NEW ALKALOIDS FROM AEGLE MARMELOS*

MANGALA D. MANANDHAR, ABOO SHOEB, RANDHIR S. KAPIL and SATYA P. POPLI Central Drug Research Institute, P.O. Box 173, Lucknow 226001, India

(Revised received 20 April 1978)

Key Word Index — Aegle marmelos; Rutaceae; O-(3,3-dimethylallyl)-halfordinol: cinnamic acid amides; structural analysis; synthesis.

Abstract—Four new alkaloids, O-(3,3-dimethylallyl)-halfordinol, N-2-ethoxy-2-(4-methoxyphenyl)ethylcinnamamide, N-2-methoxy-2-[4-(3',3'-dimethylallyloxy)phenyl] ethylcinnamamide, and N-2-methoxy-2-(4-methoxyphenyl)ethylcinnamamide have been isolated from the leaves of *Aegle marmelos* and their structural assignments confirmed by synthesis.

INTRODUCTION

The leaves and fruits of *Aegle marmelos* Corr. (Rutaceae) have been widely prescribed in various intestinal ailments in the indigenous system of medicine. The results obtained for the isolation and characterization of the active principles from the leaves of the plant are described in the present communication.

RESULTS AND DISCUSSION

The hexane soluble fraction of the MeOH-EtOH extracts of the leaves of A. marmelos on column chromatography over neutral Al_2O_3 yielded alkaloids A, B, C, and D.

Alkaloid A. mp 115°, $C_{1,9}H_{18}N_2O_2$, M⁺, 306, showed UV absorbance at λ_{max}^{MeOH} 248 (log ε 4.10), 255 (4.03) and 325 nm (4.50) which remained unaffected by the addition of alkali. The characteristic IR bands at ν_{max}^{KBr} 1625, 1580 and 1110 cm⁻¹ indicated the presence of a 1,4-disubstituted benzene ring, trisubstituted olefin and ether linkage, respectively. A 3,3-dimethylallyloxy chain could easily be identified from the PMR spectrum which showed resonances at τ 8.22 (*bs*, 6H, =C(CH_3)₂), 5.47 (*d*, 2H, OCH₂) and 4.52 (*t*, 1H, C=CH), respectively. A pair of doublets showing an A₂B₂ system at τ 3.12 and 2.42 (*J* = 8.5 Hz) confirmed the 1,4-disubstituted benzene ring. The chemical shift and multiplicity of the rest of the proton signals in the spectrum were identical to those reported for nicotinamide [1] and thus suggested a pyridine residue in the molecule.

The MS of alkaloid A showed a conspicuous M^+ at m/e 306 with a base peak at m/e 238 due to the ion (M^+ -side chain). The rest of the fragmentation pattern was similar to halfordinol [2, 3]. On the basis of above evidence, the alkaloid A could be identified as O-(3,3-dimethylallyl)halfordinol [4] (1) and the assignment was confirmed by synthesis. Thus, the condensation of 3,3-dimethylallyl bromide with halfordinol furnished a product identical in all respects with the alkaloid A.

* CDRI Communication No. 2405.

The alkaloid B, mp 99–101°, C, $H_{23}NO_3$, M⁺, 325, exhibited UV absorbance at $\lambda^{1.0H}$, 218 (log ε 4.08), 224 (4.08) and 275 nm (4.1), indicative of a trans cinnamamide group. The IR spectrum revealed the presence of NH (3340 cm⁻¹) and bands at 1648 and 1605 cm⁻¹ were diagnostic of the trans conjugation. Its PMR spectrum showed two doublets of one proton each at τ 3.52 and 2.43 (J = 16 Hz) for olefinic protons and a multiplet centred around τ 2.52 -2.95 for 9 aromatic protons. The ABX pattern of the benzylic methine appeared as two sets of doublets spread over from t 5.5-5.64. A multiplet between τ 6.05-6.54 partly obscured by a methoxy signal (τ 6.24) was assigned to methylene protons adjacent to the benzylic carbon. A triplet at τ 8.85 (J = 8 Hz) and a deformed quartet at r 6.68 accounted for an ethoxy function. The alkaloid B was, therefore, formulated as N-2-ethoxy-2-(4-methoxyphenyl)ethylcinnamamide (2) and its structure was confirmed by synthesis. The 4methoxy-w-nitrostyrene obtained by conventional methods was converted to α -ethoxy- β -nitroethyl-4-methoxybenzene under Michael conditions which on reduction with LiAlH₄ afforded β -ethoxy- β -(4-methoxy-phenyl)ethylamine. The latter on reaction with cinnamoyl chloride yielded a product, identical in all respects with alkaloid B.

The alkaloid C, mp 110°, M⁺, 365, analysed for $C_{23}H_{27}NO_{3}$. Its spectral studies suggested a close analogy with the alkaloid B except for the presence of a methoxy instead of an ethoxy function at the benzylic carbon and a 3,3-dimethylallyloxy group in place of the methoxy function at C_4 of the phenyl ring. It was, therefor, formulated as N-2-methoxy-2-[4-(3'3'-dimethylallyloxy) phenyl] ethylcinnamamide (3).

The alkaloid D, mp 135°, $C_{19}H_{21}NO_3$, M⁻, 311, had spectral properties identical with those of alkaloid C with the exception of it being a methyl rather than a 3,3-dimethylallyl ether. It could, therefore be represented as N-2-methoxy-2-(4-methoxyphenyl) ethylcinnamamide (4).

The isolation of alkaloids (1), (2), (3) and (4) in the present study and that of halfordinol [2] and acgeline [5] (5) in earlier reports, raised the possibility that artefact formation was occurring during isolation. A solution of (1) in N HCl kept at room temperature for 5 min on work-up gave a quantitative yield of halfordinol, thus indicating that the latter was an artefact of (1). Similarly, a change from MeOH to EtOH as extraction solvent during the isolation of (4) resulted in our obtaining (2) instead of (4); thus indicating that (2) and (4) were both artefacts of acgeline.

EXPERIMENTAL

All mps are uncorr. The PMR spectra were recorded at 60 MHz using TMS as an internal standard. The MS were recorded on a mass spectrometer fitted with a direct inlet system.

Isolation of alkaloids. Fresh leaves of A. marmelos (10 kg) were percolated with MeOH. The residue obtained after removal of the solvent was diluted with H_2O , steam distilled and extracted with hexane (4 × 500 ml). The hexane extract on concn left a residue (30 g) which was chromatographed on a column of neutral Al_2O_3 (1.5 kg) in hexane and eluted with increasing proportions of C_6H_6 followed by EtOAc.

O-3,3-(Dimethylatlyl)halfordinol (1) (450 mg) was eluted with $C_{6H_{6}}$ and crystallized from a mixture of $C_{.H}$ hexane, mp 115° and analysed for $C_{19}H_{18}N_{2}O_{.}$, UV: λ^{MCOH} nm: 248 (log ϵ 4.10), 255 (4.03), and 325 (4.50); IR ν^{MBT}_{max} cm⁻¹: 3400, 2907, 1625, 1580, 1506, 1462, 1290, 1244, 1190, 1110, 1076, 899, 820, 803, 790, 725 and 702; PMR (CCl₄): τ 8.22 (s, 6H, 2CH₃), 5.47 (d, 2H, CH₄, J = 7 Hz), 4.52 (m, 1H, C=CH); 3.12 and 2.42 (d, 2H each, ArH_. J = 8.5 Hz), 2.75 (s, 1H, C-5H), 2.6 (m, 1H, C-3H), 1.79 (m, 1H, C-4H), 1.4 (dd, 1H, C-2H, J = 5 and 1.5 Hz) and 0.76 (m, 1H, C-1H); MS: m/e M⁺ 306 (53%), 239 (70), 238 (100), 237 (40), 210 (53), 209 (30), 156 (36), 155 (46), 154 (46), 150 (20), 149 (60), 141 (14), 121 (25), 114 (20), 78 (29) and 71 (27).

Elution with C_6H_6 gave N-2-methoxy-2-[4-(3',3'-dimethylallyloxy)phenyl] ethylcinnamamide (3) (330 mg), mp 110° (hexane- C_6H_6), which analysed for $C_{23}H_{27}NO_3$, UV λ_{max}^{MeOH} nm: 217 (log ε 4.31), 224 (4.35) and 276 (4.38); IR ν_{max}^{KB} cm⁻¹: 3289, 2849, 1656, 1631, 1558, 1513, 1451, 1377, 1284, 1035, 767 and 723; PMR (CDC1₃): τ 8.24 and 8.2 (bs, 3H each, $2 \times CH_3$), 6.77 (s, 3H, OCH₃), 6.22 (m, 2H, CH₂NH), 5.8 (m, 1H, CH), 5.5 (d, 2H, OCH₂, J = 7 Hz), 4.52 (m, 1H, (CH₃)₂ C=CH⁻), 3.59 and 2.41 (d, 1H each, CH⁼=CHAr, J = 16 Hz), 3.2 and 2.8 (d, 2H each, ArH, J = 8.5 Hz), and 2.6 (m, 5H, ArH); MS: m/e 365 (M⁺), 333, 305, 295, 267, 238, 226, 205, 137, 131, 120, 103, 77 and 69.

Further clution with 5% EtOAc in C₆H₆ gave N-2-methoxy-2-(4-methoxyphenyl)ethylcinnamamide (4) (1.5 g), mp 135° (hexane-C₆H₆) which analysed for C_{1.9}H_{2.1}NO₃, UV λ_{met}^{MeOH} nm: 217 (log ε 4.30), 223 (4.36) and 275 (4.39); IR ν_{max}^{KBr} cm^{-m2}: 3257, 2907, 1656, 1621, 1511, 1445, 1339, 1295, 1174, 1107, 1085, 768 and 711; PMR (CDCl₃): τ 6.74 (s, 3H, aliphatic OCH₃), 6.19 (s, 3H, Ar-OCH₃), 6.74-6.19 (m, 2H, NCH₂), 5.69 (m, 1H, CH), 3.7 and 2.41 (d, IH each, CH=CHAr, J = 16 Hz), 3.2 and 2.8 (d, 2H each, ArH, J = 8 Hz) and 2.6 (m, 5H, ArH). N-2-Ethoxy-2-(4-methoxyphenyl)ethylcinnamanide (2). The hexane soluble fraction (20 g) of the EtOH extract of the leaves (6 kg) was chromatographed on a column of neutral Al₂O₃ (1 kg). Elution with 10% EtOAc in C₆H₆ afforded (2) (2.4 g) mp 99-100° (hexane-C₆H₆) and analysed for C₂OH₂₃NO₃, UV E^{EOH} nm: 218 (log ϵ 4.08), 224 (4.08) and 275 (4.10); IR γ_{max}^{KBT} cm⁻¹: 3340, 3040, 1684, 1648, 1605, 1541, 1361, 1269, 1192, 1112, 1045, 1000, 874, 771 and 720; PMR (CDCl₃): τ 8.85 (t, 3H, CH₂CH₃, J = 8 Hz), 6.68 (q, 2H, CH₂CH₃, J = 8 Hz), 6.54-6.05 (m, 2H, CH₂), 6.24 (s, 3H, OCH₃), 5.64-5.5 (dd, CH, $J_{AX} = 4$ and $J_{BX} = 9$ Hz), 3.52 and 2.43 (d, 1H each, CH=CH, J = 16 Hz) and 2.95-2.52 (m, 9H, ArH); MS: m/e 325 (M⁺, 17%), 295 (5), 279 (5), 177 (80), 165 (100), 150 (21), 138 (41), 137 (96), 131 (64), 109 (65), 103 (60), 94 (48) and 77 (57).

Synthesis of O-(3,3-dimethylallyl)-halfordinol (1). A mixture of halfordinol (80 mg), anhydrous Me₂CO₃ (1 g) was heated at 100° for 2 hr followed by refluxing for another 5 hr at 125°. It was cooled and filtered and the viscous residue obtained after removal of the solvent was chromatographed on a column of neutral Al₂O₃ (15 g). Elution with 5% EtOAc-C₆H₆ afforded (1) (26 mg) identical in all respects with the natural product.

Synthesis of N-2-ethoxy-2-(4-methoxyphenyl)ethylcinnamamide (4). A soln of 4-methoxy- ω -nitrostyrene (4 g) in EtOH (80 ml) was treated with NaOEt (prepared from Na metal (0.9 g) and EtOH (20 ml)). After addition of a few drops of HOAc, the reaction mixture was shaken for 30 min and poured onto H₂O (50 ml) and extracted with Et₂O (3 × 20 ml). The Et₂O layer was washed with H₂O, dried (Na₂SO₄) and conod to give α ethoxy- β -nitroethyl-4-methoxybenzene (3.3 g) as a viscous oil (Found: C, 58.55; H, 6.52; N, 6.02. C_{1.1}H₁₅NO₄ required: C, 58.66; H, 6.66; N, 6.22%); PMR(CDCl₃): $t 8.9(t, 3H, OCH_2CH_3,$ J = 8 Hz), 6.59 (q, 2H, OCH₂CH₃, J = 8 Hz), 6.2 (s, 3H, OCH₃), 5.6–5.04 (m, 3H, CH-CH₂NO₂), 3.2 and 2.75 (d, 2H each, ArH, J = 9 Hz).

The preceding compound (3.3 g) in anhydrous Et_2O (20 ml) was reacted with a suspension of LiAlH₄ (6 g) in dry Et_2O to furnish β -ethoxy- β -(4-methoxyphenyl)ethylamine (2.2 g) (Found: C, 67.63; H, 8.61; N, 7, 07. C₁₁H₁₇NO₂ required: C, 67.69; H, 8.71; N, 7.10%); PMR (CDCl₃): τ 8.89 (t, 3H, OCH₂CH₃, J = 8 Hz), 6.74 (q, 2H, OCH₂CH₃, J = 8 Hz), 6.29 (s, 3H, OCH₃, 7.25 (bd, 2H, CH₂NH₂), 592 (m, 1H, CH), 3.27 and 2.9 (d, 2H each, ArH, J = 9 Hz) and 8.25 (NH₂).

A mixture of the foregoing amine (1 g), cinnamovl chloride (0.5 g), dry C_6H_6 (50 ml) and anhydrous K_2CO_3 (2 g) was refluxed at 100° for 6 hr. The reaction mixture was cooled, filtered and the filtrate was washed successively with dil HCl, NaOH and H_2O . The organic layer was dried (Na₂SO₄) and concd to give a residue which solidified on standing in hexane. It was recrystallized from hexane- C_6H_6 , mp 98-99°, identical in all respects with the natural material.

REFERENCES

- 1. Chatterjee, A. and Majumder, R. (1971) Indian J. Chem. 9, 763.
- 2. Crow, W. D. and Hodgkin, J. H. (1964) Aust. J. Chem. 17, 119.
- 3. Crow, W. D. and Hodgkin, J. H. (1963) Tetrahedron Letters, 85
- 4. Dreyer, D. L. (1968) J. Org. Chem. 33, 3658.
- Chatterjee, A., Bose, S. and Srimany, S. K. (1959) J. Org. Chem. 24, 687.