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4-Acyl--lactams are important synthetic intermediates in both pharmaceutical and organic chemistry. Cis- and trans-4-acyl-- 
lactams were synthesized stereoselectively from vicinal diketones via the formation of bulky and less bulky diimines as key 
intermediates, respectively. The diimines reacted with acyl chloride in the presence of triethylamine to give rise to the corre-
sponding 4-imino--lactams, which were further hydrolyzed to afford 4-acyl--lactams. The cis- and trans selectivity is de-
pended on the steric hindrance of the imine N-substituents. A series of cis-4-acyl--lactams were synthesized from vicinal  
ketoaldehydes via the formation of their monoimines and diimines as intermediates. Pyruvic aldehyde produced cis-4-acetyl-- 
lactams and cis-4-formyl--lactams, respectively, through the reactions of its monoimine and diimine with acyl chlorides. 
Phenylglyoxal generated cis-4-benzoyl--lactams via its monoaldimine. 
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1  Introduction 

4-Acyl--lactams are important synthetic intermediates in 
both pharmaceutical and organic chemistry [1, 2]. They 
have been widely used for the synthesis of -amino acid 
derivatives [3, 4] and -amino acid derivatives [5, 6] via 
ring-opening reactions. They have also been applied in the 
preparation of heterocycles [718], polycyclic heterocyclic 
compounds [1925], alkaloids [23, 26], antibiotics [2731], 
and even more complex natural products [23, 32] via ring 
enlargements. 4-Formyl--lactams have been prepared in 
different ways, including the Swern oxidation from the cor-
responding 4-hydroxymethyl--lactams [33], ozonolysis 
and reduction from 4-styryl--lactams [34], and acidic hy-
drolysis from 4-imino--lactams [35]. Additionally, opti-
cally pure 4-formyl--lactams were prepared from optically 
pure 4-(1,3-dioxol-4-yl)--lactams or 4-(1,3-oxazolidin-4- 

yl)--lactams via periodinate oxidation [368]. However, 
the above-mentioned methods can only be used for the syn-
thesis of cis-4-acyl--lactams. Trans--lactams have been 
previously prepared from the 3-unsubstituted 4-hydro- 
xymethyl--lactams via alkylation and the Swern oxidation 
[39], or from N-2-oxoalkyl-2,3-epoxyalkanamides via an 
intramolecular nucleophilic ring-open reaction of the 
oxirane ring [40]. It is still in demand to develop efficient 
methods to stereoselectively prepare both cis- and trans-4- 
acyl--lactams with different acyl groups from simple 
starting materials. Herein, we reported our preliminary work 
on the stereoselective synthesis of both cis- and trans-4- 
acyl--lactams with different acyl groups from vicinal 
diketones and ketoaldehydes. 

2  Experiments 

2.1  Materials and measurements 

All commercially available reagents and solvents were 
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used without further purification unless otherwise noted. 
Monoimines and diimines were prepared from diketones 
and ketoaldehydes according to the previously reported 
methods [41]. Reactions of propionyl chloride and imines 
were carried out under nitrogen atmosphere in anhydrous 
solvents. Melting points were measured on a melting point 
apparatus and are uncorrected. 1H NMR spectra were rec-
orded at 200, 300, or 400 MHz in CDCl3 with TMS as the 
internal standard. 13C NMR spectra were recorded at 50.3, 
75.5, or 100.6 MHz in CDCl3 with CDCl3 as the internal 
standard at 77.0 ppm. IR spectra were determined directly. 
HRMS spectra were performed on an LC/MSD TOF mass 
spectrometer.  

2.2  Preparation of diimines (1ac) of vicinal diketones 

N,N’-Bis(diphenylmethyl)-2,3-butanediimine (1a) 
Butanedione (0.86 g, 10 mmol) and diphenylmethyla-

mine (3.84 g, 21 mmol)) were dissolved in freshly distilled 
anhydrous EtOH (15 mL). To the resulting solution were 
added a drop of 98% formic acid and MgSO4 (2 g). The 
mixture was stirred at room temperature for 24 h. Di-
chloromethane (20 mL) was added to fully dissolve the 
product. After filtration and evaporation of the solvent un-
der reduced pressure, the residue was purified by recrystal-
lization in EtOH to afford 1a as colorless crystals (1.83 g, 
yield 43.9 %). m.p. 185187 °C. Lit. [41] m.p. 185186 °C. 
1H NMR (200 MHz, CDCl3) : 7.507.16 (m, 20H, ArH), 
5.83 (s, 2H, 2CH), 2.31 (s, 6H, 2CH3). 

 
N,N’- Bis(4-methoxyphenyl)-2,3-butanediimine (1b) 

An ethanolic solution (100 mL) of 4-methoxyaniline 
(2.46 g, 20 mmol) was added dropwise to an ethanolic solu-
tion (100 mL) of 2,3-butanedione (0.86 g, 10 mmol). The 
resulting solution was refluxed in a water bath for 8 h. The 
yellow crystalline product was filtered, recrystallized from 
ethanol, and washed with n-hexane to afford 1b as yellow 
crystals (1.51 g, yield 50.6 %). m.p. 187188 °C. Lit. [42] 
m.p. 185186 °C. 1H NMR (200 MHz, CDCl3) : 6.936.75 
(m, 8H, ArH), 3.82 (s, 6H, 2OCH3), 2.17 (s, 6H, 2CH3). 

 
N,N’-Bis(4-methoxyphenyl)-1,2-diphenyl-1,2-ethanediimine 
(1c) 

An ethanolic solution (100 mL) of benzil (2.10 g, 10 
mmol) and 4-methoxyaniline (2.46 g, 20 mmol) was re-
fluxed in a water bath for 24 h. The reaction mixture was 
concentrated to one-third of its volume and kept overnight 
in a sulfuric acid desiccator. The yellow crystalline prod-
uct was filtered, recrystallized from ethanol, and washed 
with diethyl ether and hexane (1:1, v/v) to afford 1c as 
yellow crystals (2.46 g, yield 58.6 %). m.p. 173174 °C. 
Lit. [43] m.p. 171–172 °C. 1H NMR (200 MHz, CDCl3) : 
7.88–7.31 (m, 12H, ArH), 6.65 (s, 6H, ArH), 3.72 (s, 6H, 
2CH3O). 

2.3  Preparation of diimines (1d, e) of vicinal ketoalde-
hydes  

N,N’-Bis(diphenylmethyl)-1,2-propanediimine (1d) 
A round-bottom flask was charged with a solution of py-

ruvic aldehyde (14 mmol, 3.33 g of 30 % aqueous solution) 
and diphenylmethylamine (5.34 g, 29 mmol) in diethyl ether 
(30 mL). The mixture was stirred at room temperature for 
24 h and filtered. The colorless crystals were further recrys-
tallized from ethanol and washed with n-hexane to afford 
1d as colorless crystals (3.72 g, yield 66.2 %). m.p. 
141.0142.5 °C. Lit. [41] m.p. 141–142 °C. 1H NMR (300 
MHz, CDCl3) : 8.15 (s, 1H, CH=N), 7.23–7.37 (m, 20H, 
ArH), 5.87 (s, 1H, CH), 5.56 (s, 1H, CH), 2.26 (s, 3H, CH3). 
13C NMR (CDCl3). : 167.0, 164.5, 143.5, 143.3, 128.48, 
128.45, 127.59, 127.53, 127.1, 126.9, 77.5, 68.8, 13.5. IR 
(KBr):  (cm1) 1635 (C=N). 

 
N,N’- Bis(4-methoxyphenyl)-1,2-propanediimine (1e) 

A round-bottom flask was charged with a solution of py-
ruvic aldehyde (7 mmol, 1.67 g of 30 % aqueous solution) 
and 4-methoxyaniline (1.85 g, 15 mmol) in diethyl ether (20 
mL). The mixture was stirred at 0 °C for 12 h. After remov-
al of the solvent under reduced pressure, the residue was 
purified by crystallization in EtOH to afford 1e as yellow 
crystals (1.01 g, yield 51.0 %). m.p. 108109 °C. Lit. [44] 
m.p. 106108 °C. 1H NMR (200 MHz, CDCl3) : 8.29 (s, 
1H, N=CH), 7.346.82 (m, 8H, ArH), 3.84 (s, 3H, CH3O), 
3.83 (s, 3H, CH3O), 2.23 (s, 3H, CH3). 

2.4  Preparation of ketoaldimines (1f, g) of vicinal ke-
toaldehydes 

1-(4-Methoxyphenylimino)propan-2-one (1f) 
A round-bottom flask was charged with a solution of py-

ruvic aldehyde (28 mmol, 6.73 g of 30 % aqueous solution) 
and 4-methoxyaniline (2.46 g, 20 mmol) in diethyl ether (20 
mL). The mixture was stirred at 0 °C for 3 h and washed 
with water. The organic phase was dried over anhydrous 
Na2SO4 and concentrated under reduced pressure. The re-
sulting residue was purified via flash column chromatog-
raphy (silica gel, hexanes:EtOAc = 4:1, v/v) to afford 1f as 
yellow crystals (0.9 g, yield 25.4 %). m.p. 70.072.0 oC. 1H 
NMR (300 MHz, CDCl3) : 7.88 (m, 1H, CH=N), 7.34 (d, J
＝9.0 Hz, 2H, ArH), 6.94 (d, J＝9.0 Hz, 2H, ArH), 3.84  
(s, 3H, OCH3), 2.52 (s, 3H, CH3). 

13C NMR (CDCl3) : 
200.1, 160.5, 154.0, 141.0, 123.9, 123.8, 114.5, 55.5, 24.6. 
 

2-(4-Methoxyphenylimino)-1-phenylethanone (1g) 
A mixture of phenylglyoxal hydrate (1.13 g, 7.46 mmol),  

4-methoxyaniline (0.97 g, 7.40 mmol), and anhydrous 
magnesium sulfate (2 g) in dichloromethane (25 mL) was 
stirred at 0 °C for 1 h, warmed to rt, filtered through Celite, 
and concentrated under reduced pressure. The resulting res-
idue was purified via flash column chromatography (silica 
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gel, hexanes:EtOAc = 8:1, v/v) to afford 1g as an orange oil 
(1.0 g, yield 60 %). 1H NMR (400 MHz, CDCl3) : 8.38 (s, 
1H, CH), 8.336.98 (m, 9H, 2CH), 3.871 (s, 3H, OCH3). 

2.5  General procedure for the reaction of propionyl 
chloride and imines 

A solution of propionyl chloride (111 mg, 1.2 mmol) in 
anhydrous benzene (5 mL) was added dropwise to a solu-
tion of imine (1 mmol) and triethylamine (0.152 g, 1.5 
mmol) in toluene (10 mL). The resulting mixture was stirred 
at 80 °C under nitrogen for 416 h (monitoried by TLC), 
diluted with CH2C12 (20 mL), and washed with saturated 
aqueous NaHCO3 solution (20 mL) and brine (2 x 10 mL). 
The organic phase was dried over anhydrous Na2SO4 and 
concentrated under reduced pressure. The resulting residue 
was purified via recrystallization in a mixture of EtOAc and 
hexanes (for crystalline products) or via flash column 
chromatography (silica gel, a mixture of hexanes and 
EtOAc as eluent) (for liquid products) to afford the prod-
ucts. 

 
Cis-1-diphenylmethyl-4-[(E)-1-(diphenylmethylimino)ethyl]- 
3,4-dimethylazetidin-2-one (2a) 

Colorless crystals 0.200 g, yield 42.3%, m.p. 164.0 
166.0 °C. 1H NMR (200 MHz, CDCl3) : 7.467.18 (m, 
20H, ArH), 5.70 (s, 1H, CH), 5.67 (s, 1H, CH), 2.95 (q, J 
= 7.5 Hz, 1H, CH), 1.84 (s, 3H, CH3), 1.40 (s, 3H, CH3), 
1.05 (d, J = 7.5 Hz, 3H, CH3). 

13C NMR (CDCl3) : 168.9, 
167.5, 144.0, 143.9, 141.9, 140.0, 128.8, 128.5, 128.4, 
128.33, 128.27, 127.8, 127.4, 127.34, 127.28, 126.85, 
126.79, 126.7, 68.4, 68.0, 62.9, 54.8, 22.8, 16.7, 10.6. IR 
(KBr):  (cm1) 1743 (C=O), 1653 (C=N). HRMS (ESI) 
calcd for C33H33N2O [M+H]+ m/z: 473.2587, found 
473.2591. 

 
Trans-1-(4-methoxyphenyl)-4-[(E)-1-(4-methoxyphenylimino) 
ethyl]-3,4-dimethylazetidin-2-one (2b) 

Colorless crystals 0.249 g, yield 70.7 %, m.p. 
188.0190.0 °C. 1H NMR (300 MHz, CDCl3) : 7.416.63 
(m, 8H, ArH), 3.79 (s, 3H, OCH3), 3.78 (s, 3H, OCH3), 3.33 
(q, J =7.5 Hz, 1H, CH), 1.88 (s, 3H, CH3), 1.85 (s, 3H, CH3), 
1.32 (d, J = 7.6 Hz, 3H, CH3). 

13C NMR (CDCl3) : 170.7, 
166.8, 156.1, 155.9, 143.8, 131.0, 120.0, 118.7, 114.3, 
114.2, 67.5, 56.5, 55.4, 21.7, 17.9, 9.3. IR (KBr):  (cm1) 
1742 (C=O), 1652 (C=N). HRMS (ESI) calcd for 
C21H25N2O3 [M+H]+ m/z: 353.1860, found 353.1864. 

 
Trans-1-(4-methoxyphenyl)-4-[(E)-(4-methoxyphenylimino)
(phenyl)methyl]-3-methyl-4-phenylazetidin-2-one (2c) 

Yellow oil 0.239 g, yield 50.3 %. 1H NMR (300 MHz, 
CDCl3) : 7.506.59 (m, 18H, ArH), 3.88 (q, J =7.5 Hz, 1H, 
CH), 3.71 (s, 3H, OCH3), 3.69 (s, 3H, OCH3), 1.59 (d, J 
=7.4 Hz, 3H, CH3). 

13C NMR (CDCl3) : 168.5, 166.5, 

156.3, 156.0, 142.5, 139.6, 135.5, 130.7, 128.5, 128.4, 
127.9, 127.8, 127.4, 122.1, 121.5, 113.8, 113.5, 73.5, 60.4, 
55.2, 12.3. IR (KBr):  (cm1) 1747 (C=O), 1626 (C=N). 
HRMS (ESI) calcd for C31H29N2O3 [M+H]+ m/z: 477.2173, 
found 477.2173. 

 
Cis-1-diphenylmethyl-4-[(E)-(diphenylmethylimino)methyl]-
3,4-dimethylazetidin-2-one (2d) 

Colorless crystals 0.339 g, yield 74.1 %, m.p. 113.0 
115.0 °C. 1H NMR (200MHz, CDCl3) : 7.62 (s, 1H, CHN), 
7.26–7.20 (m, 20H, ArH), 5.55 (s, 1H, ArCH), 5.28 (s, 1H, 
ArCH), 3.10 (q, J =7.6 Hz, 1H, CH), 1.50 (s, 3H, CH3), 
1.04 (d, J =7.6 Hz, 3H, CH3). 

13C NMR (CDCl3) : 169.4, 
163.9, 143.2, 143.1, 140.0, 128.43, 128.39, 128.30, 128.27, 
127.5, 127.4, 127.3, 127.3, 127.0, 77.6, 63.9, 61.7, 55.7, 
21.4, 9.9. IR (KBr):  (cm1) 1748 (C=O), 1653(C=N). 
HRMS calcd for C32H31N2O [M+H]+ m/z: 459.2431, found 
459.2440. 

 
Cis-1-(4-methoxyphenyl)-4-[(E)-(4-methoxyphenylimino)-  
methyl]-3,4-dimethylazetidin-2-one (2e) 

Yellow oil 0.260 g, yield 76.9 %. 1H NMR (200 MHz, 
CDCl3) : 7.99 (s, 1H, CH=N), 7.306.72 (m, 8H, ArH), 
3.70 (s, 3H, OCH3), 3.66 (s, 3H, OCH3), 3.21 (q, J=7.6 Hz, 
1H, CH), 1.76 (s, 3H, CH3), 1.21 (d, J=7.6 Hz, 3H, CH3). 
13C NMR (CDCl3) : 167.0, 162.4, 158.5, 155.9, 143.5, 
130.6, 121.9, 118.3, 114.3, 114.2, 63.7, 56.6, 55.3, 55.2, 
19.9, 9.9. IR (KBr):  (cm1) 1742 (C=O), 1644 (C=N). 
HRMS (ESI) calcd for C20H23N2O3 [M+H]+ m/z: 339.1703, 
found 339.1709. 

 
Cis-4-acetyl-1-(4-methoxyphenyl)-3-methylazetidin-2-one (3f) 

Colorless crystals 0.268 g, yield 76.6 %, m.p. 118.0
120.0 °C. 1H NMR (300 MHz, CDCl3) : 7.20 (d, J = 9.0 
Hz, 2H, ArH), 6.85 (d, J = 9.0 Hz, 2H, ArH), 4.62 (d, J = 
6.4 Hz, 1H, NCH), 3.77 (s, 3H, OCH3), 3.72-3.65 (dq, J = 
6.4, 7.6 Hz 1H, CH), 2.21 (s, 3H, CH3), 1.23 (d, J = 7.6 Hz, 
3H, CH3). 

13C NMR (75 MHz, CDCl3) : 204.8, 166.0, 
156.4, 131.1, 117.9, 114.5, 61.6, 55.5, 47.7, 28.2, 9.5. IR 
(KBr):  (cm1) 1715 (C=O), 1743 (C=O, in amide). HRMS 
(ESI) calcd for C13H16NO3 [M+H]+ m/z: 234.1125, found 
234.1129. 

 
Cis-4-benzoyl-1-(4-methoxyphenyl)-3-methylazetidin-2-one 
(3g) 

Colorless crystals 0.293 g, yield 80 %, m.p. 160.0
162.0 °C. 1H NMR (400 MHz, CDCl3) : 7.986.81 (m, 9H, 
ArH), 5.54 (d, J = 6.2 Hz, 1H, CH), 3.83 (dq, J = 6.2, 7.4 
Hz, 1H, CH), 3.76 (s, 3H, OCH3), 1.11 (d, J = 7.4 Hz, 3H, 
CH3). 

13C NMR (100 MHz, CDCl3) : 193.9, 165.7, 156.2, 
135.2, 134.3, 131.3, 129.2, 128.2, 118.4, 114.3, 59.1, 55.5, 
48.4, 10.0. IR (KBr)  (cm1): 1699 (C=O), 1746 (C=O in 
amide). HRMS (ESI) calcd for C18H18NO3 [M+H]+ m/z: 
296.1281, found 296.1277. 
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2.6  General procedure for hydrolysis of 4-imino-- 
lactams 

A round-bottom flask was charged with a solution of 
4-imino--lactams (30 mg) and 1 mol/L aqueous HCl (6 mL) 
in THF (6 mL). The mixture was stirred at reflux for 3 h. 
After removal of solvent under reduced pressure, the resi-
due was diluted with CH2C12 (10 mL) and subsequently 
washed with 1 mol/L aqueous HCl (6 mL) and water (6 mL).  
The organic phase was dried over anhydrous Na2SO4 and 
concentrated under reduced pressure to afford the desired 
products. 

 
Cis-4-acetyl-1-diphenylmethyl-3,4-dimethylazetidin-2-one (3a) 

Yellowish oil 17.9 mg, yield 92 %. 1H NMR (400 MHz, 
CDCl3) : 7.447.25 (m, 10H, ArH), 5.46 (s, 1H, NCH), 
3.05 (q, J = 7.5 Hz, 1H, CH), 2.09 (s, 3H, COCH3), 1.43 (s, 
3H, CH3), 1.20 (d, J = 7.6 Hz, 3H, CH3). 

13C NMR (100 
MHz, CDCl3) : 207.4, 168.2, 140.4, 139.1, 128.6, 128.3, 
128.2, 127.6, 127.4, 69.9, 62.9, 55.1, 27.8, 21.2, 10.3. IR 
(KBr):  (cm1) 1711 (C=O), 1742 (C=O, in amide). HRMS 
(ESI) calcd for C20H22NO2 [M+H]+ m/z: 308.1645, found 
308.1649. 

 
Trans-4-acetyl-1-(4-methoxyphenyl)-3,4-dimethylazetidin-2- 
one (3b) 

Yellowish oil 19.7 mg, yield 94 %. 1H NMR (400 MHz, 
CDCl3) : 7.28 (d, J = 9.1 Hz, 2H, ArH), 6.87 (d, J = 9.1 
Hz, 2H, ArH), 3.78 (s, 3H, OCH3), 3.24 (q, J = 7.6 Hz, 1H, 
CH), 2.24 (s, 3H, COCH3), 1.77 (s, 3H, CH3), 1.23 (d, J = 
7.6 Hz, 3H, CH3). 

13C NMR (100 MHz, CDCl3) : 210.7, 
166.2, 156.2, 130.3, 118.7, 114.5, 69.5, 56.2, 55.4, 28.0, 
19.8, 9.4. IR (KBr):  (cm1) 1715 (C=O), 1743 (C=O, in 
amide). HRMS (ESI) calcd for C14H18NO3 [M+H]+ m/z: 
248.1281, found 248.1276. 

 
Trans-4-benzoyl-1-(4-methoxyphenyl)-3-methyl-4-phenylaze
tidin-2-one (3c) 

Yellow oil 19.3 mg, yield 94%. 1H NMR (300 MHz, 
CDCl3) : 7.506.59 (m, 14H, ArH), 4.14 (q, J =7.4 Hz, 1H, 
CH), 3.71 (s, 3H, OCH3), 1.24 (d, J =7.4 Hz, 3H, CH3). IR 
(KBr):  (cm1) 1686 (C=O), 1747 (C=O in amide). HRMS 
(ESI) calcd for C24H22NO3 [M+H]+ m/z: 372.1594, found 
372.1591. 

 
Cis-1-diphenylmethyl-2,3-dimethylazetidin-2-one-4-carbald
ehyde (3d) 

Yellowish oil 18.2 mg，yield 91 %. 1H NMR (400 MHz, 
CDCl3) : 9.37 (s, 1H, CHO), 7.367.25 (m, 10H, ArH), 
5.79 (s, 1H, NCH), 3.16 (q, J = 7.7 Hz, 1H, CH), 1.39 (s, 
3H, CH3), 1.21 (d, J = 7.7 Hz, 3H, CH3). 

13C NMR (100 
MHz, CDCl3) : 201.1, 169.1, 138.9, 138.6, 128.9, 128.8, 
128.6, 128.3, 128.0 127.8, 67.6, 61.7, 55.6, 18.4, 9.4. IR 
(KBr):  (cm1) 1659 (C=O), 1742 (C=O in amide). HRMS 

(ESI) calcd for C19H20NO2 [M+H]+ m/z: 294.1489, found 
294.1492. 

 

Trans-1-(4-methoxyphenyl)-2,3-dimethylazetidin-2-one-4-c 
arbaldehyde (3e) 

Yellowish oil 18.6 mg, yield 90 %. 1H NMR (400 MHz, 
CDCl3) : 9.83 (s, 1H, CHO), 7.16 (d, J = 9.0 Hz, 2H, ArH), 
6.78 (d, J = 9.0 Hz, 2H, ArH), 3.70 (s, 3H, OCH3), 3.19 (q, 
J = 7.7 Hz, 1H, CH), 1.60 (s, 3H, CH3), 1.22 (d, J = 7.7 Hz, 
3H, CH3). 

13C NMR (100 MHz, CDCl3) : 202.1, 166.4, 
156.5, 130.0, 118.6, 114.6, 66.8, 56.3, 55.5, 17.0, 9.5. IR 
(KBr):  (cm1) 1658 (C=O), 1741 (C=O in amide). HRMS 
(ESI) calcd for C13H16NO3 [M+H]+ m/z: 234.1125, found 
234.1140. 

3  Results and discussion 

3.1  Synthesis of cis- and trans-4-acyl--lactams from 
symmetric vicinal diketones 

Although it is an economic and convenient route to prepare 
4-acyl--lactams from vicinal diketones and acyl chlorides 
in the presence of tertiary amine via monoimine derivatives 
of diketones, the reaction of diketones and amines, even in a 
molar ratio of 1:1, generally produces a mixture of mo-
noimine and diimine derivatives of diketones that are diffi-
cult to separate due to their similar polarity and unstability 
in a silica gel column. Thus, it is more practical to prepare 
4-acyl--lactams from vicinal diketones and acyl chlorides 
via diimines of diketones followed by subsequent hydroly-
sis. According to our proposal on the stereocontrol in the 
synthesis of -lactams [45, 46], we hoped to synthesize the 
cis- and trans-4-acyl--lactams via the diketone diimines 
with bulky and less steric N-substituents, respectively.      

First, 2,3-butanedione reacted with diphenylmethylamine 
and p-methoxyaniline to prepare the corresponding diimines 
1a and 1b, respectively. Diimines 1a and 1b reacted with 
propionyl chloride in the presence of triethylamine in di-
chloromethane to give rise to the cis- and trans-4-imino-- 
lactams 2a and 2b, respectively, which were further hydro-
lyzed to produce the cis- and trans-4-acetyl--lactams 3a 
and 3b. Similarly, the trans-4-benzoyl--lactam 3c was 
synthesized from 1,2-diphenyl-1,2-ethanedione. The stereo-
structures of products 2 and 3 were identified on the basis of 
their NOESY spectra [45]. For example, the correlation 
between the C3 proton and the C4 methyl group of 
-lactams was observed in 2a, but not in 2b. Unfortunately, 
the reaction of 1,2-diphenyl-1,2-ethanedione and bulky di-
phenylmethylamine did not occur (Scheme 1).  

3.2  Synthesis of cis-4-acyl--lactams from unsymmet-
ric vicinal ketoaldehydes 

Pyruvic aldehyde reacted with amines in different molar 
ratios to generate diimines 1d, 1e, and ketoaldimine 1f, re- 
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Scheme 1  Synthesis of cis- and trans-4-acyl--lactams 3 from vicinal 
diketones. 

 

Scheme 2  Synthesis of cis-4-acyl--lactams 3 from vicinal ketoalde-
hydes. 

spectively, because the ketone and aldehyde groups showed 
obviously different reactivity with amines. The diimines 1d 
and 1e reacted with propionyl chloride in the presence of 
triethylamine to give rise to the cis-4-aldimino--lactams 2d 
and 2e, respectively. Their stereostructures were identified 
on the basis of the NOESY spectra. Lactams 2d and 2e were 
further hydrolyzed to produce cis-4-formyl--lactams 3d 
and 3e. As comparison, the ketoaldimine 1f reacted with 
propionyl chloride to afford cis-4-acetyl--lactam 3f direct-
ly (Scheme 2). This is because ketimines reacted more pre-
dominantly with the acyl chloride than aldimines due to 
their higher electron density and less steric hindrance in the 
attacking of imines to ketenes generated from propionyl 
chloride in the presence of triethylamine. Similarly, cis-4- 
benzoyl--lactam 3g was synthesized from ketoaldimine 1g 
generated from phenylglyoxal with 4-methoxyaniline 
(Scheme 2). The stereostructures of products 3f and 3g were 
identified on the basis of the coupling constants between the 
C3 protons and C4 protons of -lactams (6.4 and 6.2 Hz, 
respectively) because the coupling constant of cis-protons  
ranges from 4 to 6 Hz, while that for trans-protons is less 
than 4 Hz [45]. Unfortunately, attempts to prepare the phe-
nylglyoxal-derived diimines failed.  

The results indicate that both cis- and trans-4-acyl-  
lactams were prepared from 2,3-butanedione via its 
diimines with more or less bulky N-substituents (Scheme 1).  
However, only cis-4-formyl--lactams were prepared from 
diimines generated from pyruvic aldehyde no matter 
whether they possess bulky or less bulky N-substituents. 
This is because the ketimine moiety in the diimines pre-
dominately reacted with the acyl chloride due to its higher 
electron density. It is also because the generated zwitterion-
ic intermediates prefer to direct ring closure due to their 
iminium moiety with electron-withdrawing aldimine sub-
stituents. Although only cis-4-acyl--lactams were obtained 
from pyruvic aldehyde, both cis-4-acetyl--lactams and 
cis-4-formyl--lactams were synthesized via its monoimine 
and diimine derivatives, respectively. The diastereoselectiv-
ity follows our previous proposal on the stereoselectivity of 
the Staudinger reaction [47, 48]. That is, the diastereoselec-
tivity is a result of the competition between the direct 
conrotatory ring closure and the isomerization of the imin-
ium moiety in the zwitterionic intermediates generated from 
ketenes and imines (Scheme 3). Strong electron-donating  
ketene substituents, strong electron-withdrawing imine 
C-substituents, and bulky imine N-substituents prefer the 
formation of cis--lactams, while weak electron-donating 
and electron-withdrawing ketene substituents dominate the 
formation of trans--lactams. 

4  Conclusions 

Cis- and trans-4-acyl--lactams were stereoselectively syn- 
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Scheme 3  Selectivity in synthesis of cis- and trans-4-acyl--lactams 3 from vicinal diketones and ketoaldehydes. 

thesized from vicinal diketones while cis-4-acyl--lactams 
were synthesized from ketoaldehydes. Diketones and ke-
toaldehydes reacted with amines to afford diimines. The 
diimines reacted with propionyl chloride in the presence of 
triethylamine to give rise to the corresponding 4-imino-- 
lactams, which were further hydrolyzed to afford 4-acyl-- 
lactams. Cis- and trans- selectivity depends on the steric 
hindrance of the imine N-substituents and on the electronic 
property of the imine C-substituents. Pyruvic aldehyde  
produced cis-4-acetyl--lactams and cis-4-formyl--lactams, 
respectively, through the reactions of its monoimines and 
diimines with propionyl chlorides. Phenylglyoxal generated 
cis-4-benzoyl--lactams via its monoaldimines.   
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