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Femtosecond "transition state" spectra (FTS) of the 
elementary chemical reaction I CN· -- [I" . CN] "". 
-- I + CN have previously been reported. I For these types of 
reactions on a repulsive surface the molecules are in the tran
sition state (or more accurately in the states of the transition 
region) for only 100 fs or so. This has been evidenced by the 
rise and decay observed in the ICN experiments,l(a).l(b) and 
deduced by simple theory.l(e) If, however, in the process of 
falling apart, more than one degree of freedom is involved 
(vibrational or electronic), the system might exhibit a quasi
bound state (or resonance). 2 Manifestations of such a reso
nance in the real-time probing offragment separation should 
be: (1) a delay in the appearance offree fragments, and pos
sibly (2) the appearance of oscillations (reflecting the reso
nance frequency) of the wave packet of the dissociating mol
ecules. An insightful wave packet approach to molecular 
photodissociation has been developed by Heller,3 and high
lighted by the Kinsey experiments.4 

With these ideas in mind, we attempted to obtain FTS of 
the reactions of alkali halides, where we expected such tem
poral features. The work by Berry and others5 has provided 
the foundation for the description of the surfaces. Because of 
the crossing between the ionic ground state and the covalent 
excited state, at fragment separation R x , there are two chan
nels for the reaction (Fig. 1). En route to products, the 
[M' .. X] "" • transition state molecules decide between these 
covalent and ionic channels. There are two limiting possibili
ties: either the packet is trapped on the adiabatic surface 
without crossing (resonance), or it crosses on the diabatic 
surface, as was the case for ICN. These two limits give rise to 
entirely different temporal behavior. If a resonance exists, 
the observed oscillation will give the detailed nature of the 
surface and coupling. 

In this Communication, we report the real-time obser
vation of strong wave packet oscillations (resonance) in a 
dissociation reaction. A strong resonance in the reaction of 
Nal, and a much weaker resonance in the reaction of NaBr, 
were seen. These observations were made by exciting the salt 
to the covalent state(s) along the M-X coordinate using a 
femtosecond pump pulse. A fs probe pulse was used at differ
ent delay times and wavelengths (t and A. spectra) I to detect 
the free product (on resonance with Na D lines at 589 nm) 
or perturbed Na (off-resonance) atoms. As discussed later, 
these results are, in general, consistent with the spectrosco
py. 

Figure 2 depicts the results for the two reactions using 
our femtosecond laser apparatus, I which utilized an ampli
fied CPM laser6

; continuum generation was used for the 
probe. For Nal, Fig. 2(1), the average oscillation period is 
1.25 ps, which translates to 27 cm - I. [Detecting on reso-

nance with the D lines, Fig. 2(11), the oscillations are inte
grated to a rise, just like the ICN experiment.] For NaBr, 
Fig. 2(111), this spacing is similar, but we observed severe 
damping. It is concluded that the packet for Nal is in an 
adiabatic well, and the crossing is inefficient. In contrast, for 
NaBr the crossing is much more effective and is less suppor
tive of a bound state. The oscillations give a vibrational fre
quency ofO.8X 1012 S-I. Since the oscillations for Nal are 
damped in - lOps, the average probability of crossing on the 
outward phase per oscillation is 0.1.7 A more complete Lan
dau-Zener calculation8

•
9 allows for the characterization of 

the quasibound vibrational/rotational states as was done by 
Schaefer et al. to in their thorough application of Child's for
malism ll to Nal [crossing of X Il:.+ withA(O+)]. Our re
sults are consistent with the theory of Grice and Hersch
bach. 12 

The spectroscopy of Nal has been studied extensively5 
in the Franck-Condon range (short R). Information at long 
R is obtained 12 from collision experiments like those done on 
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FIG. 1. A display of the potential energy surfaces involved, and the method 
ofFfS. The times to, t., tR , and tro refer to the time of evolution of packet as 
it moves along the coordinate R and spreads. At the top of the figure, the 
different transition configurations are given. The fs pump pulse was at 310 
nm, and the probe was generated from a continuum (A. = 560 nm to 
A. = 630 nm). The Na + I product states correlate with the states (n = 0+ 
and I) ofNal and are depicted by the covalent surface in this figure. In our 
full report later we will discuss details of the dynamics on these surfaces. 
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FIG. 2. Experimental results for the two reactions ofNaI and NaBr. For the 
NaI reaction, we provide both the on-resonance and off-resonance Na atom 
detection (LIF), indicated by the underlining of the relevant species. Re
sults, not shown, were also obtained at a number of other wavelengths, and 
will be detailed later. The modulation depth depends on the probe wave
length. The two salts (Aldrich, purity 99.9% ) were degassed under vacuum 
for over 8 h (400 'C), and heated to - 600 'C The experiments were also 
repeated at lower temperatures to check for dimerization. The signal is (es
sentially) linearly dependent on the probe and pump intensities. 

(Na)K + L 13 A key feature in the broad spectrum of the 
excited state is the apparent interval of 36 cm - 1.5,14 The jet 
excitation spectrum, IS which shows rich progressions, has 
been used to deduce the shape of the well. Schaefer et 01.10 

have now provided a complete analysis of the spectrum of 
NaI in a bulb and also in ajet; they applied Child's predisso
ciation formalism II and deduced the important molecular 
parameters. The spacings in their spectrum give Y IO = 27.28 
cm - I 10 and for states in the range of our excitation, the 
spacing is calculated to be 29 cm - I, consistent with our re
sults. 

In our transients, there is damping and apparent in
crease in width of the oscillations with time, indicating some 
"dephasing" of the packet. Here, the lifetimes of the differ
ent levels depend on their involvement in the crossing 
(short-lived) or in the fluorescence (long-lived). An inter
esting question is how does the dephasing influence the ob
served dissociation rate. Weare planning further work on 
modeling packet shape and dephasing, and the theoretical 
work by several authors will be of great help.I6--23 We also 
plan stimulated gain experiments from the upper surface to 
compare with Polanyi's wing emission experiments. 25 

In conclusion, FTS I of systems with more than one de
gree offreedom promises to provide a real-time view of wave 

packet decay and resonances in reactions. Since the recoil 
velocity is typically 1 km s - I, our fs time window gives a 
view of these dynamics with < 0.5 A resolution for fragment 
separation. 

This work was supported by the AFOSR (Grant No. 
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