Tetrahedron Letters 53 (2012) 1112-1115

Contents lists available at SciVerse ScienceDirect

Tetrahedron Letters

journal homepage: www.elsevier.com/locate/tetlet

Synthesis of homopropargyl alcohols via insertion of allenyl carbenoids into acyclic organozirconium bonds

nate into alkyl- and alkenyl-chlorozirconocenes.

Jozef Stec, Alan R. Henderson, Richard J. Whitby*

School of Chemistry, University of Southampton, Southampton, SO17 1BJ England, UK

ARTICLE INFO

ABSTRACT

Article history: Received 9 November 2011 Revised 9 December 2011 Accepted 20 December 2011 Available online 30 December 2011

Keywords: Homopropargyl alcohol Metallate rearrangement Organozirconium chemistry Asymmetric synthesis Carbenoids

Propargyl/allenyl metallics are an important class of intermediates, which have found wide application in carbon–carbon bond forming reactions.¹ Negishi reported an interesting convergent access to allenyl zirconocene **4** by insertion of 1-lithio-3-chloro-1-propyne (**2**) into octylzirconocene chloride **1** via 1,2-rearrangement of the ate-complex **3** (Scheme 1).^{2,3} Species such as **2** are termed allenyl carbenoids as 1,3-elimination of lithium chloride would generate an allenyl carbene.

The reaction of triorganozincates with propargyl chlorides and mesylates⁴ and the insertion of lithiated propargyl chloride and lithiated propargyl ethers into boranes presumably follow a similar pathway.^{5,6} The insertion of Me₃SiCHN₂ into alkynyl boranes provides a similarly convergent route to allenyl boranes.⁷

We have reported the insertion of allenyl carbenoids into a variety of zirconacycles, and elaboration of the resultant η^3 -propargyl zirconium species by addition of aldehydes. For example, insertion of **2** into unsaturated zirconacycle **6** followed by BF₃·Et₂O promoted addition of butanal gave the α -allenic alcohol **9** via rearrangement of the ate-complex **7** to **8** (Scheme 2).⁸

Following our interest in the elaboration of acyclic organozirconium species by insertion of carbenoids,⁹ we wished to extend Negishi's method (Scheme 1) for the convergent formation of acyclic propargylic zirconium species by insertion of allenyl carbenoids. Since enantiomerically pure propargyl alcohols are readily available¹⁰ we were particularly keen to see if chirality derived from the carbenoid precursor **11** could be transferred to the product **14** (Scheme 3). It is not known if carbenoid **11** or allenyl zirconocene **13** are configurationally stable, or if the rearrangement of **12** to **13** or the addition of an aldehyde to **13** would be stereospecific. There is no literature precedent for chiral allenyl carbenoids. There are reports of both configurational stability, and instability for alkyl and alkenyl carbenoids.^{11–16} It is known that a variety of allenylmetallic species react with aldehydes with excellent transfer of chirality to afford homopropargyl alcohol products.^{7,17}

© 2011 Elsevier Ltd. All rights reserved.

Insertion of allenyl carbenoids (3-tosyloxy-1-lithioalk-1-ynes) into organozirconium complexes gave

allenyl-zirconocenes via a 1,2-zirconate rearrangement. Trapping of the allenyl-zirconium species with

aldehydes and ketones gave, after hydrolysis, a series of homopropargyl alcohols. Enantioenriched prod-

ucts were prepared by insertion of the lithium carbenoid derived from (S)-but-3-yn-2-yl 4-toluenesulfo-

Propargyl/allenyl zirconocenes **16** have been formed by the insertion of zirconocene equivalents into propargyl ethers **15** with subsequent aldehyde addition to give homopropargylic alcohols **17** (Scheme 4), but the overall stereochemistry of the reaction has not been reported.¹⁸

In this Letter, we describe the syntheses of homopropargyl alcohols via insertion of allenyl carbenoids into various bis-alkyl/aryl/ alkynyl biscyclopentadienyl zirconium complexes and alkyl/alkenyl chlorozirconocenes followed by reaction with aldehydes. Synthesis of enantioenriched products has also been achieved in some cases by insertion of carbenoids derived from enantiomerically pure propargyl tosylates into organochlorozirconocenes.

Treatment of zirconocene dichloride with 2 equiv of an organolithium reagent gave the corresponding acyclic organozirconocene species **18**, which inserted the γ -organolithium reagent **19**, formed from the corresponding alkyne by in situ metallation with LDA or LiTMP at -78 °C, to provide the ate complex **20**. Subsequent 1,2metallate rearrangement afforded the allenic Zr intermediate **21**, which was trapped with benzaldehyde in the presence of BF₃·Et₂O to give homopropargyl alcohols **22a**–**f** (Scheme 5, Table 1) in modest yields and diastereocontrol, the latter favouring the *anti*-isomer. Trapping the allenyl zirconocene intermediate **21** with

^{*} Corresponding author. Tel.: +44 23 80592777. *E-mail address:* rjw1@soton.ac.uk (R.J. Whitby).

^{0040-4039/\$ -} see front matter \odot 2011 Elsevier Ltd. All rights reserved. doi:10.1016/j.tetlet.2011.12.081

Scheme 1. Insertion of an allenyl carbenoid into octylzirconocene chloride.

Scheme 2. Insertion of an allenyl carbenoid into a zirconacycle.

Scheme 3. Proposed convergent stereoselective synthesis of homopropargyl alcohols.

Scheme 4. Formation of propargyl zirconocenes by insertion.

acetone afforded the corresponding tertiary alcohol **22g** in only a 25% yield.

The *anti:syn* relationship of the products **22a–f** was assigned by ¹H NMR data correlation with the literature data.⁴ The proton adjacent to the hydroxy group was shifted upfield in all *anti*-isomers reported by Harada,⁴ and this trend is well retained for the major isomers of compounds **22a–f**.

Scheme 5. Insertion of an allenyl carbenoid into bisalkyl/alkynyl Zr species. Reagents and conditions: (i) THF, $-78 \circ$ C, 0.5 h; (ii) 1.0 equiv **19**, $-78 \text{ to } -50 \circ$ C, 1 h; (iii) (a) for R³ = Ph, R⁴ = H, 1.5 equiv PhCHO, BF₃·OEt₂, $-60 \circ$ C to rt over 1 h, then rt, 3 h, (b) for R³ = R⁴ = Me, 3.0 equiv Me₂CO, BF₃·OEt₂, $-60 \circ$ C to rt over 1 h, then rt, 2 h, then reflux 20 h; (iv) MeOH, aq NaHCO₃, rt, 12–16 h.

 Table 1

 Yields and anti:syn relationship of the secondary alcohols 22a-f

\mathbb{R}^1	R ²	R ³	\mathbb{R}^4	anti:syn	Product	Isolated yield (%)
n-Bu Me Ph PhCC Ph Me Me	n-Hex n-Hex n-Hex n-Hex Me Me n-Hex	Ph Ph Ph Ph Ph Ph Me	H H H H H Me	77:23 79:21 79:21 62:38 81:19 73:27 -	22a 22b 22c 22d 22e 22f 22g	35 40 35 62 39 37 25

Asymmetric synthesis of the secondary alcohols **22e** and **22f** was attempted by insertion of the enantiomerically pure carbenoid **19** [\mathbb{R}^2 = Me, derived from commercially available (*S*)-but-3-yn-2-ol] into the acyclic organozirconium system **18** (\mathbb{R}^1 = Ph, Me). The products **22e** and **22f** obtained were analysed by chiral HPLC on a Diacel[®] OD-H column and in both cases were racemic.

The insertion of allenvl carbenoid **19** has been extended to the organochlorozirconocenes. Hydrozirconation with the Schwartz reagent¹⁹ of 1-octene or 1-octyne provided the corresponding organochlorozirconocene complexes 23a and 23b, which underwent insertion of the allenyl carbenoid 19 to give the 'ate' complex 24 (Scheme 6). Subsequent 1,2-metallate rearrangement afforded the allenyl zirconium intermediate 25, which was further elaborated through addition of an aldehyde or ketone to provide secondary and tertiary alcohols 26, respectively (Table 2). Yields and diastereoselectivity were similar to the products from 18. Remarkably, we found that the yields and diastereoselectivity for the formation of 26a and 26b were almost identical when BF₃·Et₂O was not used for the aldehyde addition. In the formation of 22b and **22c** BF₃·Et₂O was required for reasonable yields. It is notable that the 1,2-zirconate rearrangement of 24 to 25 required the reaction mixture to be warmed to room temperature, in marked contrast to the rearrangement of **20**, which occurred below -50 °C.

Regardless of the modest yields, asymmetric synthesis of the secondary alcohols **26a** and **26b** was attempted by the insertion of the carbenoid **19** derived from (*S*)-but-3-yn-2-yl *p*-toluenesulfonate into organochlorozirconocenes **23a** and **23b**. For the formation of **26a**, BF₃·Et₂O was used for the benzaldehyde addition, but for **26b** it was not. Analysis by chiral HPLC (on a Diacel[®] OD-H column) revealed that alcohols **26a** and **26b** were obtained in 71% and 62% enantiomeric excesses, respectively.

In order to determine the absolute stereochemistry of alcohols **26a,b** they were hydrogenated to give alcohol **27** (Scheme 7). The low yield for this hydrogenation may be due to hydrogenolysis of the benzyl alcohol moiety.

Scheme 6. Allenyl carbenoid insertion into organochloro-zirconocenes. Reagents and conditions: (i) 1.0 equiv Cp_2ZrHCl , rt, 1 h; (ii) 1.0 equiv **19**, -78 °C to rt, over 1 h; (iii) (a) for $R^3 = Ph$, $R^4 = H$, 1.5 equiv PhCHO, $BF_3 \cdot OEt_2$, -78 °C to rt over 1 h, then rt, 2 h, (b) for $R^3 = R^4 = Me$, 3.0 equiv Me_2CO , -78 °C to rt over 1 h, then reflux 20 h, (c) for $R^3 = n$ -Hex, $R^4 = H$, 3.0 equiv n-HexCHO, -78 °C to rt over 1 h, then rt, 3 h; (iv) MeOH, aq NaHCO₃, rt, 12–16 h.

Table 2					
Yields and	anti:syn	relationship	of the	alcohols	26a-d

		•				
\mathbb{R}^1	R ²	R ³	\mathbb{R}^4	anti:syn	Product	Isolated yield (%)
n-Oct	Me Me	Ph Ph	Н	79:21 75:25	26a 26a	76 61ª
(<i>E</i>)-1-Oct	Me	Ph	Н	69:31	26b	40
(E)-1-Oct n-Oct	Me n-Hex	Ph n-Hex	Н Н	70:30 89:11	26b 26c	34 ^{a,b} 44
n-Oct	n-Hex	Me	Me	_	26d	50

^a From the insertion of enantiomerically pure carbenoid.

^b BF₃·Et₂O was not used.

The independent enantioselective synthesis of alcohol **27** was achieved in three steps from 1-dodecene (Scheme 7). Enantioselective methylalumination of dodecene with AlMe₃ and bis[3-((15,25, 5*R*)-2-isopropyl-5-methylcyclohexyl)indenyl]-zirconium dichloride catalyst followed by oxidation with O₂ gave alcohol **28** in a 66% yield and 67% enantiomeric excess, the major enantiomer possessing the *R* absolute configuration.²⁰ Swern oxidation of alcohol **28** to aldehyde **29** followed by addition of phenylmagnesium bromide gave the (2*R*)-alcohol **27** as a 3:2 *syn:anti* mixture, each of which was formed in 43% enantiomeric excess.

Chiral HPLC using a Diacel[®] OD-H column of samples of alcohol **27** synthesised by hydrogenation of alcohols **26a,b** and by the independent synthesis revealed that for both alcohols **26a** and **26b** the (2*R*) enantiomer was the major.

The result is consistent with both the 1,2-metallate rearrangement **24** to **25**, and the addition of aldehyde (irrespective of the presence of BF₃·Et₂O) to be *anti*-processes as shown in Scheme 2. Of course, both could be *syn*, but given the available precedent for both S_N2' nucleophilic displacement of propargylic systems to be *anti* we consider this unlikely.^{1b} Although many allenylmetallics react with aldehydes via a chelate transition state (S_E2' , a *syn*-process) the bulk of the zirconocene fragment, relatively low Lewis acidity of the zirconium centre, and the absence of a strong effect of adding BF₃·Et₂O all suggest that an *anti*-process for aldehyde addition is reasonable.

The reasons for the complete loss of stereochemical integrity in the formation of **22e,f**, and partial loss in the formation of **26a,b** are not clear. It may be significant that competition studies on the insertion of carbenoid **19** ($R^2 = Me$) into Cp₂ZrBu₂ and Cp₂Zr(C₈H₁₇) (Cl) species showed insertion only into the latter. The relatively slow insertion into **18** may give time for the carbenoid to racemise.^{12,13}

Scheme 7. Synthesis of alcohol **27.** Reagents and conditions: (i) H_2 , 5% Pd/C, EtOAc, rt, 2 h, 56% from **26a**, 58% from **26b;** (ii) (a) bis(1-neomenthylindenyl)₂ ZrCl₂, AlMe₃, 1,2-dichloroethane, rt, 7 days, (b) O_2 , 5 h (c) 15% aq NaOH, 66%; (iii) DMSO, CH₂Cl₂, (COCl)₂, -60 °C, 15 min, Et₃N, -60 °C to rt, 1 h, 95%; (iv) (a) PhMgBr, Et₂O, -78 °C to rt, 3 h, (b) aq NH₄Cl, 53%.

In conclusion we report a three component coupling of propargyl tosylates, acyclic organozirconium species and aldehydes/ketones to afford homopropargyl alcohols. The key step is a convergent synthesis of propargyl/allenyl zirconium species via insertion of lithiated propargyl tosylates into acyclic organozirconium complexes. We have also demonstrated that it is possible for the absolute stereochemistry of readily available propargyl alcohols to be retained through this sequence, although improvements in yields and enantiomeric excesses are needed before it constitutes a useful synthetic method. Chiral propargyl tosylate insertion into other organometallic species, particularly organozinc and organoboranes, may overcome the limitations of the organozirconium method.

Experimental

Formation of alcohols 26a by insertion of enantiomerically pure carbenoid

To a stirred suspension of Cp₂ZrHCl (258 mg, 1.0 mmol) in dry THF (10 mL) at rt was added 1-octene (0.125 mL, 0.80 mmol) dropwise over 3 min. After stirring the yellow solution for 1 h at rt, the reaction mixture was cooled to -78 °C and a solution of (S)-but-3yn-2-yl 4-methylbenzenesulfonate (224 mg, 1.0 mmol) in dry THF (1 mL) was added dropwise followed by dropwise addition of LiTMP, [prepared from freshly distilled 2,2,6,6-tetramethylpiperidine (0.17 mL, 1.0 mmol) in dry THF (2 mL) and n-BuLi (0.4 mL of a 2.5 M solution in hexanes, 1.0 mmol) at -5 °C over 15 min]. The stirring was continued for 1 h during which time the reaction mixture was allowed to warm to rt. The reaction was re-cooled to -78 °C and a solution of benzaldehyde (0.30 mL, 3.0 mmol) in dry THF (1 mL) was added followed by dropwise addition of BF₃·OEt₂ (0.36 mL, 3.0 mmol). The mixture was warmed gradually to rt and stirred at the same temperature for 3 h before quenching with MeOH (5 mL), and a saturated aqueous solution of NaHCO₃ (6 mL). After overnight stirring, the mixture was poured onto H₂O (100 mL), and the products extracted with Et_2O (3 \times 75 mL). The combined organic phases were washed with H_2O (2 × 100 mL) and brine (100 mL), dried over MgSO₄, filtered and concentrated in vacuo to give the crude product as a yellow oil (anti:syn diastereoisomers in the ratio of 75:25).

Purification of the crude material by column chromatography on SiO₂ (230–400 mesh) with hexane:EtOAc (10:1) as the eluent allows partial separation of the diastereoisomers to give a fraction of the *anti*-isomer as a yellow oil and a mixed fraction (yellow oil) of both isomers in a combined yield of 0.134 g (61%). Chiral HPLC (4.6 × 250 mm Diacel[®] OD-H column, 2% ⁱPrOH in hexanes, 1 mL/ min.): *anti*-isomer R_t 11.0 min (minor enantiomer) and 12.9 min (major enantiomer); *syn*-isomer R_t 11.4 min (minor enantiomer) and 13.2 min (major enantiomer).

anti Diastereoisomer of 26a

¹H NMR (400 MHz, CDCl₃): δ (ppm) = 7.45–7.24 (5H, m), 4.43 (1H, dd, *J* = 6.9, 3.5 Hz, CHOH), 2.76 (1H, m, CHMe), 2.64 (1H, d, *J* = 3.5 Hz, OH), 2.21 (2H, td, *J* = 6.9, 2.0 Hz, CH₂C=C), 1.51 (2H, quin, *J* = 7.1 Hz), 1.43–1.20 (10H, m), 1.07 (3H, d, *J* = 6.9 Hz), 0.90 (3H, t, *J* = 6.6 Hz). ¹³C NMR (100.5 MHz, CDCl₃): δ (ppm) = 141.68 (C), 128.16 (2CH), 127.76 (CH), 126.67 (2CH), 84.18 (C), 80.70 (C), 77.75 (CH), 35.67 (CH), 31.81 (CH₂), 29.16 (CH₂), 29.07 (CH₂), 28.93 (CH₂), 28.85 (CH₂), 22.63 (CH₂), 18.72 (CH₂), 17.81 (CH₃), 14.07 (CH₃). HRMS (EI): Found: [M–H₂O]⁺, 254.2040. [C₁₉H₂₆]⁺ requires: 254.2034. LRMS (CI): *m/z*: 273 ([M+H]⁺, 54%), 255 ([(M+H)⁺-H₂O], 72%).

A pure sample of the minor *syn*-diastereoisomer was obtained by HPLC (4.6 × 250 mm Partisil[®] 60 Å 5 µm SiOH column, 0.7% ⁱPrOH in hexanes, 1 mL/min; *anti*-isomer R_t 5.6 min; *syn*-isomer R_t 6.8 min.): ¹H NMR (400 MHz, CDCl₃): δ (ppm) = 7.44-7.22 (5H, m), 4.71 (1H, m, CHOH), 2.86 (1H, m, CHMe), 2.25 (1H, d, *J* = 3.0 Hz, OH), 2.15 (2H, td, *J* = 6.9, 1.8 Hz, CH₂C=C), 1.46 (2H, quin, *J* = 7.1 Hz), 1.37–1.21 (10H, m), 1.07 (3H, d, *J* = 7.1 Hz), 0.90 (3H, t, *J* = 6.3 Hz). ¹³C NMR (100.5 MHz, CDCl₃): δ (ppm) = 141.52 (C), 127.99 (2CH), 127.51 (CH), 126.49 (2CH), 83.55 (C), 81.28 (C), 76.43 (CH), 34.35 (CH), 31.84 (CH₂), 29.18 (CH₂), 29.11 (CH₂), 28.93 (CH₂), 28.82 (CH₂), 22.65 (CH₂), 18.72 (CH₂), 15.86 (CH₃), 14.11 (CH₃).

Acknowledgments

We thank GlaxoSmithKline, the EPSRC and ERDF (IS:CE-Chem & InterReg IVa program 4061) for funding this work.

References and notes

- (a) Yamamoto, H. In *Comprehensive Organic Synthesis*; Trost, B. M., Fleming, I., Eds., Second ed.; Pergamon: Oxford, UK, 1991; pp 81–98. Vol. 2, Ch. 1.3; (b) Ding, C. –H.; Hou, X. –L. *Chem. Rev.* 2011, *111*, 1914–1937.
- Negishi, E.; Akiyoshi, K.; O'Connor, B.; Takagi, K.; Wu, G. Z. J. Am. Chem. Soc. 1989, 111, 3089–3091.
- 3. Kocienski, P.; Barber, C. Pure Appl. Chem. 1990, 62, 1933–1940.
- Harada, T.; Katsuhira, T.; Osada, A.; Iwazaki, K.; Maejima, K.; Oku, A. J. Am. Chem. Soc. 1996, 118, 11377–11390.
- Zweifel, G.; Backlund, S. J.; Leung, T. J. Am. Chem. Soc. 1978, 100, 5561–5562.
 Carrik, D.; Carboni, B.; Vaultier, M. Tetrahedron Lett. 1995, 36, 8209–8212.
- Canales, E.; Gonzalez, A. Z.; Soderquist, J. A. Angew. Chem., Int. Ed. 2007, 46, 397–399
- (a) Luker, T.; Whitby, R. J. Tetrahedron Lett. 1994, 35, 785–788; (b) Gordon, G. J.; Whitby, R. J. Chem. Commun. 1997, 1321–1322.
- (a) Kasatkin, A.; Whitby, R. J. J. Am. Chem. Soc. 1999, 121, 7039–7049; (b) Kasatkin, A. N.; Whitby, R. J. Tetrahedron Lett. 1999, 40, 9353–9357; (c) Kasatkin, A. N.; Whitby, R. J. Tetrahedron Lett. 2000, 41, 6211–6216.
- For alkynyl addition to aldehydes and ketones, see: Frantz, D. E.; Carreira, E. M. In *Stereoselective Synthesis*; Molander, G. A., Ed.; Thieme, 2011; pp 497–516. Vol. 2, Ch. 2.10.1; For selected examples of asymmetric reduction of ynones, see: (a) Midland, M. M.; Tramontano, A.; Kazubski, A.; Graham, R. S.; Tsai, D. J. S.; Cardin, D. B. *Tetrahedron* **1984**, 40, 1371–1380; (b) Matsumura, K.; Hashiguchi, S.; Ikariya, T.; Noyori, R. J. Am. Chem. Soc. **1997**, *119*, 8738–8739; (c) Eagon, S.; DeLieto, C.; McDonald, W. J.; Haddenham, D.; Saavedra, J.; Kim, J.; Singaram, B. J. Org. Chem. **2010**, 75, 7717–7725.
- 11. Siegel, H. Topics Curr. Chem. 1982, 106, 55-78.
- 12. Duraisamy, M.; Walborsky, H. M. J. Am. Chem. Soc. 1984, 106, 5035-5037.
- Topolski, M.; Duraisamy, M.; Rachon, J.; Gawronski, J.; Gawronska, K.; Goedken, V.; Walborsky, H. M. J. Org. Chem. 1993, 58, 546–555.
- 14. Kobrich, G.; Ansari, F. Chem. Ber. **1967**, 100, 2011–2020.
- 15. Hoffmann, R. W.; Nell, P. G.; Leo, R.; Harms, K. Chem. Eur. J. 2000, 6, 3359–3365.
- 16. Blakemore, P. R.; Marsden, S. P.; Vater, H. D. Org. Lett. 2006, 8, 773-776.
- 17. Marshall, J. A. J. Org. Chem. 2007, 72, 8153-8166.
- (a) Ito, H.; Nakamura, T.; Taguchi, T.; Hanzawa, Y. *Tetrahedron* **1995**, *51*, 4507–4518;
 (b) Zhang, H.; Fu, X.; Chen, J.; Wang, E.; Liu, Y.; Li, Y. J. Org. Chem. **2009**, 74, 9351–9358.
- 19. Schwartz, J.; Labinger, J. A. Angew. Chem., Int. Ed. 1976, 15, 333-340.
- 20. Kondakov, D. Y.; Negishi, E. J. Am. Chem. Soc. 1995, 117, 10771-10772.