A Formal Total Synthesis of (±)-1,13-Herbertenediol

Adusuhilli Srikrishna*^[a] and M. Srinivasa Rao^[a]

Keywords: Terpenoids / Synthesis design / Metathesis / Rearrangement

A formal total synthesis of (±)-1,13-herbertenediol, employing a ring-closing metathesis reaction of the 4-arylhepta-1,6-diene-4-carboxylate **15** as the key reaction, is described.

(© Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2004)

Introduction

Herbertanes are a small group of sesquiterpenes, which are considered as chemical markers for the liverworts belonging to the genus Herbertus.^[1a] Isolation of the first members of the herbertane group 1a-e and 2a from H. adunca was reported earlier by Matsuo and co-workers.^[1b] Subsequently,^[1c] Rycroft et al. reported the isolation of the aldehyde 1f and the ester 1g from *H.s aduncus*. Recently,^[1a] Asakawa and co-workers reported the isolation from the Japanese liverwort H. sakuraii of seven new members of this group: herbertenelactol (2b), 1,13-herbertenediol (3), 1,14herbertenediol (4), 1,15-herbertenediol (5), herbertenones A and B (6a,b) and 12-methoxyherbertenediol (7) along with dimeric herbertanes mastigophorenes A-C. The phenolic herbertanes, e.g. 1b-d and the dimeric mastigophorenes have been shown to possess interesting biological properties such as growth-inhibiting, antifungal, antilipid peroxidation and neurotropic activities.^[1,2]

 [[]a] Department of Organic Chemistry, Indian Institute of Science, Bangalore 560 012, India Fax: (internat.) + 91-80-3600683 or -3600529 E-mail: ask@orgchem.iisc.ernet.in

The sesquiterpenes cuparanes and herbertanes are interesting synthetic targets owing to the presence of a sterically crowded 1-aryl-1,2,2-trimethylcyclopentane moiety, and the difficulty associated with the construction of vicinal quaternary carbon atoms on a cyclopentane ring. The significant biological properties of the phenolic herbertanes make them important synthetic targets of current interest.^[3] Since its isolation, there are two reports on the synthesis of 1,13herbertenediol (3). In 2001, Fukuyama et al., reported the first synthesis employing an intramolecular Heck reaction.^[4] Recently,^[3g] we have reported the synthesis of 1.13herbertenediol (3) along with α - and β -herbertenols (1b) and (1d) employing orthoester Claisen rearrangement as the key reaction for the creation of the two vicinal quaternary carbon atoms. Herein we wish to describe an alternate strategy for the synthesis of 1,13-herbertenediol $((\pm)-3)$.

Scheme 1

Initially we envisioned (Scheme 1) that Ireland ester Claisen rearrangement^[5] of ester 8 (or rearrangement of 8a and subsequent allylation) followed by a ring-closing metathesis (RCM) reaction^[6] of the resulting diene 9 would generate the cyclopentene carboxylate 10 containing the requisite two vicinal quaternary carbon atoms, which could be transformed into 1,13-herbertenediol (3). The arylacetic acid 11 required for the generation of ester 8a could be obtained from allyl 4-methylphenyl ether via Claisen re-

FULL PAPER

arrangement followed by oxidative cleavage of the allyl group.

Accordingly, we started by preparing allylanisole (12) from allyl 4-methylphenyl ether in a straightforward manner via thermolysis followed by etherification. Ozonolytic cleavage of allylanisole (12) followed by oxidation of the resulting aldehyde with Jones reagent generated the arylacetic acid 11, which on esterification furnished ester 11a (Scheme 2).^[7]

Scheme 2. Reagents, conditions and yields: (a) O_3/O_2 , $CH_2Cl_2/MeOH$ (4:1); Me_2S , 4 h; 86%; (b) Jones reagent, Me_2CO , 0 °C \rightarrow room. temp., 2 h, 88%; (c) MeOH, H_2SO_4 , reflux, 8 h, 90%; (d) $Me_2C=CHCH_2OH$, DCC, DMAP, CH_2Cl_2 , 6 h, room temp., 88%; (e) LDA, TBDMSCl; Δ

Coupling of **11** with 3-methylbut-2-enol in the presence of dicyclohexylcarbodiimide (DCC) and 4-(dimethylamino-) pyridine (DMAP) furnished ester **8a**. To avoid steric crowding during the [3,3]-sigmatropic shift, it was contemplated that the allylation could be carried out after the Ireland ester Claisen rearrangement of **8a**. However, quite surprisingly and contrary to our expectations, the enolate or the corresponding silyl enol ether of **8a** failed to undergo the Claisen rearrangement to generate **13** under a variety of conditions. Hence, the strategy was altered and it was decided to create the second quaternary centre at a later stage. The synthetic sequence is depicted in Scheme 3.

Sequential allylation of ester 11a with lithium diisopropylamide (LDA) and allyl bromide generated the diallylated ester 15 via ester 14, in 79% yield. RCM reaction of 15 in dichloromethane with 5 mol% of first-generation Grubbs' catalyst at room temperature furnished the cyclopentenecarboxylate 16 in near quantitative yield. Allylic oxidation of 16 with pyridinium dichromate (PDC) in pyridine furnished enone 17 in a highly regioselective manner, whose structure was deduced from its spectroscopic data, in particular from the two doublets at $\delta = 6.34$ and 7.75 ppm for the α - and β -olefinic protons of the cyclopentenone moiety (it is well established that the other regioisomer would generate two triplets of doublet signals for the cyclopentenone olefinic protons). One-step dialkylation of 17 with sodium hydride and methyl iodide in dimethoxyethane (DME) generated the second quaternary carbon atom to furnish enone 18, which on hydrogenation using 5% palladium over carbon as the catalyst furnished cyclopentanone 19. Thioketalisation of 19 with ethanedithiol and boron trifluoride etherate followed by Raney nickel-mediated desulfurisation of thioketal 20 furnished ester 21. Finally, boron tribromidemediated cleavage of the methyl ether transformed 21 into

Scheme 3. Reagents, conditions and yields: (a) LDA, THF, -70 °C; CH₂=CHCH₂Br, \rightarrow room temp., 4 h; 92%; (b) LDA, THF, HMPT, -70 °C; CH₂=CHCH₂Br, \rightarrow room temp., 8 h; 86%; (c) 5 mol % [PhCH=RuCl₂(PCy₃)₂], CH₂Cl₂, room temp., 4 h, 95%; (d) PDC, py, 100 °C, 8 h, 65%; (e) NaH, DME, MeI, room temp., 12 h, 71%; (f) H₂ (1 atm), 5% Pd/C, EtOH, 2 h, 90%; (g) (CH₂SH)₂, BF₃·Et₂O, C₆H₆, 0 °C \rightarrow room temp., 4 h, 83%; (h) Raney Ni, EtOH, reflux, 3 h, 85%; (i) BBr₃, CH₂Cl₂, -40 °C \rightarrow room temp., 4 h, 65%; (j) ref.^[4]

the lactone **22**, which exhibited the spectroscopic data (IR, ¹H and ¹³C NMR) identical to that of an authentic sample. Since lactone **22** has already been transformed into herbertene-1,13-diol by lithium aluminium hydride reduction^[4] the present sequence constitutes a formal total synthesis of herbertene-1,13-diol ((\pm)-3).

In conclusion, we have developed a RCM-based methodology for the synthesis of 1,13-herbertenediol (3). Failure of the Ireland ester Claisen rearrangement of ester **8a** made the sequence longer than anticipated. Currently, we are investigating the possibility of extension of this methodology for other bioactive herbertenes and mastigophorenes.

Experimental Section

IR spectra were recorded with a Jasco FTIR 410 spectrophotometer. ¹H (300 MHz) and ¹³C (75 MHz) NMR spectra were recorded with a Jeol JNM λ -300 spectrometer. The chemical shifts (δ ppm) and coupling constants (Hz) are reported in the standard fashion with reference to either internal tetramethylsilane (for ¹H) or the central line ($\delta = 77.0$ ppm) of CDCl₃ (for ¹³C). In the ¹³C NMR spectra, the nature of the carbon atoms (C, CH, CH₂ or CH₃) was determined by recording the DEPT-135 spectrum, and is given in parentheses. Low-resolution mass spectra were recorded using a Shimadzu GCMS-QP5050A instrument using direct inlet mode. Relative intensities are given in parentheses. High-resolution mass spectra (HRMS) were recorded with a Micromass Q-Tof microTM instrument. Ozonolysis was carried out using a Fischer 502 ozone generator, whose parameters were adjusted to provide 1 mmol of ozone every four minutes. Hydrogenation at one atmospheric pressure was carried out using a hydrogen-filled balloon. Analytical thin-layer chromatography (TLC) was performed on glass plates coated with Acme's silica-gel G containing 13% calcium sulfate as binder, and various combinations of ethyl acetate and

hexane were used as eluent. Visualization of spots was accomplished by exposure to iodine vapour. Acme's silica gel (100-200 mesh) was used for column chromatography. All small-scale dry reactions were carried out using the standard syringe septum technique. Dry THF was obtained by distillation over sodium/ benzophenone ketyl. Dry diethyl ether was obtained by distillation over sodium and stored over sodium wire. Dry dichloromethane was prepared by distillation over P₂O₅ or calcium hydride. Dry disopropylamine was obtained by distillation over KOH and stored over KOH.

Methyl (2-Methoxy-5-methylphenyl)acetate (11a): A pre-cooled (-78 °C) mixture of ozone in oxygen was passed through a cold (-78 °C) solution of the methyl ether 12 (1.0 g, 6.17 mmol) and a catalytic amount of NaHCO3 in methanol (2 mL) and CH2Cl2 (8 mL) for 24 min. The reaction mixture was flushed off with oxygen, and dimethyl sulfide (1.80 mL, 24.7 mmol) was added to the reaction mixture. This was then slowly warmed to room temp. and magnetically stirred for 8 h. Evaporation of the solvent under reduced pressure and purification of the residue on a silica-gel column using ethyl acetate/hexane (1:10) as eluent furnished (2-methoxy-5-methylphenyl)acetaldehyde (860 mg, 86%) as an oil: IR (neat): \tilde{v}_{max} = 1725, 1612, 1504, 1462, 1252, 1230, 1130, 1033, 809 cm⁻¹. ¹H NMR (300 MHz, CDCl₃ + CCl₄): $\delta = 2.27$ (s, 3 H, ArCH₃), 3.56 (d, *J* = 2.1 Hz, 2 H, CH₂CHO), 3.78 (s, 3 H, OCH₃), 6.75 (d, J = 8.2 Hz, 1 H, H-3'), 6.91 (s, 1 H, H-6'), 7.02 (d, J =8.2 Hz, 1 H, H-4'), 9.62 (t, J = 2.1 Hz, 1 H, CHO) ppm. ¹³C NMR $(75 \text{ MHz}, \text{CDCl}_3 + \text{CCl}_4)$: $\delta = 20.4 (\text{CH}_3), 45.4 (\text{CH}_2), 55.3 (\text{CH}_3),$ 110.3 (CH), 120.9 (C), 129.1 (CH), 129.9 (C), 132.0 (CH), 155.5 (C), 199.4 (CH, CHO) ppm. MS: m/z (%) = 164 (5) [M⁺], 163 (50), 152 (13), 149 (58), 135 (100), 121 (10), 105 (45), 91 (28)].

A magnetically stirred solution of the aldehyde (800 mg, 4.88 mmol), obtained above, in acetone (3 mL) was treated with a freshly prepared solution of Jones' reagent (2.5 M solution, 2.2 mL, 5.5 mmol) at 0 °C and the reaction mixture was stirred at room temp. for 2 h. Excess reagent was decomposed by adding a few drops of propan-2-ol and the reaction mixture was extracted with diethyl ether. The extract was washed with brine and dried (Na₂SO₄). Evaporation of the solvent furnished the acid 11 (770 mg, 88%).^[7] A solution of 11 (750 mg, 4.16 mmol) in MeOH (4 mL) and a catalytic amount of concd. H₂SO₄ was refluxed for 6 h. The reaction mixture was then concentrated under vacuum and extracted with diethyl ether (3 \times 5 mL). The combined diethyl ether extract was washed with brine and dried (Na₂SO₄). Evaporation of the solvent and purification of the residue over a silica-gel column using ethyl acetate/hexane (1:20) as eluent furnished the ester 11a (730 mg, 90%) as an oil. IR (neat): $\tilde{\nu}_{max}.$ = 3051, 1741, 1614, 1505, 1460, 1436, 1338, 1256, 1233, 1164, 1128, 1032, 808 cm⁻¹. ¹H NMR (300 MHz, CDCl₃ + CCl₄): $\delta = 2.27$ (s, 3 H, ArCH₃), 3.55 (s, 2 H, H-2), 3.67 (s, 3 H) and 3.68 (s, 3 H, 2 \times OCH_3), 6.72 (d, J = 8.1 Hz, 1 H, H-3'), 6.95 (s, 1 H, H-6'), 7.00 $(d, J = 8.1 \text{ Hz}, 1 \text{ H}, \text{H-4'}) \text{ ppm.}^{13}\text{C NMR} (75 \text{ MHz}, \text{CDCl}_3 + 100 \text{ C})$ CCl_4): $\delta = 20.6 (CH_3)$, 35.6 (CH₂), 51.7 (CH₃), 55.5 (CH₃), 110.4 (CH), 122.7 (C), 128.8 (CH), 129.5 (C), 131.7 (CH), 155.4 (C), 172.0 (C, OC=O) ppm. MS: m/z (%) = 194 (50) [M⁺], 135 (100), 105 (80), 91 (35). HRMS: m/z calcd. for $C_{11}H_{14}O_3Na$ [M + Na]: 217.0841, found 217.0841.

3-Methylbut-2-enyl (2-Methoxy-5-methylphenyl)acetate (8a): DCC (206 mg, 1.00 mmol), DMAP (40 mg, 0.33 mmol) and 3-methylbut-2-enol (0.07 mL, 0.67 mmol) were added to a magnetically stirred solution of **11** (120 mg, 0.67 mmol) in anhydrous CH_2Cl_2 (4 mL) and stirred at room temp. for 6 h. The reaction mixture was then concentrated under reduced pressure and filtered through a short

silica-gel column using ethyl acetate. Evaporation of the solvent and purification of the residue over a silica-gel column using ethyl acetate/hexane (1:20) as eluent furnished the ester 8a (145 mg, 88%) as an oil. IR (neat): $\tilde{\nu}_{max}$. = 1739, 1615, 1505, 1445, 1378, 1340, 1256, 1159, 1035, 973, 807 cm $^{-1}$. ¹H NMR (300 MHz, CDCl₃ + CCl₄): $\delta = 1.70$ (s, 3 H) and 1.76 (s, 3 H) [2 × olefinic CH₃], 2.27 (s, 3 H, ArCH₃), 3.54 (s, 2 H, CH₂CO), 3.77 (s, 3 H, OCH₃), 4.56 (d, J = 7.2 Hz, 2 H, OCH₂), 5.32 (t of d, J = 7.2, 1.5 Hz, 1 H, olefinic H), 6.71 (d, J = 8.1 Hz, 1 H, H-3'), 6.95 (s, 1 H, H-6'), 6.98 (d, J = 8.1 Hz, 1 H, H-4') ppm. ¹³C NMR (75 MHz, CDCl₃ + CCl_4): $\delta = 18.1 (CH_3), 20.6 (CH_3), 25.9 (CH_3), 35.8 (CH_2), 55.4$ (CH₃), 61.4 (CH₂), 110.4 (CH), 119.2 (CH), 122.9 (C), 128.7 (CH), 129.4 (C), 131.7 (CH), 138.3 (C), 155.5 (C), 171.5 (C, OC=O) ppm. MS: m/z (%) = 248 (25) [M⁺], 180 (2), 149 (2), 136 (12), 135 (100), 122 (3), 105 (60), 91 (13), 79 (12), 69 (65). HRMS: m/z calcd. for $C_{15}H_{20}O_3Na [M + Na]: 271.1310$, found 271.1301.

Methyl 2-(2-Methoxy-5-methylphenyl)pent-4-enoate (14): A solution of nBuLi (2.5 M in hexane, 2.24 mL, 5.60 mmol) was slowly added to a cold (-78 °C), magnetically stirred solution of diisopropylamine (0.9 mL, 6.20 mmol) in anhydrous THF (3 mL) and stirred for 10 min. A solution of 11a (600 mg, 3.10 mmol) in anhydrous THF (2 mL) was added dropwise to the LDA thus formed and stirred for 40 min at the same temperature. The enolate was treated with allyl bromide (0.52 mL, 6.20 mmol) and stirred for 3 h. The reaction mixture was then diluted with water and extracted with diethyl ether $(3 \times 4 \text{ mL})$. The combined diethyl ether extract was washed sequentially with 3 N aqueous HCl, saturated aqueous NaHCO₃ solution and brine, and dried (Na₂SO₄). Evaporation of the solvent and purification of the residue over a silica-gel column using ethyl acetate/hexane (1:20) as eluent furnished the pentenoate 14 (665 mg, 92%) as an oil. IR (neat): $\tilde{v}_{max.} = 3076, 1736, 1641,$ 1611, 1503, 1462, 1438, 1348, 1247, 1168, 1121, 1033, 916, 808 cm⁻¹. ¹H NMR (300 MHz, CDCl₃ + CCl₄): $\delta = 2.27$ (s, 3 H, ArCH₃), 2.41 (t of d, J = 14.0, 7.0 Hz, 1 H) and 2.73 (t of d, J =14.0, 7.0 Hz, 1 H, H-3), 3.64 (s, 3 H) and 3.80 (s, 3 H, $2 \times OCH_3$), 4.01 (t, J = 7.5 Hz, 1 H, H-2), 4.94 (d, J = 10 Hz, 1 H) and 5.02 (d, J = 17 Hz, 1 H, H-5), 5.72 (t of dd, J = 17.0, 10.0, 7.0 Hz, 1 Hz)H, H-4), 6.72 (d, J = 8.1 Hz, 1 H, H-3'), 6.98 (d, J = 8.1 Hz, 1 H, H-4'), 7.00 (s, 1 H, H-6'), ppm. ¹³C NMR (75 MHz, CDCl₃ + CCl_4): $\delta = 20.7 (CH_3), 36.8 (CH_2), 43.9 (CH_3), 51.7 (CH_3), 55.6$ (CH), 110.7 (CH), 116.5 (CH₂), 127.2 (C), 128.5 (CH), 129.0 (CH), 129.8 (C), 136.0 (CH), 154.7 (C), 174.1 (C, OC=O) ppm. MS: m/z (%) = 234 (29) [M⁺], 193 (76), 175 (100), 165 (30), 163 (32), 149 (19), 135 (64), 105 (46), 91 (24). HRMS: m/z calcd. for $C_{14}H_{18}O_3Na [M + Na]: 257.1154$, found 257.1172.

Methyl 2-Allyl-2-(2-methoxy-5-methylphenyl)pent-4-enoate (15): A solution of nBuLi (2.5 M in hexane, 2 mL, 5.0 mmol) was slowly added to a cold (-78 °C), magnetically stirred solution of diisopropylamine (0.8 mL, 5.56 mmol) in anhydrous THF (3 mL) and stirred for 10 min. A solution of 14 (650 mg, 2.78 mmol) in anhydrous THF (2 mL) and HMPA (1 mL) were added dropwise to the LDA thus formed and stirred for 40 min at the same temperature. The enolate was treated with allyl bromide (0.47 mL, 5.56 mmol) and stirred for 7 h. The reaction mixture was then diluted with water and extracted with diethyl ether $(3 \times 4 \text{ mL})$. The combined diethyl ether extract was washed sequentially with 3 N aqueous HCl, saturated aqueous NaHCO₃ solution and brine, and dried (Na₂SO₄). Evaporation of the solvent and purification of the residue over a silica-gel column using ethyl acetate/hexane (1:20) as eluent furnished the ester 15 (655 mg, 86%) as an oil. IR (neat): $\tilde{v}_{max} = 3074, 1740, 1640, 1609, 1498, 1443, 1230, 1207, 1134, 1035,$ 916, 809 cm⁻¹. ¹H NMR (300 MHz, CDCl₃ + CCl₄): $\delta = 2.31$ (s,

3 H, ArCH₃), 2.60 (dd, J = 13.8, 8.1 Hz, 2 H) and 2.76 (dd, J = 13.8, 6.3 Hz, 2 H, 2 × allylic CH₂), 3.58 (s, 3 H) and 3.73 (s, 3 H, 2 × OCH₃), 5.00 (d, 2 H, J = 12 Hz), 5.01 (d, J = 15.3 Hz, 2 H), 5.55–5.40 (m, 2 H), 6.72 (d, J = 8.4 Hz, 1 H, H-3'), 6.92 (s, 1 H, H-6'), 7.00 (d, J = 8.4 Hz, 1 H, H-4') ppm. ¹³C NMR (75 MHz, CDCl₃ + CCl₄): $\delta = 21.1$ (CH₃), 38.0 (2 C, CH₂), 50.6 (C, C-2), 51.4 (CH₃), 55.3 (CH₃), 111.0 (CH), 118.1 (2 C, CH₂), 127.9 (CH), 128.3 (CH), 129.2 (C), 130.7 (C), 133.9 (2 C, CH), 154.6 (C), 175.6 (C, OC=O) ppm. MS: m/z (%) = 274 (20) [M⁺], 233 (31), 201 (80), 173 (100), 158 (44), 145 (26), 128 (22), 115 (24), 105 (17). HRMS: m/z calcd. for C₁₇H₂₂O₃Na [M + Na]: 297.1467, found 297.1477. For C₁₇H₂₃O₃ [M + 1]: 275.1647, found 275.1656.

Methyl 1-(2-Methoxy-5-methylphenyl)cyclopent-3-ene-1-carboxylate (16): A solution of Grubbs' catalyst (22 mg, 5 mol%) in anhydrous CH₂Cl₂ was added to a magnetically stirred solution of diene 15 (150 mg, 0.55 mmol) in anhydrous CH₂Cl₂ (5 mL) and stirred at room temp. for 4 h. Evaporation of the solvent under reduced pressure and purification of the residue on a silica-gel column using ethyl acetate/hexane (1:10) as eluent furnished the cyclised compound 16 (128 mg, 95%) as an oil. IR (neat): $\tilde{v}_{max.} = 3054$, 1737, 1498, 1459, 1294, 1240, 1201, 1124, 1081, 1035, 809 cm⁻¹. ¹H NMR (300 MHz, $CDCl_3 + CCl_4$): $\delta = 2.30$ (s, 3 H, ArCH₃), 2.68 and 3.15 (2 × d, J = 15.6 Hz, 4 H, H-2 and H-5), 3.61 (s, 3 H) and 3.75 (s, 3 H, $2 \times \text{OCH}_3$), 5.66 (s, 2 H, H-3 and H-4), 6.72 (d, J = 8.1 Hz, 1 H, H-3'), 6.93 (s, 1 H, H-6'), 6.98 (d, J = 8.1 Hz, 1 H, H-4') ppm. ¹³C NMR (75 MHz, CDCl₃ + CCl₄): $\delta = 21.0$ (CH₃), 43.1 (2 C, CH₂, C-2 and C-5), 52.0 (CH₃, COOCH₃), 54.0 (C, C-1), 55.4 (CH₃, ArOCH₃), 110.9 (CH, C-3'), 126.9 (CH, C-4'), 128.0 (CH, C-6'), 128.3 (2 C, CH, C-3 and C-4), 129.2 (C, C-1'), 133.0 (C, C-5'), 154.5 (C, C-2'), 177.1 (C, OC=O) ppm. MS: m/z (%) = 246 (25) [M⁺], 187 (82), 172 (28), 159 (12), 145 (43), 128 (25), 122 (100). HRMS: m/z calcd. for $C_{15}H_{18}O_3Na$ [M + Na]: 269.1154, found 269.1153.

Methyl 1-(2-Methoxy-5-methylphenyl)-3-oxocyclopent-4-ene-1-carboxylate (17): PDC (100 mg) was added to a solution of 16 (100 mg, 0.40 mmol) in pyridine (4 mL). The reaction mixture was heated at 100 °C for 8 h, then cooled, filtered through a short silicagel column, and the column eluted with more CH₂Cl₂. Evaporation of the solvent and purification of the residue over a silica-gel column using ethyl acetate/hexane (1:5) as eluent first furnished the unchanged starting material (20 mg). Further elution of the column with the same solvent furnished the enone 17 (55 mg, 65% based on starting material consumed) as an oil. IR (neat): $\tilde{v}_{max.}$ = 3030, 1739, 1720, 1614, 1500, 1463, 1430, 1246, 1194, 1150, 1135, 1034, 815 cm⁻¹. ¹H NMR (300 MHz, CDCl₃ + CCl₄): $\delta = 2.28$ (s, 3 H, ArCH₃), 2.26 and 3.56 (2 × d, J = 18.3 Hz, 2 H, H-2), 3.67 (s, 3 H) and 3.78 (s, 3 H, 2 × OCH₃), 6.34 (d, J = 6.0 Hz, 1 H, H-4), 6.75 (d, J = 8.1 Hz, 1 H, H-3'), 6.78 (s, 1 H, H-6'), 7.04 (d, J =8.1 Hz, 1 H, H-4'), 7.75 (d, J = 6.0 Hz, 1 H, H-5) ppm. ¹³C NMR $(75 \text{ MHz}, \text{CDCl}_3 + \text{CCl}_4): \delta = 20.8 (\text{CH}_3, \text{ArCH}_3), 46.0 (\text{CH}_2, \text{C-}_3)$ 2), 52.8 (CH₃) and 55.5 (CH₃, 2 × OMe), 57.6 (C, C-1), 111.0 (CH, C-3'), 127.3 (CH, C-6'), 129.2 (CH, C-4'), 130.0 (C), 130.7 (C), 135.3 (CH, C-4), 154.4 (C, C-2'), 161.9 (CH, C-5), 172.6 (C, OC= O), 206.8 (C=O) ppm. MS: m/z (%) = 260 (29) [M⁺], 201 (100), 186 (46), 158 (11), 128 (19), 115 (17). HRMS: m/z calcd. for $C_{15}H_{16}O_4Na \ [M + Na]: 283.0946$, found 283.0943. For $C_{15}H_{17}O_4$ [M + 1]: 261.1126, found 261.1129.

Methyl 1-(2-Methoxy-5-methylphenyl)-2,2-dimethyl-3-oxocyclopent-4-ene-1-carboxylate (18): A solution of keto ester 17 (50 mg, 0.19 mmol) in DME (2 mL) was added to a magnetically stirred suspension of NaH (46 mg, 60% dispersion in oil, 1.15 mmol, washed with dry hexanes) in DME (2 mL) and stirred for 40 min at room temp. Methyl iodide (0.07 mL, 1.15 mmol) was added to the reaction mixture, which was stirred at room temp. for 12 h. It was then quenched with water (5 mL) and extracted with diethyl ether (3 \times 3 mL). The combined diethyl ether extract was washed with brine and dried (Na₂SO₄). Evaporation of the solvent and purification of the residue over a silica-gel column using ethyl acetate/hexane (1:10) as eluent furnished the keto ester 18 (39 mg, 71%) as an oil. IR (neat): \tilde{v}_{max} . = 1736, 1716, 1504, 1457, 1238, 1213, 1038 cm⁻¹. ¹H NMR (300 MHz, CDCl₃ + CCl₄): $\delta = 0.63$ (s, 3 H) and 1.39 (s, 3 H, $2 \times tert$ -CH₃), 2.28 (s, 3 H, ArCH₃), 3.61 (s, 3 H) and 3.72 (s, 3 H) $[2 \times \text{OCH}_3]$, 6.25 (d, J = 6.0 Hz, 1 H, H-4), 6.70 (d, J = 7.5 Hz, 1 H, H-3'), 6.74 (s, 1 H, H-6'), 7.00 (d, J = 7.5 Hz, 1 H, H-4'), 7.50 (d, J = 6.0 Hz, 1 H, H-5) ppm. ¹³C NMR (75 MHz, $CDCl_3 + CCl_4$): $\delta = 21.0 (CH_3), 21.3 (CH_3), 26.4$ (CH₃), 52.1 (CH₃), 52.7 (C, C-2), 55.0 (CH₃), 66.4 (C, C-1), 111.2 (CH, C-3'), 127.1 (C, C-1'), 129.1 (CH), 129.5 (C, C-5'), 130.2 (CH), 132.1 (CH, C-4), 155.2 (C, C-2'), 158.1 (CH, C-5), 171.5 (C, OC=O), 210.6 (C, C=O) ppm. MS: m/z = 288 (19) [M⁺], 229 (100), 214 (3), 145 (8), 115 (10). HRMS: m/z calcd. for $C_{17}H_{20}O_4Na$ [M + Na]: 311.1259, found 311.1248.

Methyl 1-(2-Methoxy-5-methylphenyl)-2,2-dimethyl-3-oxocyclopentane-1-carboxylate (19): A solution of enone 18 (30 mg, 0.10 mmol) in ethanol (2 mL) was added to 5% Pd-C (5 mg). The reaction mixture was stirred for 2 h at room temp. in an atmosphere of hydrogen, created by evacuative replacement of air (balloon) and then the catalyst was filtered off. Evaporation of the solvent furnished the cyclopentanone 19 (27 mg, 90%) as an oil. IR (neat): \tilde{v}_{max} = 3030, 1743, 1726, 1499, 1465, 1250, 1120, 1028, 810 cm⁻¹. ¹H NMR (300 MHz, $CDCl_3 + CCl_4$): $\delta = 0.80$ (s, 3 H) and 1.16 (s, 3 H, 2 × tert-CH₃) 2.31 (s, 3 H, ArCH₃), 2.65-2.30 (m, 4 H), 3.63 (s, 3 H) and 3.71 (s, 3 H, $2 \times \text{OCH}_3$), 6.76 (d, J = 8.5 Hz, 1 H, H-3'), 6.93 (s, 1 H, H-6'), 7.03 (d, J = 8.5 Hz, 1 H, H-4') ppm. ¹³C NMR (75 MHz, CDCl₃ + CCl₄): $\delta = 21.0$ (CH₃), 21.1 (CH₃) 21.5 (CH₃), 27.6 (CH₂), 32.8 (CH₂), 51.7 (CH₃), 52.6 (C, C-2), 55.0 (CH₃, OMe), 58.8 (C, C-1), 111.3 (CH, C-3'), 127.5 (C), 128.7 (CH), 128.8 (CH), 129.2 (C), 155.2 (C, C-2'), 174.8 (C, OC=O), 217.7 (C, C=O). MS: m/z (%) = 290 (38) [M⁺], 258 (25), 231 (100), 215 (23), 189 (42), 188 (75), 159 (30), 149 (39), 145 (42), 115 (30), 105 (32). HRMS: m/z calcd. for $C_{17}H_{22}O_4Na$ [M + Na]: 313.1416, found 313.1410.

Methyl 1-(2-Methoxy-5-methylphenyl)-2,2-dimethylcyclopentanecarboxylate (21): A solution of 19 (5 mg, 0.017 mmol), ethanedithiol (0.004 mL, 0.051 mmol) and BF3 Et2O (1 drop) in dry benzene (1 mL) was magnetically stirred at 0 °C to room temp. for 4 h. The reaction was then quenched with aqueous NaHCO₃ solution and extracted with diethyl ether. The diethyl ether extract was washed with 5% aqueous NaOH solution and brine and dried (Na₂SO₄). Evaporation of the solvent and purification of the residue over a silica-gel column using ethyl acetate/hexane (1:20) as eluent furnished the thioketal 20 (5 mg, 83%) as an oil. IR (neat): \tilde{v}_{max} = 1739, 1498, 1464, 1248, 1193, 1131, 1034, 808 cm⁻¹. ¹H NMR (300 MHz, $CDCl_3 + CCl_4$): $\delta = 0.65$ (s, 3 H) and 1.57 (s, 3 H, 2 × tert-CH₃), 2.30 (s, 3 H, ArCH₃), 2.80-2.05 (m, 4 H), 3.35-3.00 (m, 4 H), 3.53 (s, 3 H) and 3.71 (s, 3 H, $2 \times \text{OCH}_3$), 6.66 (d, J = 8.4 Hz, 1 H, H-3'), 6.95 (d, J = 8.4 Hz, 1 H, H-4'), 7.00 (s, 1 H, H-6') ppm. ¹³C NMR (100 MHz, CDCl₃ + CCl₄): $\delta = 21.0, 23.0, 30.4, 35.6, 38.0, 38.7, 45.1, 51.3, 52.1, 54.9, 59.1,$ 82.8 (S-C-S), 110.4, 128.0, 128.5, 128.8, 131.5, 155.3, 175.4 (OC=O) ppm. MS: m/z (%) = 366 (5) [M⁺], 335 (5), 206 (18), 189 (5), 173 (5), 159 (5), 145 (8), 131 (100), 115 (5), 105 (6).

An excess of Raney nickel was added to a magnetically stirred solution of **20** (4 mg, 0.01 mmol) in dry ethanol (1 mL) and refluxed

for 3 h. The reaction mixture was cooled and filtered through a short silica-gel column to remove the catalyst. Evaporation of the solvent and purification of the residue over a silica-gel column using ethyl acetate/hexane (1:50) as eluent furnished the ester 21 (2.5 mg, 85%) as an oil. IR (neat): $\tilde{v}_{max.} = 1738, 1248, 1195, 807$ cm $^{-1}$. ¹H NMR (300 MHz, CDCl₃ + CCl₄): δ = 0.69 (s, 3 H) and 1.25 (s, 3 H, 2 \times tert-CH₃), 1.65–1.50 (m, 1 H), 1.85–1.70 (m, 2 H), 2.25-1.95 (m, 2 H), 2.31 (s, 3 H, ArCH₃), 2.60-2.48 (1 H, t of d, J = 13.5, 6.0 Hz), 3.54 (s, 3 H) and 3.70 (s, 3 H, 2 × OCH₃), 6.69 (d, J = 8.1 Hz, 1 H, H-3'), 6.97 (d, J = 8.1 Hz, 1 H, H-4'), 7.05 (s, 1 H, H-6') ppm. ¹³C NMR (75 MHz, CDCl₃ + CCl₄): $\delta =$ 20.1 (CH₂, C-4), 21.2 (CH₃), 25.1 (CH₃), 27.7 (CH₃), 34.8 (CH₂), 39.9 (CH₂), 45.5 (C, C-2), 51.0 (CH₃), 54.9 (CH₃), 60.3 (C, C-1), 110.7 (CH, C-3'), 127.9 (CH, C-6'), 128.6 (C, C-1'), 128.9 (CH, C-4'), 129.9 (C, C-5'), 155.4 (C, C-2'), 175.5 (C, OC=O) ppm. MS: m/z (%) = 276 (18) [M⁺], 217 (11), 207 (21), 194 (36), 175 (100), 162 (23), 149 (84), 147 (74), 135 (40), 119 (22), 105 (27), 91 (35). HRMS: m/z calcd. for C₁₇H₂₄O₃Na [M + Na]: 299.1623, found 299.1630.

2',2',5-Trimethylspiro[1-benzofuran-3,1'-cyclopentan]-2-one (22): A solution of BBr₃ (1 M in CH₂Cl₂, 0.3 mL, 0.3 mmol) was added dropwise to a solution of 21 (13 mg, 0.047 mmol) in CH₂Cl₂ (1 mL) at -40 °C and the reaction mixture was stirred for 3 h at room temp. It was then quenched with saturated aqueous NaHCO₃ solution and extracted with CH_2Cl_2 (3 \times 2 mL). The combined organic layer was washed with brine and dried (Na₂SO₄). Evaporation of the solvent and purification of the residue over a silica-gel column using ethyl acetate/hexane (1:10) as eluent furnished the lactone 22 (7 mg, 65%) as an oil. IR (neat): $\tilde{v}_{max} = 1798, 1643, 1617, 1038$ cm $^{-1}$. 1H NMR (300 MHz, CDCl_3 + CCl_4): δ = 0.92 (s, 3 H) and 1.03 (s, 3 H, 2 \times tert-CH₃), 2.40–1.64 (m, 6 H), 2.36 (s, 3 H, ArCH₃), 6.94 (d, J = 8.4 Hz, 1 H, H-7), 6.96 (s, 1 H, H-4), 7.04 (d, J = 8.4 Hz, 1 H, H-6) ppm. ¹³C NMR (75 MHz, CDCl₃ + CCl_4): $\delta = 21.0 (CH_2, C-4'), 21.5 (CH_3), 23.6 (CH_3), 25.4 (CH_3),$ 34.7 (CH₂), 38.7 (CH₂), 47.6 (C, C-2'), 60.1 (C, C-3), 110.1 (CH, C-7), 125.6 (CH, C-4), 128.9 (CH, C-6), 129.3 (C, C-3a), 132.5 (C, C-5), 151.7 (C, C-7a), 179.4 (C, C-2) ppm. MS: *m*/*z* (%) = 230 (11) $[M^+]$, 161 (100), 160 (81), 148 (16), 135 (37), 115 (11), 91 (15). HRMS: m/z calcd. for $C_{15}H_{18}O_2Na$ [M + Na]: 253.1204, found 253.1218.

Acknowledgments

We thank Professor Y. Asakawa for providing the copy of the ¹H NMR spectrum of the diol **3**, Mr. G. Satyanarayana for carrying out the last experiment and the C.S.I.R., New Delhi for financial support.

- ^[1] [^{1a]} H. Irita, T. Hashimoto, Y. Fukuyama, Y. Asakawa, *Phytochemistry* 2000, 55, 247–253. [^{1b]} A. Matsuo, S. Yuki, M. Nakayama, *J. Chem. Soc., Perkin Trans.* 1 1986, 701–710. [^{1c]} M. S. Buchanan, J. D. Connolly, D. S. Rycroft, *Phytochemistry* 1996, 43, 1245–1248.
- ^[2] ^[2a] Y. Fukuyama, Y. Kiriyama, M. Kodama, *Tetrahedron Lett.* 1996, 37, 1261–1264. ^[2b] Y. Fukuyama, Y. Asakawa, J. Chem. Soc., Perkin Trans. 1 1991, 2737–2741.
- ^[3] ^[3a] Y. Kita, J. Futamura, Y. Ohba, Y. Sawama, J. K. Ganesh, H. Fujioka, *Tetrahedron Lett.* 2003, 44, 411–413. ^[3b] T. Paul, A. Pal, P. D. Gupta, D. Mukherjee, *Tetrahedron Lett.* 2003, 44, 737–740. ^[3c] S. P. Chavan, R. K. Kharul, R. R. Kale, D. A. Khobragade, *Tetrahedron* 2003, 59, 2737–2741. ^[3d] A. Nayek, M. G. B. Drew, S. Ghosh, *Tetrahedron* 2003, 59, 5175–5181. ^[3e] X. Z. Zhao, Y. X. Jia, Y. Q. Tu, J. Chem. Res. (S), 2003, 54–55. ^[3f] Y. Kita, J. Futamura, Y. Ohba, Y. Sawama, J. K. Ganesh, H. Fujioka, *J. Org. Chem.* 2003, 68, 5917–5924. ^[3g] A. Srikrishna, G. Satyanarayana, *Tetrahedron Lett.* 2003, 44, 1027–1030 and references cited therein.
- [4] Y. Fukuyama, H. Yuasa, Y. Tonoi, K. Harada, M. Wada, Y. Asakawa, T. Hashimoto, *Tetrahedron* 2001, 57, 9299-9307.
- [5] R. E. Ireland, R. H. Mueller, J. Am. Chem. Soc. 1972, 94, 5897-5898.
- ^[6] [^{6a]} R. H. Grubbs, S. Chang, *Tetrahedron* **1998**, *54*, 4413–4450.
 ^[6b] M. Schuster, S. Blechert, *Angew. Chem. Int. Ed. Engl.* **1997**, *36*, 2037–2055.
 ^[6c] A. Fürstner, *Angew. Chem. Int. Ed.* **2000**, *39*, 3013–3043.
- [7] P. J. Dijkstra, M. Skowronska-Ptasinska, D. N. Reinhoudt, H. J. den Hertog Jr., J. van Eerden, S. Harkema, D. de Zeeuw, J. Org. Chem. 1987, 52, 4913–21.

Received September 19, 2003