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A molecular beam of carbon disultide was photodissociated at 288-292 and 308-309 nm (a one-color, multiphoton dissocia- 
tion). The angular distributions of sulfur atoms were measured in the S (3p 3PJ) and (3p ‘D2) states. Both S (‘D) and (3P,) 
fragments have anisotropic distributions for the two-photon dissociation. 

1. Introduction 

CS2 is one of the triatomic molecules whose pho- 
todissociation dynamics have been studied by time- 
of-flight mass spectroscopy [ 1,2 1, laser-induced flu- 
orescence [ 3 1, VUV absorption [ 41 and also diode 
laser absorption [5] techniques. It has been recog- 
nized that there are two primary processes for one- 
photon photodissociation of CSZ in the UV region. 
One is the spin-allowed process from the optically 
prepared state; the other is the spin-forbidden pro- 
cess which becomes partially allowed by large 
spin-orbit interactions of two sulfur atoms in CSZ: 

CS*+ho-tCS$ , 

CS: 
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cs (X ‘Z) + s (3PJ) , (I) 

CS (X ‘Z) + S (‘D) . (11) 

When the photon energy is increased, CS can be 
electronically excited. At z 8 eV the intense Rydberg 
features of CS2 lying to shorter wavelengths correlate 
directly with CS (a 311) +S (‘P) and once the 
threshold at 158 nm has been crossed it is in this re- 
gion that the quantum yield of CS (a ‘II) rises steeply 

’ Present address: Research Institute of Applied Electricity, 
Hokkaido University, Sapporo 060, Japan. 

in the one-photon dissociation of CS, [ 61. The en- 
ergetics of CS2 dissociation are shown in table 1. 
There are several dissociation pathways which gen- 
erate S fragments in the 3PJ, ‘DZ, and ‘Sp states. These 
pathways can be attained by two-photon absorption 
of UV laser light via a real intermediate state of CS2. 
The two-photon dissociation at 308 nm (4.0 eV) via 
the V system of CS2 ( ‘B2) has been reported for the 
translational energy and angular distributions of the 
sulfur photofragments in the S ( 3P2) state [ 81: 

Table 1 
Theshold energies (eV) of primary photodissociative processes 
for CSI a) 

cs s 

3P2 ‘D2 ‘SO 

x ‘1 4.46(l) 5.61 (II) 7.21 (IV) 
a’H 7.88(111) 9.03 10.63 
a’ ?Z+ 8.32 9.47 
d’A 8.88 10.03 
e’Z- 9.25 10.40 
A ‘l-l 9.27 

AE (3PI-3P2) =0.049 eV 
AE (sP0-3P,) =0.071 eV 

8) Ref. [ 71. Numbers in parentheses denote the primary photo- 
dissociation processes, see text. 
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cs* (2 ‘&) - fiw CS;(‘B,)%S;*(rA,), 

CS$*-CS (X’E,a311)+S (3P2). 

The angular distribution of S (‘D) has not been 
reported although the formation of S (‘D) is con- 
firmed in the VUV one-photon dissociation [ 9 1, If 
the dissociating species is the same for both S ( 3PZ) 
and S (‘D) fragments, the angular distributions 
would have the same anisotropic parameters for both 
fragments. In this paper, we report on measurement 
of angular distributions of S ( 3PJ) and S ( ‘D) gen- 
erated in the two-photon dissociation via the ‘B1 state 
since the /I values contain information on lifetimes, 
molecular structures and symmetries of dissociating 
states. 

2. Experimental 

The sulfur atomic photofragments were generated 
and ionized by one-color multiphoton dissociation 
and ionization. The angular distributions of ions were 
measured by .a homemade mass spectrometer that 
has theoretically a perfect focusing property as has 
been described elsewhere [ 10,111. Briefly, the per- 
fect focusing property was realized by the combi- 
nation of a uniform magnetic field with a three- 
dimensional quadrupole electrostatic field. The ions 
of a certain mass number generated in one focusing 
point of the electrostatic field reach the other focus- 
ing point irrespective of their initial velocity vectors. 
For mass analysis, the mass number was selected by 
changing the strength of the electric field. The de- 
tector has a slit for spatial resolution. The angular 
distribution of the photofragments was measured by 
changing the laboratory angle 8 between the direc- 
tions of the detector axis and the electric vector of 
the dye laser light (Lambda Physik FL 2002) with 
mass number fixed at m/e= 32. The effusive molec- 
ular beam of CS2 was introduced through a needle 
(0.3 mm diameter) near the focusing point where 
the laser beam was focused by a lens off= 15 cm. 
The maximum laser intensity is estimated ~30 
GW/cm’ assuming a Gaussian profile of the laser 
beam. The polarization of the laser beam was changed 
from linearly polarized to circularly polarized by re- 
tardation plates. 

Laser Wavelength/nm 

Fig. 1. Multipboton-ionization spectrum of S atoms generated in 
multiphoton dissociation of CS2 at 286-292 nm. Table 2 shows 
assignments of the two-photon transitions of sulfur atoms. 

3. Results 

A photon of wavelength longer than 277.7 nm 
contains insufficient energy to dissociate a CS, mol- 
ecule. As the dye laser was scanned over the two 
wavelength ranges, I = 288-292 run and 308-3 11 nm, 
sulfur atoms were generated via two-photon disso- 
ciation of CS2. Successive resonance-enhanced pho- 
toionization (MPI ) in sulfur photofragments 
occurred by the 2 + 1 three-photon (two to reso- 
nance) ionization in the 3 3PJ and 3 lDL states as 
shown in figs. 1 and 2. These photofragments can be 
generated by two-photon absorption of the same laser 
photons: 

2?iw 
csz - CS+S (3PJ, ‘D) , 

S (3P,, ‘D) 2”“. S* 2 S+ , 

where S* denotes an electronically excited sulfur 
atom. At L288-292 nm, the MPI spectrum of fig. 

Laser Wavelength /nm 

Fig. 2. Multiphoton-ionization spectrum of S atoms generated in 
multiphoton dissociation of CSr at 308-311 nm. Table 3 shows 
relative intensities of J” levels in S (3p ‘P,.). 
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Table 2 
Assignments of two-photon transitions of S atoms in two-photon dissociation of CSz with anisotropy parameters 

1 (nm) 

air vacuum 

Two-photon 
transition 

82”’ n b, ii?=, 

288.11 
290.02 
291.14 
291.39 
291.40 
308.10 
310.01 
310.84 
308 d’ 

288.19 
290.10 
291.22 
291.47 
291.49 
308.20 
310.10 
310.94 

4 ‘Fr-3 ‘Dz 0.88 f0.07 
? -3 ‘So 1.13f0.16 
6 3P,,-3 ‘Dz 0.81 f0.08 
6 sP,-3 ‘DZ 0.88 f 0.08 
6sP,-3 ID2 0.88 kO.08 
4 3P*-3 ‘P* 0.54 f. 0.07 
4 3P*-3 sp, 0.52 20.07 
4 3P*-3 SPI, 0.52kO.07 
4 3Pr-3 JP* 0.67kO.12 

3.1 kO.1 0.5 
5.1 f0.1 0.2 
3.9fO.l 0.6 
3.4kO.l 0.6 
3.3kO.l 0.3 
3.0fO.l - 
2.8fO.l 
3.2fO.l 

._ _. _ ._ 
‘) Anisotropy parameters in eq.( 1). fi4 values were found to be zero. 
b1 Power index n is defined by Z,,,“cc (I,,,,)“. 
‘) Intensity ratio ZJZr where I, and Z, are the signal intensity for circularly and linearly polarized laser light respectively. 
dr Untuned XeCl excimer laser light [ 81. S (3P2) is generated by primary process (I). 

1 is assigned to the transitions from S (3 ‘D) except 
for the line at 290.02 nm. The assignments of the two- 
photon transitions of S atoms are summarized in ta- 
ble 2. The MPI excitation spectra at 308-311 nm 
were observed in more detail for the transition of 
4 3PZ + 3 3PJ,_ The relative population of the J” lev- 
els were obtained using the two-photon absorption 
cross sections reported by Brewer et al. [ 12 1. The 
results are summarized in table 3. The prior expec- 
tation for this branching ratio [ 131 is given by 

&?( ‘PJ) [EAVL ( 3pJ) 1 5’2/g( 3pJ. ) [EAVL ( 3pJ’ > Is’*> 

which is approximated by (2J+ I ) / (25’ + 1 ), while 
the ratios obtained experimentally are only 1.2-1.4. 
The J” population distributions obtained are not 
statistical. This result suggests that the formation of 
the J” levels may not be a statistical process like the 

Table 3 
Relative intensity of S (‘P,) 

Two-photon Relative signal If@’ 
transition intensity, Z 

4 3P2-3 ‘P, 13.6 1.2 
4 3P*-3 )P, 3.3 1.4 
4 ‘P*-3 ‘PO 1 1 

a) Twophoton absorption cross section u is adopted from ref. 
1121. 

predissociation via the hot CS, molecule. 
By choosing appropriate wavelengths for S (3PJ, 

‘D), the intensity of S+ was measured as a function 
of 8. An example is shown in fig. 3. In these exper- 
iments, the laser power was reduced until the b val- 
ues reached asymptotic values in order to avoid the 
reduction of the /3 values caused by saturation ef- 
fects. The experimentally obtained angular distri- 
bution is close to the one obtained in the center-of- 
mass angular distributionf(6) that is given by the 
following equation; 

f(@)E 1 +Bzp2 (cos 0) +blp‘l (cos 0) , (1) 

where Pr( cos 0) is the Ith degree Legendre polynom- 
ial [ 141. The curve drawn through the set of data of 

+* 01’ 
-180 -90 0 90 

Lab. Angle, 8 /degree 

Fig. 3. Angular distribution of S (ID) photofragments from CSI 
multiphoton dissociation at 288.10 nm. The solid line is the least- 
squares lit of the data with eq.( 1) forPz=0.88 andZ34=0. 
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fig. 3 shows the least-squares tit of eq. ( 1) to the data. 
Other sets of data were also analyzed by this method. 
The aZ values were positive while the /L, values were 
found to be zero for all sets of data. j2 values ob 
tained are summarized in table 2. The jIz value for 
S ( 3P2) generated in the 308 nm photodissociation 
has been previously reported to be 0.67 by the MPI 
TOF method [ 81. Compared with fig. 6 of ref. [ 81, 
fig. 3 of the present work is much improved in the 
S/N ratios because of the high sensitivity of our per- 
fect focusing mass spectrometer. Although there is 
some discrepancy between the previously reported 
value of j&=0.67 f 0.12 and the present work of 
bZ= (0.52-0.54) kO.07, it is safe to say that the p2 
values of S ( 3PJ) are % 0.6 for the two-photon dis- 
sociation of CS, at 308-3 18 nm and less than those 
(aO.9) of S (‘D) obtained in the two-photon dis- 
sociation of CS2 at 288-292 nm. 

4. Discussion 

The intense and complicated absorption system of 
CS2 in the region of 290-330 nm is called the V sys- 
tem. This V system is due to the transition from the 
ground ‘Z: state to the ‘Bz state ( L SCS = 13 lo ) that 
fluoresces with unit quantum yield [ 15 1. Douglas and 
Milton [ 16 ] have studied the pronounced Zeeman 
effect of the absorption bands ( ‘Bz + % ‘C: ) of C’S2 
and have shown that it can be understood if the ob- 
served ‘B2 state is a component of a ‘A, state. The 
lowest 3Az state was detected by the technique of res- 
onance-enhpced MPI at 361-371 nm [ 171. This 
singlet-triplet transition is reported to have an OS- 

cillator strength of a 10e7 [ 181. Thus, the singlet- 
triplet coupling seems to be weak in CS2 at = 365 nm. 
However, Kanamori and Hirota [ 51 have reported 
that the spin-forbidden triplet channel (I) makes a 
significant contribution to the one-photon dissocia- 
tion of CS2 at 193 run. The branching ratio of chan- 
nels (I) and (II) is reported to be l-O.25 [ 1,2,5] 
although the prior distribution ‘[ 13 ] predicts that the 
ratio is 14.4. The intersystem crossing process seems 
to be a botlleneck one for yielding the S (‘P,) frag- 
ments. Although it was difficult to determine this ra- 
tio in the present work, the signal intensities of both 
S (“P) and S ( ‘D) were comparable in the present 
experiment. 
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In the present multi-photon dissociations in the 
UV region, the /I4 values of eq. ( 1) were found to be 
zero as described above. This result implies that the 

dissociation is due to the two-photon absorption of 
CS2 via the real intermediate ‘B2 state: 

CS; (‘B2) tfio-+CSf*+CS+S (3PJ, ‘D) _ 

In the two-photon dissociation via a real and stable 
state the angular distribution must be represented by 
eq. ( 1) with /L, = 0. If CS2 absorbed three UV pho- 
tons, /%, would not be zero because the final two-pho- 
ton absorption occurs via a real and dissociative 
intermediate state. Kawasaki et al. [8] have re- 
ported that ja was not zero or the P,(cosB) term 
contributed to f( 6) for the two-photon dissociation 
of NOa via the real and dissociative intermediate 
state. 

The two-photon energies for the photolysis at 
x290 and x 308 nm are 8.5 and 8.0 eV, respec- 
tively. Table 1 shows that the following primary pro- 
cesses are energetically possible, 

cs* 

i 

cs (X’C) t s (3PJ), (I) 
CS (X ‘C) t S ( ‘Dz) , (II) 
CS (a311) t S (3PJ) , (W 

cs (X ‘C) t s (‘S,) . (IV) 

In the one-photon photolysis in the UV region, pro- 
cesses (I), (II), and (III) have been reported [l-6]. 
We have previously reported that the contribution of 
the spin-allowed process (III) is comparable to that 
of the spin-forbidden process (I), based on the TOF 
spectrum of the S (3P) fragments from two-photon 
dissociation at 308 nm [ 81. The spin-forbidden pro- 
cess (I) contributes to the S (3P,) formation through 
the bottlenecking intersystem crossing to the triplet 
repulsive state from the photoprepared singlet state 
as has been reported for the one-photon dissociation 
[ 1,2]. Elementary kinetics considerations will show 
that while a bottleneck such as that invoked will af- 
fect the yields of the various channels, the produc- 
tion rate of every species will be the same, determined 
by the sum of the rates through all channels, The rate 
can be estimated from the jI values, molecular sym- 
metries, and structures as will be described later. In 
brief, the smaller decay rate, the smaller is the j? value 
if the molecular structure is not changed. In the pres- 
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ent work the /$ values for S (,P,) are smaller than 
those for S ( ‘DZ) as shown in table 2. If a single 
photo-prepared state is the originating excited C!$ 
state for S (3P) and S ( ‘D) production, then the only 
way for the /3 values of S (3P) to differe from those 
of S ( ‘D) is for the molecular structure of the triplet 
dissociating state to differ from that of the singlet one: 

C&f+ CS; (‘Bz) fiw - CSF (singlet) , 

cs:* 
77 

CS: (triplet)-+CS + S (3P), 

CS + S (ID). 

Concerning the symmetries of the dissociating 
states of C!&, since the first one-photon transition is 
‘Bz + R ‘Al in Czv approximation, the symmetry-al- 
lowed states for the second one-photon absorption 
are Al, AZ, and Bz. If the singlet dissociating state 
retains the structure of the intermediate ‘Bz state 
(LCSC=131”), onlythe ‘A, + ‘BZ +L%‘Al tran- 
sition gives a positive j3* value according to the fol- 
lowing equation [ 191: 

(2) 

where x is the angle between the transition moment 
and the dissociation direction, o the angular velocity 
of the parent molecule, and z the dissociation life- 
time. When the second transition moment lies in the 
S-S direction, x is 24.5 a and j?* is 1.48. The lifetime 
estimated is z 0.3 ps for the S ( ‘D) channel using 
eq.(2) with/& values in table 2 and @=2x lOI s-l. 
The value of o is estimated from the relation 
w- (nkT/2z)“z, where Z is the average of the two 
large, nearly equal moments of inertia in the ‘Bz state 
of csz. 

At 290.02 nm excitation, the /3 values are larger 
than those for S (‘D). The power dependence is 
larger than others. In addition the intensity ratio Z,/Z, 
is also different from that for S (‘D2) where 1, is the 
MPI signal intensity for circularly polarized laser light 
and Z, for linearly polarized one. The atomic tran- 
sition is not from S ( ‘DZ) nor is clear even from the 
reported Grotrian energy level diagram [ 201. The 

transition at 290.02 nm may be from a singlet state, 
probably S (3 ‘So) generated from process (IV), be- 
cause the p value is larger than for S( ‘P,) and close 
to the singlet channel (II). 
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