Dalton Transactions

PAPER

Cite this: *Dalton Trans.*, 2014, **43**, 632

Borata-alkene derivatives conveniently made by frustrated Lewis pair chemistry*

Juri Möbus, Gerald Kehr, Constantin G. Daniliuc,‡ Roland Fröhlich‡ and Gerhard Erker*

Two (aryl)PXY starting materials (aryl = mesityl or 2,4,6-triisopropylphenyl; X,Y = Cl, Br) were reacted with lithiated conjugated enynes (derived from 2-methylbutenyne or 1-ethynylcyclohexene) to yield the respective (aryl)bis(enynyl)phosphanes. Their reaction with $HB(C_6F_5)_2$ gave the heterocyclic five-membered zwitterionic borata-diene compounds containing the aryl group and one unchanged enynyl substituent at phosphorus. The borata-alkene products were thought to arise from a two step process of regioselective alkyne hydroboration followed by an internal phosphane attack on the boryldiene unit. Three examples of the ring-closed borata-alkene type products were characterized by X-ray diffraction.

Received 28th August 2013, Accepted 7th October 2013 DOI: 10.1039/c3dt52373j

www.rsc.org/dalton

Introduction

Borylcarbanions (1A) feature a strong structural interaction between the electron-surplus carbon atom and the electrondeficient boron atom. This situation has been described by the borata–alkene resonance form (1B). Borata–alkene derivatives^{1–9} can in principle be generated by α -deprotonation of suitable neutral borane precursors. However, in many cases a simple Lewis acid/Lewis base adduct formation is favoured and prevents the borata–alkene synthesis. Some notable exceptions are listed in Scheme 1.^{7,8} They constitute examples where exceptional steric bulk has apparently made competing adduct formation less favourable.

Berndt *et al.* had described alternative entries to borataalkenes *via* methyleneborane derivatives. The synthesis of the 1,3-diborata-allene system **4d** is a typical example (see Scheme 2).⁹

We have recently found a unique new synthetic entry to stable borata–alkene derivatives¹⁰ utilizing frustrated Lewis pair (FLP) chemistry.¹¹ Treatment of *e.g.* the diphenylphosphino substituted conjugated enyne derivative 5 with Piers' borane $[HB(C_6F_5)_2]^{12}$ (120 °C) gave a product mixture from which the zwitterionic phosphonium/borata–diene compound

[†] Electronic supplementary information (ESI) available: Additional experimental and analytical details. Structural data are found in the respective cif. CCDC 956696–956700. For ESI and crystallographic data in CIF or other electronic format see DOI: 10.1039/c3dt52373j

‡X-ray crystal structure analyses.

7 was obtained as the main product (see Scheme 3). We assume that compound 7 was formed *via* the intermediate FLP **6** formed by alkyne hydroboration. Ring-closure by internal conjugate addition of the phosphane nucleophile to the boryldiene moiety would then directly lead to the observed product $7.^{10}$

We have now found that this new reaction pathway to stable, isolable cyclic phosphonium/borata-diene derivatives is more widely applicable to other types of phosphanyl-substituted enyne systems. We here wish to present some interesting new examples illustrating this recent development.

View Article Online

Organisch-Chemisches Institut, Universität Münster, Corrensstraße 40, 48149 Münster, Germany. E-mail: erker@uni-muenster.de; Fax: +49251-83-36503

Results and discussion

For this study, we prepared a small series of aryl-bis(enynyl)phosphanes. We used two different bulky aryl groups, namely mesityl (mes) and 2,4,6-triisopropylphenyl (tipp). The reaction of dimesitylmagnesium with PCl₃ gave mesPCl₂ that was actually admixed with *ca.* 17% of mesPBrCl and traces of mesPBr₂, apparently originating from halide exchange with residual MgBr₂. TippPCl₂ was similarly prepared and it also contained the bromide derivatives. The pure compound (tipp)PCl₂ was characterized by X-ray diffraction (see the ESI† for details).

We then reacted the mesPCl₂ substrate with a slight excess (*ca.* 2.5 equiv.) of the lithiated enyne reagent **8a** that was generated *in situ* by the treatment of the corresponding conjugated enyne with *n*-butyl lithium. This gave the phosphane **9a** that was isolated as a colourless microcrystalline solid in 78% yield (see Scheme 4).

Compound **9a** shows a ³¹P NMR resonance at δ –83.1. It features the typical ¹H NMR signals of the mesityl substituent [*o*-methyl: δ 2.84 (6H), *p*-methyl: δ 2.00 (3H), arene CH: δ 6.71 (2H)]. The pair of symmetry equivalent enynyl substituents at phosphorus shows ¹³C NMR signals of their acetylenic section at δ 83.2 (¹*J*_{PC} = 2.5 Hz) and 107.2 (²*J*_{PC} = 10.0 Hz) and of their olefinic part at δ 127.0 (³*J*_{PC} = 1.8 Hz, C=) and δ 123.1

Scheme 4

Fig. 1 Molecular structure of compound 10a (thermal ellipsoids are shown with 30% probability).

(${}^{4}J_{\rm PC}$ = 2.7 Hz, ==CH₂; corresponding 1 H NMR resonances at δ 5.22 and 4.92).

Compound **9b** featuring the cyclohexenyl derived enynyl σ -ligand at phosphorus was prepared analogously by reacting mesPCl₂ with the lithiated enyne reagent **8b** (see Scheme 4). Compound **9b** was isolated in *ca.* 90% yield and characterized by C,H elemental analysis and by spectroscopy (for details see the ESI[†]).

The reaction of **8a** with the more bulky (tipp)PXY cleanly gave the product **10a** (see Scheme 4). It was isolated in 90% yield. The compound shows similar NMR features as its congener (see above and the ESI†). Compound **10a** was characterized by X-ray diffraction (see Fig. 1). It shows the tricoordinate phosphorus atom (sum of bonding angles at P: $\sum P^{CCC} =$ 309.2(2)°) that has the bulky 2,4,6-triisopropylphenyl substituent bonded to it and a pair of enyne substituents [C1–C2: 1.200(6) Å (C6–C7: 1.220(6) Å), C2–C3: 1.440(7) Å (C7–C8: 1.440(6) Å), C3–C4: 1.398(9) Å (C8–C9: 1.393(7) Å), angles P1–C1–C2: 167.6(4)°, C1–C2–C3 179.3(6)°, C2–C3–C4: 117.9(6)°].

We eventually reacted (tipp)PXY with the lithioenyne reagent **8b** and isolated the corresponding phosphane **10b** in 89% yield (see Scheme 4) (see the ESI[†] for its characterization).

The mesitylbis(enynyl)phosphane **9a** was subjected to the reaction with Piers' borane (HB(C_6F_5)₂, one molar equivalent). The reaction mixture in pentane solution was stirred overnight at room temperature. The workup gave the product **12a** in 70% yield (see Scheme 5). Single crystals, suited for the X-ray crystal

Fig. 2 A view of the molecular structure of compound 12a (thermal ellipsoids are shown with 30% probability).

Table 1 Selected structural parameters of the borata-alkene derivatives 12a, 14a and $14b^{\rm a}$

Compound	12a	14a	14b
Ar:	mesityl	mesityl	$tipp^b$
B1-C2	1.455(3)	1.446(4)	1.452(5)
C2-C3	1.469(3)	1.468(3)	1.469(5)
C3-C4	1.336(3)	1.330(3)	1.332(5)
C4-C5	1.514(3)	1.520(3)	1.522(4)
P1-C5	1.822(2)	1.836(2)	1.827(3)
P1-C2	1.759(2)	1.767(2)	1.765(3)
P1-C11	1.736(2)	1.735(3)	1.741(3)
C11-C12	1.201(3)	1.191(3)	1.191(4)
$\Sigma B1^{CCC}$	360.0(2)	360.0(2)	359.6(3)
$\overline{\Sigma}$ C2 ^{BPC}	360.0(2)	360.0(2)	358.3(2)

^{*a*} Bond lengths in Å, angles in deg. ^{*b*} 2,4,6-Triisopropylphenyl.

structure analysis (see Fig. 2 and Table 1) were obtained from pentane at -35 °C. The structural analysis revealed that one molar equivalent of HB(C₆F₅)₂ had been added with the eventual formation of a zwitterionic borata–alkene type compound. It shows a five-membered heterocyclic ring that contains the phosphonium unit. The phosphorus atom bears a mesityl substituent and an intact enynyl group. Adjacent to this we find the borata–alkene unit. The corresponding B1–C2 bond is short (see Table 1); it is in the typical range observed for the few related borata–alkene examples found in the literature (see Scheme 1).^{7–9} The B1–C2–C3–C4 unit shows a typical bond length alternation of the newly formed conjugated borata– diene system. We notice that the P1–C2 bond is markedly shorter than the P1–C5 bond as expected for the different carbon hybridization (sp² νs . sp³).¹³

In solution compound **12a** shows the ${}^{1}H/{}^{13}C$ NMR signals of the mesityl group at phosphorus and the undisturbed enynyl substituent. We have observed the typical ${}^{1}H/{}^{13}C$ NMR signals of the five-membered zwitterionic core structure (for

 Table 2
 Selected NMR data of compounds 12a and 14a,b^a

View Article Online

Dalton Transactions

Compound	12a mesityl	14a mesityl	14b tipp ^b
¹¹ B	33.5	34.0	33.8
³¹ P	11.4	15.4	16.4
C2	94.7	92.4	95.2
C3	135.9	132.4	133.4
C4	118.5	127.7	125.7
C5	40.6	48.7	48.6
H3	6.36	6.35	6.45
H5	2.59	3.14	3.35
C11	79.3	76.8	77.3
C12	113.3	113.4	111.6
H14	5.34, 4.99	6.22	6.21

^{*a*} In benzene-d₆, chemical shifts δ -scale. ^{*b*} 2,4,6-Triisopropylphenyl.

details see Table 2 and the ESI[†]). The C_6F_5 -groups at the borata–alkene moiety are inequivalent. We monitor two sets of ¹⁹F NMR signals originating from the *E*- and *Z*-pentafluorophenyl groups respectively (see the Experimental section; the spectra are depicted in the ESI[†]).

We assume that the formation of the zwitterionic boratadiene product **12a** was initiated by a regioselective hydroboration reaction of the C=C triple bond of one of the conjugated enynyl substituents at the phosphorus atom of the starting material **9a**. This probably has generated the geminal frustrated Lewis pair **11a**. Under the applied reaction conditions this is apparently not stable. We think that the reactive intermediate **11a** undergoes a rapid internal addition of the phosphane nucleophile to the terminal sp²-carbon atom of the adjacent boryl-activated conjugated diene unit to directly give the observed product **12a** (Scheme 5).

The phosphanes containing the cyclohexenylacetylide substituents react analogously with HB(C_6F_5)₂. Reaction of **9b** with the hydroboration reagent (r.t., overnight) resulted in the formation of the product **14a** (see Scheme 6). It was isolated in 70% yield. Compound **14a** was characterized by X-ray diffraction (see Fig. 3 and Table 1). The X-ray crystal structure analysis revealed that the phosphane had apparently also added internally to an *in situ* generated boryldiene (see Scheme 6). We have found compound **14a** to exhibit a heterobicyclic core structure of annulated five- and six-membered rings. The central zwitterionic five-membered heterocycle contains a close to coplanar *s*-trans-conjugated borata-diene unit [Θ B1–

C13-C18

51-C56

F52-F56

(thermal ellipsoids are shown with 30% probability).

C21-C35

C41-C46

F42-F46

Fig. 3 Molecular structure of compound 14a (thermal ellipsoids are shown with 30% probability).

C2–C3–C4: **14a**: $-179.0(3)^{\circ}$, **14b**: $-157.6(3)^{\circ}$, **12a**: $-174.0(2)^{\circ}$]. The adjacent six-membered carbocycle contains one sp²-hybridized carbon atom at the ring junction (C4). It features a distorted chair-like conformation. We find only one stereoisomer of compound **14a** in the crystal: it exhibits the mesityl substituent at phosphorus in a *cis*-orientation to the adjacent C5–C6 vector [Θ C21–P1–C5–C6 $3.9(2)^{\circ}$]. Again, the B1–C2 bond (1.446(4) Å) is markedly shorter than the adjacent B–C(aryl) bonds [B1–C31: 1.610(4) Å, B1–C41: 1.597(4) Å]. One intact enynyl group is still present at the phosphorus atom. It shows bond angles of P1–C11–C12: 171.1(2)°, C11–C12–C13: 176.9(3)°, C12–C13–C14: 116.4(9)°.

In solution compound **14a** features the typical heteronuclear magnetic resonance signals of the borata–alkene boron center¹⁰ and the phosphonium atom (see Table 2).¹³ It shows the ¹⁹F NMR signals of two inequivalent C₆F₅ substituents at boron, *E*- and *Z*-oriented at the tetrasubstituted formal B==C double bond. For both the $\Delta \delta^{19}$ F_{m,p} NMR chemical shift differences are small. We notice that the C(3)–H hydrogen (δ 6.35) shows a rather large coupling to phosphorus (J_{PH} = 41.4 Hz, ¹³C: δ 132.4, J_{PC} = 26.0 Hz). The sterically constrained situation around the phosphonium moiety in **14a** has apparently caused a "frozen" rotation around the P–C(mesityl) vector on the NMR time scale. Consequently, we have observed three ¹H NMR methyl singlets and a pair of inequivalent arene *m*-CH resonances of the P-mesityl moiety.

The reaction of the $(tipp)P(enynyl)_2$ derivative **10b** with HB-(C₆F₅)₂ proceeded analogously. Again, we assume a reaction pathway that involves regioselective alkyne hydroboration followed by internal phosphane addition to the "Michael position" of the boryldiene moiety of the resulting geminal FLP intermediate **13b** to directly give the observed product **14b**. Compound **14b** was isolated in 70% yield. The X-ray crystal structure analysis (see Fig. 4 and Table 1) shows the typical heterobicyclic framework. Again, the B1–C2 bond of the borata–alkene subunit is short. The planes of the C_6F_5 substituents at boron are markedly rotated from the borata–alkene plane. The very bulky tipp substituent is attached to phosphorus, which also bears the single remaining substituted conjugated enyne group. The projection of compound **14b** that is depicted in Fig. 4 shows the chair-shaped conformation of the annulated six-membered carbocycle of the core structure.

Fig. 4 A projection of the molecular structure of compound 14b

Compound **14b** shows similar NMR spectra as the other related zwitterionic phosphonium/borata–alkene examples in this series (see Table 2). The rotation of the bulky *P*-tipp unit is hindered and we, consequently, have observed the ¹H NMR signals of inequivalent *m*-CH(arene) moieties (for details see the ESI†).

Conclusions

The unique zwitterionic phosphonium/borata-alkenes (7, 12, 14) are apparently formed by a very favourable internal addition of the phosphane nucleophile to an adjacent borylactivated conjugated diene. It seems that the resulting boratadiene systems show considerable thermodynamic stabilization relative to their alleged geminal FLP precursors. The observed very facile formation of the here described products from the easily available functionalized phosphane precursors just by treatment with $HB(C_6F_5)_2$ constitutes a very attractive synthetic entry to novel borata-alkene derivatives. We are looking forward to investigating their reactivity and to develop novel aspects of the chemistry of the unique borata-alkenes.

Experimental section

Preparation of compound 9a

2-Methylbutenyne (680 mg, 10 mmol, 2.7 eq.) in pentane (80 mL) was cooled to -50 °C and *n*-BuLi (5.9 mL, 1.6 M in

View Article Online
Dalton Transactions

Preparation of compound 10a

2-Methylbutenyne (1.13 g, 17 mmol, 2.5 eq.) in pentane (80 mL) was cooled to 0 °C and n-BuLi (10 mL, 1.6 M in hexane, 16 mmol, 2.4 eq.) was added. Subsequently the resulting colourless suspension was stirred for 15 min at 0 °C and for another 15 min at rt. Then tippPXY (2.3 g, 6.8 mmol, 1 eq.) was added in portions in a glovebox. The stirred reaction mixture was then cooled to 0 °C and allowed to warm to rt overnight. The insolubles were filtered off over Celite and washed with pentane (15 mL) twice. Removal of the volatiles in vacuo yielded compound 10a as a colourless solid (2.21 g, 90%). Anal. calc. for C25H33P: C, 82.38; H, 9.13. Found C, 82.36; H, 9.28. IR (KBr) $\tilde{\nu}$ [cm⁻¹] = 2150 ($\nu_{C=C}$). M.p. 119 °C. Decomp. 209 °C. ¹H NMR (500 MHz, 298 K, benzene-d₆): δ^{1} H: 7.16 (d, ${}^{4}J_{PH}$ = 3.1 Hz, 2H, *m*-tipp), 5.22 (m, 2H, =CH₂^Z), 4.92 (m, 2H, = CH_2^{E}), 4.57 (m, 2H, *o*- CH^{tipp}), 2.73 (sept, ${}^{3}J_{HH} =$ 6.9 Hz, 1H, *p*-CH^{tipp}), 1.59 (m, 6H, CH₃), 1.38 (d, ³J_{HH} = 6.7 Hz, 12H, *o*-CH₃^{tipp}), 1.17 (d, ${}^{3}J_{HH} = 6.9$ Hz, 6H, *p*-CH₃^{tipp}). ${}^{13}C{}^{1}H{}$ NMR (126 MHz, 298 K, benzene-d₆): δ^{13} C: 155.4 (d, ${}^{2}J_{PC}$ = 17.4 Hz, *o*-tipp), 152.3 (d, ${}^{4}J_{PC}$ = 1.6 Hz, *p*-tipp), 127.0 (d, ${}^{3}J_{PC}$ = 2.0 Hz, C=), 126.4 (*i*-tipp), 123.2 (d, ${}^{4}J_{PC}$ = 2.8 Hz, =CH₂), 122.8 (d, ${}^{3}J_{PC}$ = 5.8 Hz, *m*-tipp), 107.4 (d, ${}^{2}J_{PC}$ = 10.0 Hz, C==), 84.2 (d, ${}^{1}J_{PC}$ = 3.0 Hz, PC=), 34.8 (*p*-CH^{tipp}), 33.2 (d, ${}^{3}J_{PC}$ = 19.8 Hz, o-CH^{tipp}), 24.9 (o-CH₃^{tipp}), 24.0 (p-CH₃^{tipp}), 22.8 (d, ${}^{4}J_{PC}$ = 1.5 Hz, CH₃). ${}^{31}P{}^{1}H$ NMR (202 MHz, 298 K, benzened₆): δ^{31} P: −88.0 ($\nu_{1/2} \approx 2$ Hz).

Preparation of compound 10b

Cyclohexenylacetylene (640 mg, 6 mmol, 2.4 eq.) in pentane (80 mL) was cooled to -78 °C and n-BuLi (3.4 mL, 1.6 M in hexane, 5.5 mmol, 2.2 eq.) was added. Subsequently the resulting colourless suspension was stirred for 1 h at -78 °C and warmed to rt. Then tippPXY (800 mg, 2.5 mmol, 1 eq.) was added in and the reaction mixture was stirred for 3 h at rt [completion of the reaction was confirmed by ³¹P NMR spectroscopy]. CH₂Cl₂ (5 mL) was added at rt, the insolubles were filtered off over Celite and washed with boiling pentane (20 mL) twice. Removal of the volatiles in vacuo yielded compound 10b as a colourless crystalline solid (985 mg, 89%). Anal. calc. for C₃₁H₄₁P: C, 83.74; H, 9.29. Found C, 83.78; H, 9.29. IR (KBr) $\tilde{\nu}$ [cm⁻¹] = 2146 ($\nu_{C=C}$). M.p. 145 °C. Decomp. >250 °C. ¹H NMR (600 MHz, 299 K, benzene-d₆): δ^{1} H: 7.18 (d, ${}^{4}J_{PH}$ = 3.2 Hz, 2H, *m*-tipp), 6.05 (m, 2H, =-CH), 4.65 (oct, ${}^{3}J_{\rm HH} \approx {}^{4}J_{\rm PH} = 6.8$ Hz, 2H, *o*-CH^{tipp}), 2.76 (sept, ${}^{3}J_{\rm HH} = 6.9$ Hz, 1H, *p*-CH^{tipp}), 1.98 (m, 4H, β-CH₂), 1.71 (m, 4H, γ'-CH₂), 1.42 (d, ${}^{3}J_{\rm HH}$ = 6.8 Hz, 12H, *o*-CH₃^{tipp}), 1.26 (m, 4H, γ -CH₂), 1.21 (m, 4H, δ -CH₂), 1.20 (d, ${}^{3}J_{HH}$ = 6.9 Hz, 6H, *p*-CH₃^{tipp}). ${}^{13}C{}^{1}H$ NMR (151 MHz, 299 K, benzene-d₆): δ^{13} C: 155.3 (d, ${}^{2}J_{PC}$ = 17.2 Hz, *o*-tipp), 151.9 (d, ⁴*J*_{PC} = 1.5 Hz, *p*-tipp), 136.6 (dm, ⁴*J*_{PC} = 2.7 Hz, =CH), 127.4 (d, ${}^{1}J_{PC}$ = 1.5 Hz, *i*-tipp), 122.7 (d, ${}^{3}J_{PC}$ = 5.7 Hz, *m*-tipp), 121.4 (d, ${}^{3}J_{PC}$ = 1.8 Hz, C=), 108.0 (d, ${}^{2}J_{PC}$ = 10.2 Hz, C=), 82.5 (d, ${}^{1}J_{PC}$ = 1.3 Hz, PC=), 34.8 (*p*-CH^{tipp}), 33.0 (d, ${}^{3}J_{\rm PC}$ = 20.0 Hz, *o*-CH^{tipp}), 29.0 (d, ${}^{4}J_{\rm PC}$ = 1.6 Hz, β -CH₂), 25.8 (γ'-CH₂), 25.1 (*o*-CH₃^{tipp}), 24.1 (*p*-CH₃^{tipp}), 22.4 (γ-CH₂), 21.6

hexane, 9.4 mmol, 2.5 eq.) was added dropwise. The resulting colourless suspension was stirred for 30 min at -50 °C and allowed to warm to rt. Then mesPCl₂ (850 mg, 3.7 mmol, 1 eq.) was added in a glovebox and the reaction mixture was stirred for 2 h at rt [completion of the reaction was confirmed by ³¹P NMR spectroscopy]. Then the insolubles were filtered off over Celite at 40 °C and washed with pentane (20 mL) twice at 40 °C. The clear colourless solution was concentrated to ca. 10 mL and the product precipitated at -95 °C. Removal of the supernatant solution by cannula filtration and drying of the residue in vacuo vielded compound 9a as a colourless, microcrystalline solid (830 mg, 3.0 mmol, 78%). Anal. calc. for C₁₉H₂₁P: C, 81.40; H, 7.55. Found C, 81.22; H, 7.67. IR (KBr) $\tilde{\nu}$ $[cm^{-1}] = 2153 (\nu_{C==C})$. M.p. 120 °C. Decomp. 209 °C. ¹H NMR (600 MHz, 299 K, benzene-d₆): δ^{1} H: 6.71 (dm, ${}^{4}J_{PH}$ = 3.3 Hz, 2H, *m*-mes), 5.22 (m, 2H, $=CH_2^Z$), 4.92 (m, 2H, $=CH_2^E$), 2.84 (m, 6H, o-CH₃^{mes}), 2.00 (s, 3H, p-CH₃^{mes}), 1.59 (dd, ${}^{4}J_{PH}$ = 1.6 Hz, ${}^{4}J_{\rm PH}$ = 1.1 Hz, 6H, CH₃). ${}^{13}C{}^{1}H$ NMR (151 MHz, 299 K, benzene-d₆): δ^{13} C: 144.8 (d, ${}^{2}J_{PC}$ = 19.8 Hz, *o*-mes), 140.8 (d, ${}^{4}J_{PC}$ = 1.6 Hz, *p*-mes), 130.0 (d, ${}^{3}J_{PC}$ = 5.9 Hz, *m*-mes), 127.0 (d, ${}^{3}J_{PC}$ = 1.8 Hz, C=), 126.1 (d, ${}^{1}J_{PC}$ = 1.1 Hz, *i*-mes), 123.1 (d, ${}^{4}J_{\rm PC}$ = 2.7 Hz, =CH₂), 107.2 (d, ${}^{2}J_{\rm PC}$ = 10.0 Hz, C=), 83.2 (d, ${}^{1}J_{PC}$ = 2.5 Hz, PC=), 23.2 (d, ${}^{3}J_{PC}$ = 19.1 Hz, *o*-CH₃^{mes}), 22.7 (d, ${}^{5}J_{PC}$ = 1.5 Hz, *p*-CH₃^{mes}), 21.0 (CH₃). ${}^{31}P{}^{1}H$ NMR (243 MHz, 299 K, benzene-d₆): δ^{31} P: -83.1 ($\nu_{1/2} \approx 1$ Hz).

Preparation of compound 9b

Cyclohexenylacetylene (460 mg, 4.3 mmol, 2.2 eq.) in pentane (80 mL) was cooled to -60 °C and *n*-BuLi (2.6 mL, 1.6 M in hexane, 4.1 mmol, 2.1 eq.) was added. The resulting colourless suspension was stirred for 30 min at -60 °C, then allowed to warm to rt and stirred for another 15 min. Then mesPCl₂ (480 mg, 2 mmol, 1 eq.) was added and the reaction mixture was stirred for 2 h at rt [completion of the reaction was confirmed by ³¹P NMR spectroscopy]. Subsequently the insolubles were filtered off over Celite/silica gel (10:1) and the obtained residue was washed with pentane (20 mL) twice. The combined clear colourless filtrates were concentrated to ca. 15 mL and the colourless product precipitated at -70 °C. Removal of the supernatant solution by cannula filtration and drying in vacuo yielded compound 9b as a colourless wax (680 mg, 1.9 mmol, 90%). Anal. calc. for C25H29P: C, 83.30; H, 8.11. Found C, 83.15; H, 8.18. IR (KBr) $\tilde{\nu}$ [cm⁻¹] = 2146 ($\nu_{C==C}$). ¹H NMR (600 MHz, 299 K, benzene-d₆): δ^{1} H: 6.75 (dm, ${}^{4}J_{PH}$ = 3.3 Hz, 2H, m-mes), 6.03 (m, 2H, ==CH), 2.92 (m, 6H, o-CH₃^{mes}), 2.03 (s, 3H, *p*-CH₃^{mes}), 1.98 (m, 4H, β-CH₂), 1.69 (m, 4H, γ'-CH₂), 1.24 (m, 4H, γ -CH₂), 1.19 (m, 4H, δ -CH₂). ¹³C{¹H} NMR (151 MHz, 299 K, benzene-d₆): δ^{13} C: 144.7 (d, ² J_{PC} = 19.6 Hz, *o*-mes), 140.4 (d, ${}^{4}J_{PC}$ = 1.6 Hz, *p*-mes), 136.5 (d, ${}^{4}J_{PC}$ = 2.8 Hz, =CH), 130.0 (d, ${}^{3}J_{PC}$ = 5.7 Hz, *m*-mes), 127.1 (d, ${}^{1}J_{PC}$ = 1.5 Hz, i-mes), 121.4 (d, ${}^{3}J_{PC}$ = 1.7 Hz, C=), 107.8 (d, ${}^{2}J_{PC}$ = 10.2 Hz, C=), 81.4 (d, ${}^{1}\!J_{\rm PC}$ = 0.8 Hz, PC=), 28.9 (d, ${}^{4}\!J_{\rm PC}$ = 1.7 Hz, β -CH₂), 25.8 (γ '-CH₂), 23.3 (d, ${}^{3}J_{PC}$ = 19.3 Hz, o-CH₃^{mes}), 22.3 $(\gamma$ -CH₂), 21.5 (δ -CH₂), 21.0 (p-CH₃^{mes}). ³¹P{¹H} NMR (243 MHz, 299 K, benzene-d₆): δ^{31} P: -82.8 ($\nu_{1/2} \approx 1$ Hz).

(δ-CH₂). ³¹P{¹H} NMR (243 MHz, 299 K, benzene-d₆): δ³¹P: −87.6 (ν_{1/2} ≈ 1 Hz).

Preparation of compound 12a

Compound 9a (90 mg, 0.32 mmol, 1 eq.) and $HB(C_6F_5)_2$ (110 mg, 0.32 mmol, 1 eq.) were suspended in pentane (5 mL) at rt and stirred overnight. Then the insolubles were filtered off at rt and washed with pentane (1 mL) three times. The combined organic phases (brown solution) were cooled to -95 °C and the resulting precipitate was allowed to sediment for 1 h at -95 °C. Subsequently the supernatant solution was removed by cannula filtration. Drying of the residue in vacuo yielded compound 12a as a yellow-brown powder (140 mg, 70%). Anal. calc. for C₃₁H₂₂BF₁₀P: C, 59.45; H, 3.45. Found C, 58.77; H, 3.48. IR (KBr) $\tilde{\nu}$ [cm⁻¹] = 2168 ($\nu_{C==C}$). M.p. 50 °C. Decomp. >80 °C. ¹H NMR (600 MHz, 299 K, benzene-d₆): δ^{1} H: 6.50 (dm, ${}^{4}J_{PH} = 4.6$ Hz, 2H, *m*-mes), 6.36 (dm, ${}^{3}J_{PH} + {}^{4}J_{PH} =$ 44.3 Hz, 1H, H3), 5.34 (sext, ${}^{4}J_{HH} \approx {}^{2}J_{HH} \approx {}^{5}J_{PH} = 1.1$ Hz, 1H, = CH_2^{Z}), 4.99 (m, 1H, = CH_2^{E}), 2.59 (dm, ${}^{2}J_{PH}$ = 9.4 Hz, 2H, H5), 2.36 (s, 6H, o-CH₃^{mes}), 1.94 (s, 3H, p-CH₃^{mes}), 1.62 (m, 3H, 4-CH₃), 1.56 (tm, ${}^{4}J_{HH} \approx {}^{4}J_{HH} = 1.2$ Hz, 3H, CH₃). ${}^{13}C{}^{1}H$ NMR (151 MHz, 299 K, benzene-d₆): δ^{13} C: 143.8 (d, $^{2}J_{PC}$ = 11.4 Hz, *o*-mes), 143.5 (d, ${}^{4}J_{PC}$ = 3.2 Hz, *p*-mes), 135.9 (d, ${}^{2}J_{PC}$ + ${}^{3}J_{PC}$ = 24.6 Hz, C3), 131.7 (d, ${}^{3}J_{PC}$ = 12.0 Hz, *m*-mes), 127.8 (=CH₂)^a, 125.0 (d, ${}^{3}J_{PC}$ = 4.4 Hz, C=), 118.5 (d, ${}^{2}J_{PC}$ + ${}^{3}J_{PC}$ = 13.5 Hz, C4), 116.8 (d, ${}^{1}J_{PC}$ = 92.8 Hz, i-mes), 113.3 (d, ${}^{2}J_{PC}$ = 24.7 Hz, C==), 94.7 (br, C2), 79.3 (d, ${}^{1}J_{PC}$ = 147.2 Hz, PC=), 40.6 (d, ${}^{1}J_{PC}$ = 64.6 Hz, C5), 22.6 (d, ${}^{3}J_{PC}$ = 4.6 Hz, *o*-CH₃^{mes}), 21.1 (CH₃), 20.6 (d, ${}^{5}\!J_{PC}$ = 1.6 Hz, p-CH₃^{mes}), 18.2 (d, ${}^{3}\!J_{PC}$ + ${}^{4}\!J_{PC}$ = 11.2 Hz, 4-CH₃), [not listed C_6F_5 ; ^afrom ghsqc]. ¹¹B{¹H} NMR (192 MHz, 299 K, benzene-d₆): δ^{11} B: 33.5 ($\nu_{1/2} \approx 600$ Hz). ¹⁹F NMR (564 MHz, 299 K, benzene-d₆): δ^{19} F: -129.0 (m, 2F, *o*-C₆F₅^A), $-131.9 \text{ (m, 2F, } o\text{-}C_6F_5^{\text{B}}\text{)}, -156.9 \text{ (t, } {}^{3}J_{\text{FF}} = 20.6 \text{ Hz}, 1\text{F}, p\text{-}C_6F_5^{\text{B}}\text{)},$ -158.7 (t, ${}^{3}J_{\text{FF}} = 20.3$ Hz, 1F, p-C₆F₅^A), -163.7 (m, 2F, m-C₆F₅^B), -164.5 (m, 2F, m-C₆F₅^A), $[\Delta \delta^{19}F_{mp} = 5.8$ Hz^A, 6.8 Hz^B]. ³¹P NMR (243 MHz, 299 K, benzene-d₆): δ^{31} P: 11.4 (dm, ${}^{3}J_{\rm PH}$ + ${}^{4}J_{\rm PH} = 44.3$ Hz).

Preparation of compound 14a

 $HB(C_6F_5)_2$ (95 mg, 0.28 mmol, 1 eq.) was added to a solution of compound **9b** (105 mg, 0.28 mmol, 1 eq.) in pentane (3 mL) at rt and the reaction mixture was stirred overnight. Then the insolubles were removed by filtration and were washed with pentane (1 mL) twice at rt. The filtrates were combined and all volatiles were removed in vacuo to give compound 14a as a green solid (140 mg, 70%). Anal. calc. for C₃₇H₃₀BF₁₀P: C, 62.91; H, 4.28. Found C, 62.38; H, 4.26. IR (KBr) $\tilde{\nu}$ [cm⁻¹] = 2162 ($\nu_{C=C}$). Decomp. >80 °C. ¹H NMR (600 MHz, 299 K, benzene-d₆): δ^{1} H: 6.70 (m, 1H, *m*-mes), 6.52 (m, 1H, *m*'-mes), 6.35 (dm, ${}^{3}J_{PH} + {}^{4}J_{PH} = 41.4$ Hz, 1H, H3), 6.22 (m, 1H, ==CH), 3.14 (m, 1H, H5), 2.84 (s, 3H, o-CH3^{mes}), 2.39/1.88 (each m, each 1H, 9-CH₂)^t, 2.38 (s, 3H, o'-CH₃^{mes}), 2.00/1.94 (each m, each 1H, β -CH₂)^t, 1.94 (s, 3H, *p*-CH₃^{mes}), 1.72 (m, 2H, γ' -CH₂)^t, 1.48/0.96 (each m, each 1H, 8-CH₂)^t, 1.36/0.95 (each m, each 1H, 7-CH₂)^t, 1.35/0.95 (each m, each 1H, 6-CH₂)^t, 1.29 (m, 2H, γ -CH₂)^t, 1.20 (m, 2H, δ -CH₂)^t, [^ttentatively assigned]. ¹³C{¹H}

NMR (151 MHz, 299 K, benzene-d₆): δ^{13} C: 146.5 (d, ${}^{2}J_{PC}$ = 15.5 Hz, *o*-mes), 142.9 (d, ${}^{4}J_{PC}$ = 3.2 Hz, *p*-mes), 142.4 (d, ${}^{4}J_{PC}$ = 3.0 Hz, ==CH), 142.0 (d, ${}^{2}J_{PC}$ = 6.2 Hz, o'-mes), 132.4 (d, ${}^{2}J_{PC}$ + ${}^{3}J_{PC}$ = 26.0 Hz, C3), 132.1 (d, ${}^{3}J_{PC}$ = 13.0 Hz, *m*-mes), 131.3 (d, ${}^{3}J_{PC}$ = 10.3 Hz, *m*'-mes), 127.7 (d, ${}^{2}J_{PC}$ + ${}^{3}J_{PC}$ = 14.9 Hz, C4), 119.3 (d, ${}^{3}J_{PC}$ = 4.7 Hz, C=), 117.2 (d, ${}^{1}J_{PC}$ = 84.8 Hz, *i*-mes), 113.4 (d, ${}^{2}J_{PC}$ = 25.7 Hz, C=), 92.4 (br m, C2), 76.8 (d, ${}^{1}J_{PC}$ = 159.4 Hz, PC=), 48.7 (d, ${}^{1}J_{PC}$ = 61.4 Hz, C5), 30.7 (d, ${}^{3}J_{PC}$ = 7.2 Hz, C9)^t, 27.5 (m, C6)^t, 27.5 (m, β -CH₂)^t, 26.6 (C8)^t, 26.2 (d, ${}^{3}J_{PC} = 13.9 \text{ Hz}, \text{ C7})^{t}, 26.0 (\gamma'-\text{CH}_{2})^{t}, 25.3 (\text{d}, {}^{3}J_{PC} = 5.8 \text{ Hz}, o'-\text{CH}_{3}^{\text{mes}}),$ 23.2 (br, *o*-CH₃^{mes}), 21.8 (γ -CH₂)^t, 21.0 (δ -CH₂)^t, 20.7 (d, ⁵J_{PC} = 1.5 Hz, p-CH₃^{mes}), $[C_6F_5 \text{ not listed}; ^t \text{ tentatively assigned}]$. ¹¹B{¹H} NMR (192 MHz, 299 K, benzene-d₆): δ^{11} B: 34.0 ($\nu_{1/2} \approx 850$ Hz). ¹⁹F NMR (564 MHz, 299 K, benzene-d₆): δ^{19} F: -128.6 (m, 2F, $o-C_6F_5^{A}$), -131.8 (m, 2F, $o-C_6F_5^{B}$), -157.3 (t, ${}^{3}J_{FF}$ = 20.6 Hz, 1F, $p-C_6F_5^{B}$, -158.6 (t, ${}^{3}J_{FF}$ = 20.5 Hz, 1F, $p-C_6F_5^{A}$), -163.6 (m, 2F, $m-C_6F_5^{B}$), -164.5 (m, 2F, $m-C_6F_5^{A}$), $[\Delta\delta^{19}F_{mp} = 5.9 \text{ Hz}^A$, 6.3 Hz^B]. ³¹P NMR (243 MHz, 299 K, benzene-d₆): δ^{31} P: 15.4 (ca. 94%, d, ${}^{3}J_{PH} + {}^{4}J_{PH} = 41.4$ Hz), 18.0 (impurity, ca. 6%, $\nu_{1/2} \approx 65$ Hz).

Preparation of compound 14b

Compound 10b (115 mg, 0.25 mmol, 1 eq.) and $HB(C_6F_5)_2$ (87 mg, 0.25 mmol, 1 eq.) were suspended in pentane (3 mL) at rt and then stirred overnight. Subsequently the reaction mixture was cooled to -35 °C for precipitation. The green supernatant solution was removed by decantation and the residue was washed with pentane (1 mL) at -35 °C twice. Drying of the residue in vacuo yielded compound 14b as a yellow-green solid. Concentration of the filtrate and a second crystallization at -35 °C yields another 20 mg of compound 14b (overall: 140 mg, 70%). Anal. calc. for C₄₃H₄₂BF₁₀P: C, 65.33; H, 5.35. Found C, 65.16; H, 5.35. IR (KBr) $\tilde{\nu}$ [cm⁻¹] = 2163 ($\nu_{C=C}$). M.p. 160 °C. ¹H NMR (600 MHz, 299 K, benzened₆): δ^{1} H: 7.24 (dd, ${}^{4}J_{PH} = 4.7$ Hz, ${}^{4}J_{HH} = 1.8$ Hz, 1H, *m*-tipp), 7.07 (dd, ${}^{4}J_{PH}$ = 3.9 Hz, ${}^{4}J_{HH}$ = 1.8 Hz, 1H, *m*'-tipp), 6.45 (dm, ${}^{3}J_{PH} + {}^{4}J_{PH} = 40.7$ Hz, 1H, H3), 6.21 (m, 1H, =CH), 3.88 (m, 1H, o-CH^{tipp}), 3.77 (m, 1H, o'-CH^{tipp}), 3.35 (m, 1H, H5), 2.71 (sept, ³J_{HH} = 6.9 Hz, 1H, *p*-CH^{tipp}), 2.43/1.92 (each m, each 1H, 9-CH₂)^t, 1.98/1.88 (each m, each 1H, β -CH₂)^t, 1.74 (m, 2H, γ' -CH₂)^t, 1.65 (d, ${}^{3}J_{HH} = 6.4$ Hz, 3H, *o*-CH₃^{tipp}), 1.63/1.22 (each m, each 1H, 6-CH₂)^t, 1.50/0.99 (each m, each 1H, 8-CH₂)^t, 1.46/ 1.00 (each m, each 1H, 7-CH₂)^t, 1.30 (m, 2H, γ -CH₂)^t, 1.23 (d, ${}^{3}J_{\rm HH} = 6.4$ Hz, 3H, o'-CH₃^{tipp}), 1.21 (m, 2H, δ -CH₂)^t, 1.20/1.19 (each d, each ${}^{3}J_{HH}$ = 6.9 Hz, each 3H, *p*-CH₃^{tipp}), 1.09 (d, ${}^{3}J_{HH}$ = 6.7 Hz, 3H, o-CH₃^{'tipp}), 1.01 (d, ${}^{3}J_{HH} = 6.7$ Hz, 3H, o'-CH₃^{'tipp}), [^ttentatively assigned]. $^{13}C{^1H}$ NMR (151 MHz, 299 K, benzene-d₆): δ^{13} C: 158.1 (d, ${}^{2}J_{PC}$ = 16.4 Hz, *o*-tipp), 154.3 (d, ${}^{4}J_{PC}$ = 3.1 Hz, *p*-tipp), 154.0 (d, ${}^{2}J_{PC}$ = 6.9 Hz, *o*'-tipp), 142.6 (d, ${}^{4}J_{PC}$ = 3.1 Hz, =CH), 133.4 (d, ${}^{2}J_{PC}$ + ${}^{3}J_{PC}$ = 25.5 Hz, C3), 125.7 (d, ${}^{2}J_{PC}$ + ${}^{3}J_{PC}$ = 14.9 Hz, C4), 124.7 (d, ${}^{3}J_{PC}$ = 13.0 Hz, *m*-tipp), 123.4 (d, ${}^{3}J_{PC}$ = 10.2 Hz, *m*'-tipp), 119.1 (d, ${}^{3}J_{PC}$ = 4.6 Hz, C=), 117.2 (d, ${}^{1}J_{PC}$ = 84.4 Hz, *i*-tipp), 111.6 (d, ${}^{2}J_{PC}$ = 25.3 Hz, C=), 95.2 (br dm, $J \approx$ 64 Hz, C2), 77.3 (d, ${}^{1}\!J_{\rm PC}$ = 160.9 Hz, PC==), 48.6 (d, ${}^{1}J_{PC}$ = 60.3 Hz, C5), 34.5 (*p*-CH^{tipp}), 33.0 (d, ${}^{3}J_{PC}$ = 6.3 Hz, o'-CH^{tipp}), 31.3 (d, ${}^{3}J_{PC} = 6.0$ Hz, o-CH^{tipp}), 30.5

(d, ${}^{3}J_{PC} = 7.2$ Hz, C9)^t, 27.8 (d, ${}^{4}J_{PC} = 1.5$ Hz, β -CH₂)^t, 27.5 (d, ${}^{2}J_{PC} = 3.3$ Hz, C6)^t, 27.1 (o-CH₃'^{tipp}), 26.5 (C8)^t, 26.2 (o'-CH₃'^{tipp}), 26.1 (d, ${}^{3}J_{PC} = 14.0$ Hz, C7)^t, 26.0 (γ '-CH₂)^t, 25.1 (o'-CH₃^{tipp}), 23.6 (p-CH₃^{tipp})^t, 23.5 (o-CH₃^{tipp})^t, 23.4 (p-CH₃'^{tipp})^t, 21.8 (γ -CH₂)^t, 21.0 (δ -CH₂)^t, [C₆F₅ not listed; ^ttentatively assigned]. ¹¹B{¹H} NMR (192 MHz, 299 K, benzene-d₆): δ^{11} B: 33.8 ($\nu_{1/2} \approx 900$ Hz). ¹⁹F NMR (564 MHz, 299 K, benzene-d₆): δ^{19} F: -128.6 (m, 2F, o-C₆F₅^A), -131.6 (m, 2F, o-C₆F₅^B), -157.4 (t, ${}^{3}J_{FF} = 20.5$ Hz, 1F, p-C₆F₅^B), -159.1 (t, ${}^{3}J_{FF} = 20.5$ Hz, 1F, p-C₆F₅^A), -163.7 (m, 2F, m-C₆F₅^B), -164.9 (m, 2F, m-C₆F₅^A), [$\Delta\delta^{19}$ Fmp = 5.8 Hz^A, 6.3 Hz^B]. ³¹P NMR (243 MHz, 299 K, benzene-d₆): δ^{31} P: 16.4 (dm, ${}^{3}J_{PH} + {}^{4}J_{PH} \approx 41$ Hz).

Acknowledgements

Financial support from the NRW Research School (Graduate School of Chemistry, University Münster) and the European Research Council (ERC) is gratefully acknowledged.

Notes and references

- 1 G. Zweifel and H. Arzoumanian, *Tetrahedron Lett.*, 1966, 7, 2535; A. Pelter, B. Singaram, L. Williams and J. W. Wilson, *Tetrahedron Lett.*, 1983, **24**, 623.
- 2 M. W. Rathke and R. Kow, *J. Am. Chem. Soc.*, 1972, **94**, 6854; R. Kow and M. W. Rathke, *J. Am. Chem. Soc.*, 1973, **95**, 2715.
- 3 J. C. Sheldon, G. J. Currie and J. H. Bowie, *J. Am. Chem. Soc.*, 1988, **110**, 8266; J. Oomens, J. D. Steill and T. H. Morton, *Inorg. Chem.*, 2010, **49**, 6781.
- 4 A. J. Ashe III and Paul Shu, J. Am. Chem. Soc., 1971, 93, 1804; A. H. Cowley, F. P. Gabbaï, C. J. Carrano, L. M. Mokry, M. R. Bond and G. Bertrand, Angew. Chem., Int. Ed., 1994, 33, 578, (Angew. Chem., 1994, 106, 584).
- J. J. Eisch, Adv. Organomet. Chem., 1996, 39, 355;
 R. C. Fischer and P. P. Power, Chem. Rev., 2010, 110, 3877.

- 6 T. Tomioka, R. Sankranti, T. G. Vaughan, T. Maejima and T. Yanase, *J. Org. Chem.*, 2011, **76**, 8053; T. Tomioka, Y. Takahashi and T. Maejima, *Org. Biomol. Chem.*, 2012, **10**, 5113.
- 7 M. M. Olmstead, P. P. Power, R. J. Doedens and K. J. Weese, *J. Am. Chem. Soc.*, 1987, **109**, 2541.
- 8 B. G. Ramsey and L. M. Isabelle, *J. Org. Chem.*, 1981, 46, 179; R. Bartlett and P. P. Power, *Organometallics*, 1986, 5, 1916.
- 9 M. Pilz, J. Allwohn, R. Hunold, W. Massa and A. Berndt, Angew. Chem., Int. Ed. Engl., 1988, 27, 1370, (Angew. Chem., 1988, 100, 1421); M. Pilz, J. Allwohn, P. Willershausen, W. Massa and A. Berndt, Angew. Chem., Int. Ed. Engl., 1990, 29, 1030, (Angew. Chem., 1990, 102, 1085); K. S. Cook, W. E. Piers and R. McDonald, J. Am. Chem. Soc., 2002, 124, 5411.
- 10 J. Yu, G. Kehr, C. G. Daniliuc and G. Erker, *Eur. J. Inorg. Chem.*, 2013, 3312.
- 11 D. W. Stephan and G. Erker, Angew. Chem., Int. Ed., 2010, 49, 46, (Angew. Chem., 2010, 122, 50); G. Erker, Pure Appl. Chem., 2012, 84, 2203; Frustrated Lewis Pairs I - Uncovering and Understanding, ed. G. Erker and D. W. Stephan, Top. Curr. Chem., Springer, vol. 332, 2013; Frustrated Lewis Pairs II -Expanding the Scope, ed. G. Erker and D. W. Stephan, Top. Curr. Chem., Springer, vol. 334, 2013.
- 12 D. J. Parks, R. E. Von, H. Spence and W. E. Piers, Angew. Chem., Int. Ed. Engl., 1995, 34, 809, (Angew. Chem., 1995, 107, 895); D. J. Parks, W. E. Piers and G. P. A. Yap, Organometallics, 1998, 17, 5492.
- 13 The P1-C2 bond length and the ³¹P NMR chemical shift does not indicate any significant contribution of the ylidic resonance form for the structural description of this compound. See e.g.: A. W. Johnson, Ylides and Imines of Phosphorus, Wiley, 1993; Phosphorus-31 NMR Spectroscopy in Stereochemical Analysis – Organic Compounds and Metal Complexes, ed. J. G. Verkade and L. D. Quin, Methods in Stereochemical Analysis, 8, Wiley, 1987.