) as a Promising Dual Functional 

Absorbent for Efficiently Capturing Iodine and Dyes

Na Zhang,† Li-Xian Sun§,Yong-Heng Xing,*† and Feng-Ying Bai*†

† College of Chemistry and Chemical Engineering, Liaoning Normal University, Huanghe Road 

850#, Dalian 116029, P. R. China.

§ Guangxi Key Laboratory of Information Materials, Guilin University of Electronic 

Technology, Guilin 541004, P. R. China.

ABSTRACT: We prepared a rare Th-MOF (Th-TATAB) with a double-walled tetrahedral cage 

structure and giant unit cell volume 43513 Å3 which is the largest of all reported thorium-based 

MOFs to our knowledge. The unique structure characters make the thorium-based MOF exhibits 

exceptionally adsorption properties toward I2 and dyes with different charges.  The experimental 

results show that in cyclohexane solution the absorption ability of Th-TATAB toward I2 can 

reach about 750 mg/g, especially the removal efficiency in cyclohexane solution(0.01 mol/L) 

can reach 90% in 3 hours, which far exceeded that of reported [Zn2(tptc)-(apy)2-x(H2O)x]H2O 
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(80%, 48 h) and MIL-101-NH2 (90%, 30 h). Furthermore, the simultaneous removal of 

molecules with different charges is very challenging, while Th-TATAB displays excellent 

adsorption properties for anions, neutral and cations dyes individually and simultaneously from 

aqueous solution. The exploration of the adsorption performance of MOF Th-TATAB for iodine 

in cyclohexane solution and dye contaminants in aqueous solution is of great significance in 

environmental aspect, which provided a new strategic idea for opening up the potential 

applications of thorium-based MOF and understanding actinides chemistry.

INTRODUCTION 

Nowadays, metal-organic frameworks (MOFs) have attracted much interest due to its extensive 

application in many realms such as adsorption,1 separation,2 sensing,3 proton conduction4 and 

heterogeneous catalysis.5 Among them, the application of MOF as a functional adsorbent to 

effectively capture various analysts such as drugs, explosives, dyes contaminants and radioactive 

wastes, has a broad prospect.6-7  MOFs based thorium stand for a small part of the MOF family, 

which are less developed and explored comparing to MOFs constructed by transition and 

lanthanide. Compared with other high valent metal cations (such as zirconium (IV) or cerium 

(IV), tetravalent acts such as thorium (IV) have wider coordination numbers and exhibit more 

various coordination environments. 8-9 Since O’Hare et al. firstly constructed Th-MOF 

[(Th2F5)(NC7H5O4)2(H2O)][NO3] using Th(NO3)4·6H2O and pyridinedicarboxylate in 2003,10 

researchers have made more efforts to develop Th-MOFs with rich structure to deeply 

understand thorium chemistry for nuclear science, and the progress made in this field is very 

encouraging. 10-18 Knope et al. prepared two isomorphous compounds Th6O4(OH)4(H2O)6(4-
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3

hydroxybenzoate)12]·nH2O and [U6O4(OH)4(H2O)6(4-hydroxybenzoate)12]·nH2O and studied the 

effect of organic skeleton on the solution and solid-state structural chemistry of thorium-uranium 

complexes.18 Christopher et al. synthesized a novel Th-MOF Th[4,4′-oxybis(benzoic) aci]2, 

which exhibited excellent chemical and thermal stability.16

Iodine, as one of the volatile radionuclides, is an important issue in nuclear waste 

management.  Efficiently capturing  iodine is still very challenging due to high fluidity and low 

adsorption capacity of its species.  Recently, porous MOFs as a new kind of adsorbents, have 

been utilized to capture I2, showing excellent adsorption capacity.19-20 Thallapally et al. 

synthesized two microporous MOFs SBMOF-1 [Ca(4,4′-sulfonyldibenzoate)] and SBMOF-2 

[Ca(1,2,4,5-tetrakis(4-carboxyphenyl)-benzene)] according to the literature and studied their 

adsorption properties for iodine under humidity conditions.20 A feasible method for constructing 

MOF with good affinity for I2 is to introduce conjugated π-electron organic linker, that can 

generate stable charge-transfer (CT) complexes or halogen bonds with I2, therefore enhancing 

the adsorption capacity for iodine adsorption.21 Moreover, some conjugated triazine-based 

frameworks (CTFs), also called 1,3,5-triazine-based conjugated microporous polymers 

(TCMPs), have also been developed for I2 capture.22 Since the existence of triazine heterocyclics 

with rich nitrogen atoms in CMPs systems dramatically enhance their I2 binding affinity and 

heighten the interaction between the adsorbates and adsorbents, TCMPs possess excellent iodine 

capture capacities at ambient pressure.6, 22-24  So, it is significant to think over that the 1,3,5-

triazine heterocycle containing polycarboxylate groups with multiple conformations and bonding 

modes in the selection or design of organic ligands.  For one thing, it is an extraordinary 

aromatic component that can lead to p–p stacking and anion–p interactions.23-24 For another, the 

triazine ring contains three nitrogen atoms, which not only coordinate with metal ions, but also 
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4

form a variable network structure.25-27 In the large family of triazine polycarboxylate acids, 

trigonal tricarboxylate ligand H3TATAB containing amino functional group is a typical 

representative. Compared with the other triangular tricarboxylic acid linkers, such as BTC, BTB 

and TATB, its structure is more extended. (Scheme 1). Many novel high-porosity MOFs have 

been formed by assembling TATAB ligands with transition metals and rare earth ions, which 

exhibited excellent performance in areas such as luminescent sensing and adsorption.28-30 In 

addition, organic dye contaminants in water are also a serious problem because they are usually 

stable, toxic and potentially carcinogenic, even severely threatening to ecological environment. 

Hence, the efficient adsorption removal of dye contaminants from water is crucial. Due to the 

diverse topologies, high porosity, adjustable aperture, and unique host-guest interactions, MOFs 

has been extensively investigated for the efficient removal of organic dye pollutants from 

wastewater.25, 31-34 Especially many MOFs show excellent performance in selective adsorbing 

dyes.34-37 For example, Hong et al. constructed an anionic uranium-based MOF 

[(CH3)2NH2]4[(UO2)4(TCPE)3](solvent)x, showing excellent adsorption performance for cationic 

dyes Ethyl Violet, Rhodamine B and Janus Green B.25 Liu et al. presented a 1D rare earth 

compound {[(CH3)2NH2] [(H2abtc)2Ho(H2O)]}n, which showed a high removal efficiency of 

positively charged dyes methylene blue.35 Xing et al. assembled a unique two-dimensional 

uranyl complex [(CH3)2NH2][UO2(TATAB)]·2DMF·4H2O by using triazine tricarboxylic acid 

ligand, which featured 2D graphene-like topological structure and displayed selective adsorption 

ability to cationic dyes Safranine T and methylene blue.26 However, simultaneous removal of 

anionic and cationic dyes/anionic, neutral and cationic dyes from water solutions is still a 

challenge. The development of the dual functional absorbent for iodine and dye is very 

promising and significant. Herein, we adopted high-valence Th(IV) cation and conjugated π-

Page 4 of 28

ACS Paragon Plus Environment

Crystal Growth & Design

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



5

electron ligand H3TATAB to successfully assemble a novel dual-function MOF Th-TATAB and 

firstly explored its sorption properties for I2 and dye molecules. 

Scheme 1. Structure of Some Trigonal Tricarboxylic Ligands.

EXPERIMENTAL SECTION

Caution! Thorium is a chemically toxic and radioactive element, standard precautionary 

measures to handle radioactive substances ought to be followed. 

Synthesis of Ligand 4,4',4"-s-triazine-1,3,5-triyltri-p-aminobenzoate (H3TATAB). Ligand 

H3TATAB was synthesized according to the literature and slightly modified.28,38 4-aminobenzoic 

acid (4.5 g, 33 mmol), NaOH (1.5 g, 37.5 mmol), and NaHCO3 (2.25 g, 27.5 mmol) were placed 
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6

in 50 mL of deionized water. At 0 ºC, stir the mixed solution for 30 min. Cyanuric chloride (1.5 

g, 8.25 mmol) was added to 1,4-dioxane (15 mL) and stirred until dissolved, then dripped into 

the above mixed solution. The mixed solution was then refluxed for 24 h in an oil bath at 115 ºC. 

The obtained solution was acidified with 20% hydrochloric acid to pH=3. The light yellow 

product was obtained by filtration, washed with distilled water until neutral, and dried to gain 

ligand H3TATAB (4.5 g, yield: 80%). 1HNMR (d6-DMSO, 400 MHz): δ=7.88 (d, 6H), 7.97 (d, 

6H), 9.84 (s, 3H), 12.64 (s, br, 3H).  The 1H-NMR spectra of the ligand H3TATAB is presented 

in Figure S1. 

Synthesis of MOF Th-TATAB, Th6O4(OH)4(H2O)6(TATAB)2(HCO2)6. A mixture of 

Th(NO3)4·6H2O (0.05 mmol), H3TATAB (0.05 mmol)m, DMF (4 mL) and H2O (1mL) was 

stirred at room temperature for 20 min. The mixed solution was adjusted to pH=3 with nitric acid 

(4 mol/L), then transferred to 20 mL Teflon-lined stainless steel autoclave and heated for 2 days 

at 160 ºC. After cooling, filtering and washing with DMF, colorless octahedral crystals are 

obtained, yield 57 % (14 mg, based on metal). The formula of the crystal is 

Th6O4(OH)4(H2O)6(TATAB)2(HCO2)6, which was confirmed by X-ray single crystal diffraction 

analysis, Elemental analysis (% calc/found: C 22.63/23.04, H 1.68/1.77, N 5.87/5.99), and TGA 

(before 400 ºC weight loss of 30 wt% ). 

 Single Crystal X-ray diffraction Determination. Single crystals with appropriate sizes of 

MOF Th-TATAB were mounted on glass fibers to collect X-ray diffraction data. The 

determination of crystal structure were performed on a Bruker AXS SMART APEX II CCD 

diffractometer with graphite monochromatized Mo Kα radiation (λ = 0.71073 Å) at room 

temperature. A semiempirical absorption correction was applied by the program SADABS.39 

Single crystal structure was solved by direct methods and refined by full-matrix least squares on 
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7

F2 using the SHELX-97 program.40-41 All non-hydrogen atoms were refined with anisotropic 

displacement parameters. The crystallographic data are summarized in Table 1. The selected 

bond distances (Å)  are given in Table 2.

Table 1. The crystallographic data for Th-TATAB

Compound Th-TATAB 

Molecular formula C54H48N12O38Th6 

formula weight 2865.28

T (K) 293

Crystal system cubic

Space group Fd-3  

a (Å) 35.1727(7) 

b (Å) 35.1727(7) 

c (Å) 35.1727(7) 

α (°) 90

β (°) 90

γ (°) 90

V (Å3) 43512.8(15)

Z 16

D, g/cm32 1.750

F(000) 20800.0

Goodness of fit on F2 1.232

Final R indices [I > 2 σ(I)] R1=0.0925 , wR2=0.1612  
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8

Final R indices (all data) R1=0.1538 , wR2=0.1828

Table 2. Selected bond lengths (Å) for Th-TATAB

Capture of iodine experiments in cyclohexane solution.  At room temperature a few samples 

100 mg of Th-TATAB were respectively added to cyclohexane solution dissolved with iodine 

(0.01, 0.02, 0.03 and 0.04 mol/L). Ultraviolet-visible absorption spectroscopy was applied to 

monitor the kinetics of iodine adsorption by MOF.

Release of iodine experiments in ethanol solution At room temperature, a few samples 20 mg 

of Th-TATAB were put into iodine-dissolved cyclohexane solution (100 mgL-1, 5 mL) for 24 

hours to prepare the iodine-loaded sample. Then 20 mg of composite I2@Th-TATAB were 

soaked in ethanol (10 mL). The residual concentration of iodine solution was measured by 

ultraviolet-visible spectrometer at room temperature.

Adsorption experiments in a single dye solution 5 mg of Th-TATAB were added into 5 mL of 

the water solution containing methyl orange, Eosin Y, alizarin , rhodamine B and methylene blue 

at room temperature, the initial concentration of which is 10 mgL-1. Supernatant solutions were 

taken from the suspensions with a syringe as samples for analyses after 0, 1, 2, 3, 4, 6, 8 10 and 

Selected bond lengths (Å)

Th1-O1 2.459(12) Th1-O2 2.429(11)

Th1-O3 2.45(2) Th1-O4 2.381(8)

Th1-O5 2.806(16) Th1-O6 2.566(18) 

Th1-O7W 2.512(18)
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9

23 h. Monitor the residual concentration of the dye-containing solution with ultraviolet-visible 

spectrophotometer at the absorbance (λmax) of each dye supernatant.

Effect of initial concentrations on adsorptive removal of methyl orange. 5 mg of Th-TATAB 

were immersed into 5 ml of aqueous solution containing methyl orange at different initial 

concentrations (10, 20, 30 mgL-1). The maximum absorbance change of methyl orange dye 

solution at different initial concentrations was respectively recorded by an ultraviolet-visible 

spectrophotometer at room temperature. Subsequently, 5 mg of Th-MOF was separately soaked 

in solution containing methyl orange (40, 60, 80 and 100 mgL-1). After a week, the residual 

concentration of the above solution was respectively recorded by an ultraviolet-visible 

spectrophotometer to obtain the dye removal efficiency and equilibrium adsorption amount. The 

formula of the dye removal efficiency is expressed as follows:

% Removal = [(C0 − Ct)/C0] × 100

where C0 is the initial concentration of the dyes, and Ct is the concentration of dyes at any 

specified time.

RESULTS AND DISCUSSION

Crystal Structures. Solvothermal reaction of trigonal ligand H3TATAB and thorium nitrate in 

the presence of DMF, H2O and HNO3 at 160 °C 48 h yielded colorless octahedral crystals of Th-

TATAB (Figure S2).  Structural analysis shows that Th-TATAB crystalizes in the cubic system 

with the space group Fd-3.  It was formulated as Th6O4(OH)4(H2O)6(TATAB)2(HCO2)6 by the 

characterization of IR, PXRD, TG, single-crystal X-ray diffraction, and elemental analysis. The 
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10

crystal structure of MOF Th-TATAB is based upon inorganic building unit Th6O4(OH)4(CO2)12 

(Figure 1b) which is similar to Zr6O4(OH)4(CO2)12 brick from UiO-66. Unlike UiO-66 with 

linear linker BDC, this thorium-based MOF Th-TATAB is formed with the trigonal ligand 

TATAB. The inorganic building brick is comprised of the inner Th6O4(OH)4  core (Figure 1a), in 

which six thorium atoms form a Th6-octahedron and are located at the vertices of the octahedron. 

All triangular faces of the octahedron are alternately capped by the µ3-O and µ3-OH which share 

three thorium centers. The edges of octahedron are bridged by carboxylates (-CO2) from the 

TATAB ligand and formic acid which is derived from DMF decomposition. Each thorium center 

is coordinated by three types of oxygen atoms, defining a monocapped square antiprismatic 

polyhedron. Four of them originate from carboxyl oxygen atoms of trigonal ligand TATAB and 

formic acid; Four other oxygen atoms are supplied the groups of by µ3-O and µ3-OH; And the 

terminal oxygen atom corresponds to the coordinated water molecule. The distances of Th-O 

bond  for Th-μ3O(H), Th-OTATAB, Th-OHCOO and Th-Owater of 2.3787, 2.4409, 2.5341, and 

2.7967Å respectively, are typical in nine-coordinated complexes containing thorium(IV). The 

presence of µ3-O(H) groups meet the requirements of charge balance, which has been previously 

reported in other complexes with hexanuclear Th-cluster structures.12, 42  Average bond value for 

Th-μ3(O,OH) (2.3787Å) is comparable with Th-μ3(O,OH) bond value of 2.391Å for the 

previously reported compound Th6(OH)4O4(H2O)6(OAc)12·nH2O.42 Although Th-Owater bond 

value of 2.7967Å is relatively long, it is comparable to that of several thorium(IV) complexes 

reported in the literature.11, 13 Each trigonal tricarboxylate ligand are linked three inorganic brick 

(Figure 1c), and each inorganic building brick is connect with six trigonal tricarboxylate ligand 

TATAB(Figure 1d).  The inorganic building brick are linked each other through the trigonal 

tricarboxylate linker TATAB to form truncated tetrahedral cavities with a size of 17 Å（Figure 
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11

1e and 1f ).  Interestingly, Th-TATAB is a very rare double-walled MOF, the double-walled 

tetrahedron cage of which is formed by the interlacing of two triangular ligands connected with 

inorganic brick.

Figure 1. Structural features of Th-TATAB:  (a) The inner core Th6O4(OH)4 of Th-

TATAB; (b) The inorganic building brick;  (c) Ligands TATAB connecting three 

inorganic building brick; (d) The inorganic building brick linked six ligands TATAB. (e) 

The truncated tetrahedral cage in Th-TATAB. (f) Graphical representation illustrating the 
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12

interconnected cages with 17Å diameter. For clarity hydrogens atoms and solvent 

molecules are omitted. Atom color codes: thorium, yellow; oxygen, pink; carbon, teal; 

nitrogen, blue.

Capture and Release of Iodine  Iodine uptake of Th-TATAB was investigated in cyclohexane 

solution. We first explored the effect of different initial concentrations on iodine removal 

efficiency. (Figure S13). At room temperature a few samples 100 mg of Th-TATAB were 

separately soaked in 5 mL cyclohexane solution dissolving iodine (0.01, 0.02, 0.03 and 0.04 

mol/L). Iodine adsorption process was monitored by UV-visible spectroscopy.  After 24 h, the 

removal efficiencies of 99.9%, 99.1%, 97.2% and 93.1% were achieved respectively for iodine 

cyclohexane solution of 0.01, 0.02, 0.03 and 0.04 mol/L, respectively (Figure 2a). The MOF 

sample was immersed in a cyclohexane solution dissolving iodine at room temperature.  After 

about 24 hours, the dark purple solutions of iodine gradually faded to pale (Figure 2a insets), 

which demonstrated that the I2 was encapsulated in the skeleton of Th-TATAB so that in 

solution a system loaded with iodine is successfully produced.43 Especially, when I2 solution is 

0.01 mol/L, the removal efficiency of iodine by Th-TATAB can reach 90% in 3 hours, which far 

exceeded that of reported [Zn2(tptc)-(apy)2-x(H2O)x]H2O (80%, 48h) and MIL-101-NH2 (90%, 

30h).44-45 As shown in Figure 2d, after 72 hours, the adsorption capacity of Th-TATAB for 

iodine reached approximately 700 mg/g and 750 mg/g when 10 mL and 15 mL of iodine solution 

(0.04 mol/L) were added, respectively, while the iodine-loaded crystals turned black (Figure 2d 

inset). In order to study the influence of different contact time on iodine adsorption capacity, an 

in-depth analysis can be performed by fitting pseudo-second-order model (Figure 2b).  

Obviously, the kinetic process of iodine adsorption by MOF Th-TATAB is well described by 

pseudo-second-order kinetic model.  The affinity and strong adsorption capacity of MOF Th-
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13

TATAB for iodine can be put down to the plentiful phenyl rings, high porosity, and the structural 

features of the π-electron walls constructed by TATAB, which can be explicated in the following 

aspects.  First, iodine is adsorbed inside the pores of MOF Th-TATAB through I−I···N bonds 

and I−I···π halogen bonds.46 Moreover, the underlying intermolecular interactions between 

iodine molecule and π-electron double-walls are crucial, because the single path for iodine 

molecules is allowed to entry and be restricted in well-regulated narrow limits in the 

nanochannels, resulting in n→σ*charge transfer (CT).47

           

  

Figure 2. (a) The removal efficiency of MOF Th-TATAB for iodine when the initial 

concentration of iodine in cyclohexane solution is 0.01, 0.02, 0.03 and 0.04 mol/L.; The insets 

show the color change of iodine solution during iodine enrichment; (b) Plots of pseudo-second-
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14

order kinetics; (c) The adsorption capacity of MOF Th-TATAB for iodine when the initial 

concentration of iodine in cyclohexane solution is 0.01, 0.02, 0.03 and 0.04 mol/L; (d) The 

adsorption capacity of iodine when 10 mL and 15 mL iodine solution (0.04mol/L) was added  

respectively.

In the meantime, the release of iodine from iodine-loaded samples I2@Th-TATAB was 

determined by UV-vis spectra (Figure 3 and S1). The release rate was rapid during the first day, 

and no significant change was observed after 3 days, indicating that the release reached 

equilibrium (Figure 3b ). After 7 days, about 85.64% of the initial I2 had been released from 

I2@Th-TATAB, showing the adsorption process of MOF Th-TATAB toward I2 is reversible 

(Figure 3b). We deem that host-guest interaction plays a key role in such release behavior.48 

Strong π-electron-iodine and host-guest interactions promote I2 uptake, whereas it would also 

undermine the desorption of I2 from I2@Th-TATAB, leading to the incomplete delivery of 

iodine from I2@Th-TATAB composite system.49  Because of the skeleton collapse of the sample 

after methanol activation (Figure S3b), the unactivated sample was used for the measurement of 

nitrogen adsorption. It is possible that due to the guest molecule in the MOF pore could not be 

removed effectively, the ideal result of nitrogen adsorption measurement was not obtained, 

although the void space predicted by the PLATON calculation is 42.1%.
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.           

Figure 3. Kinetic plot of iodine delivery from the composite I2@Th-TATAB measured by UV-

vis absorption spectra in ethanol solution.

Dye adsorption.  Based on the pore size (17Å) of the tetrahedral cavity of MOF Th-TATAB, 

five dyes with suitable dimensions for pore permeation (molecular size < 1.7 nm): negatively 

charged methyl orange {4-[4-(Dimethylamino)phenylazo]benzenesulfonic acid sodium salt}, 

Eosin Y [disodium2-(2,4,5,7-tetrabromo-6-oxido-3-oxoxanthen-9-yl)benzoate]; electrically 

neutral alizarin [1,2-Dihydroxyanthracene-9,10-dione]; and positively charged rhodamine B [9-

(2-carboxyphenyl)-3,6-bis(diethylamino)xanthylium chloride] and methylene blue [3,7-

Bis(dimethylamino)-5-phenothiazinium Chloride] (Figure S14) were chosen to evaluate the 

adsorption ability of Th-TATAB in a dye-containing aqueous solution. The complex all exhibits 

adsorption behavior to anionic, neutral and cationic dye molecules to some extent (Figure 4), in 

which the  removal efficiency of anionic dye MO (96%) is the highest.  In the same charged dye 

solution, the Th-MOF has higher adsorption efficiency for linear dye MO (96%) than the triangle 

dye molecule Eosin Y (44%); the uptakes toward the linear MB (34%) were more efficient than 

triangle dye molecule rhodamine B (20%). This observed result indicates that the anionic, neutral 

and cationic dye molecules with appropriate size to accommodate nanotube channels of the Th-

TATAB frame can be adsorbed and entered into the pores of MOF.  The adsorptive behavior of 
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Th-TATAB on dyes does not only exhibit size and shape dependence, but also charge 

dependence to a certain extent. In the same charged dye solution, the Th-MOF has higher 

adsorption efficiency for linear dye molecule methyl orange than the triangle dye molecule Eosin 

Y; the uptakes toward the linear methylene blue were more efficient than triangle dye molecule 

rhodamine B. We believed that the difference in adsorption between dye molecules with the 

same charge may be due to shape effects. In order to further confirm our inference, another linear 

anionic dye Orange II [4-(2-Hydroxy-1-naphthylazo)benzenesulfonic acid sodium salt] was 

selected for adsorption experiments. The experimental results show that the Th-MOF also 

exhibits a high adsorption capacity for linear anionic dye molecule Orange II (Figure 4c), which 

is comparable to that for linear dye molecule MO, and significantly higher than that for 

triangular dye molecule Eosin Y. Therefore, the experimental results are consistent with 

expectations. Compared with the triangular dye molecules, linear dye molecules are more 

acceptable to access to the pore of the MOF; Whereas the difference in adsorption between dye 

linear dye molecules MO, alizarin and MB may be due to charge dependence.
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Figure 4. UV-visible absorption spectrum of the single dye solution. (a) MO, (b) Eosin Y, (c) 

alizarin, (d) MB and (e) rhodamine B. The insets show the change in color of the dye solution 

after adsorption.

Considering the excellent adsorption performance of Th-TATAB for MO, we further 

explored the influence of different initial concentration on the dye removal by Th-

TATAB (Figure S15). The removal efficiency of methyl orange solution at three different 

initial concentrations (10, 20, and 30 mgL-1) can achieved 96%, 98% and 97% 

respectively after 23 hours;the adsorption amount can reached 9.79, 19.97 and 29.99 

mg/g, respectively after 23 hours (Figure 5b). Moreover, in order to further study the 

influence of different contact time on adsorptive behavior of Th-TATAB toward MO, 

Page 17 of 28

ACS Paragon Plus Environment

Crystal Growth & Design

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



18

linear fit was conducted using the pseudo-second-order kinetic model (Figure 5a and 

Table 3). Obviously, for methyl orange dye solution of different initial concentrations, the 

pseudo-second-order kinetic equation has a good fitting degree, which can well describe 

the kinetic process of Th-TATAB adsorbing methyl orange dyes.

       

Figure 5. (a) Linear regressions of MO; (b) The adsorption ability of MOF Th-TATAB for MO 

when the initial concentration of the solution is 10, 20 and 30 mgL-1.

Table 3.  Adsorption kinetic parameters of MO on Th-TATAB

pseudo secondary-order kinetics

Dye C0 (mg L-1)
k2 (g mg min-1) R2 qe (mg g-1)

10 9.724×10-2 0.9978 9.79

20 4.643×10-2 0.9981 19.97MO

30 2.919×10-2 0.9982 29.99

 Subsequently, the adsorption capacity of the Th-MOF was monitored when the 

initial concentration of methyl orange dye solution was 40, 60, 80 and 100 mgL-1 
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respectively (Figure S17 and 6). It can be seen that the initial concentration of the solution 

is a key factor affecting the amount of adsorption. As the initial concentration increases, 

the equilibrium adsorption amount gradually increases, reaching a maximum value of 

99.53 mg/g at the initial concentration of 100 mgL-1.

                

Fig 6. The influence of different initial concentration on the adsorption capacity of Th-MOF 

toward MO. 

Many MOFs show selective adsorption behavior for cationic or anionic dyes, and there are 

many reports about this aspect,32, 50 while the simultaneous removal of molecules with different 

charges is still very challenging.51  In this paper, the adsorptive behavior of Th-MOF was further 

examined in binary/ternary mixed solution ( MO + MB, MO + Rhb, MO + MB + alizarin and 

MO + Rhb + alizarin ) containing dyes with different charges (Figure 7). Interestingly, the 

removal of both the linear and triangular cationic dye molecules by Th-MOF in the mixed dye 

solution is enhanced compared to the single dye solution, especially cationic dyes (Figure 8). We 

deem that due to the large aperture characteristics of MOF Th-TATAB, dye molecules with 

different charges co-existing in solution may undergo a co-adsorption process.51 It is because of 
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this co-adsorption process that MOF Th-TATAB exhibits mutual enhancement of adsorption 

capacity toward anions, neutral and cations dye molecules in the mixed solution.51 From the 

above adsorption study, it can be concluded that Th-TATAB might be the better candidate for 

simultaneous removal of anionic, neutral and cationic dyes.

Fig 7. UV-visible absorption spectrum of the solution containing mixed dyes. (a) MO and MB; 

(b) MO and Rhb; (c) MO, MB and alizarin; (d) MO, Rhb and alizarin. The insets show the 

change in color of the mixed dye solution after adsorption.
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Fig 8. (a) Removal efficiency of MB in mixed solution (MB + MO + alizarin and MB + MO) 

and single dye solution; (b) Removal efficiency of RhB in mixed solution (Rhb +MO and Rhb + 

MO + alizarin ) single dye solution.

It is necessary to pointed out that, a large number of dye release experiments have been 

carried out to study the desorption behavior of dyes, but no desorption behavior has been 

observed. We infer that, similar to the incomplete desorption of iodine, the unique host-guest 

interaction may facilitate the adsorption of the dye, but weaken dye desorption from dye-loaded 

samples. In particular, the double-layered π-electron walls formed by TATAB ligands may also 

hinder the dye release behavior.

In summary, a novel thorium-based MOF Th-TATAB with unique double-walled 

tetrahedral cage structure was designed and synthesized by self-assembly method, and its 

adsorption performance towards iodine and dye was investigated. The Th-MOF displays 

excellent adsorption properties towards iodine in cyclohexane solution. Moreover, anionic, 

neutral and cationic dye molecules can be adsorbed by this MOF from aqueous solution to some 

extent, in which linear dye molecules are better adsorbed. In particular, anions, neutral and 

cations dyes can be removed simultaneously in the mixed solution, and the adsorption capacity is 
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mutually enhanced. The experimental results demonstrate that MOF Th-TATAB is a good 

potential candidate for adsorption of iodine and dye pollutants, which provides a new strategic 

idea for exploiting the physical and chemical properties and practical application of Th-MOF.  In 

addition, it is very meaningful to explore the adsorption performance of MOF on iodine under 

humidity conditions, so we intend to conduct this research in the next step.
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Synopsis

A novel thorium-based MOF Th-TATAB with rare double-walled tetrahedral cage structure. The  

thorium-based MOF can be used as an promising dual functional adsorbent for iodine capture in 

cyclohexane solution and the adsorptive removal of dye contaminants in aqueous solution, 

whcich provided a new strategic idea for opening up the potential applications of thorium-based 

MOF and understanding actinides chemistry.
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