Reactions of Amines with Pt(PPh₃)₂O₂

M, PIZZOTTI, S, CENINI* and G, LA MONICA

CNR Center, Istituto di Chimica Generale, Via Venezian 21, 20133 Milan, Italy Received June 12, 1978

By reaction of $Pt(PPh_3)_2O_2$ with R in $Pt(PPh_3)_2O_2$ with R in R in ethanol the complexes $Pt(PPh_3)_2(NH)$ R in R if R in R in

lated; the latter was also obtained from cis-Pt(PPh3)2-

$$Cl_2$$
 and \bigcirc OH in a basic medium. The platinum

diamido complexes can be reversibly protonated with

$$HBF_4$$
 to give $\left[Pt \left(PPh_3 \right)_2 \left(NH_2 \right) R \right]^{2^+} \left(RF_4^- \right)_2 \cdot H_2^{-1}$

Attempted reactions of $Pt(PPh_3)_2O_2$ with NH_3 , NH_2 - $CH_2CH_2NH_2$ and $p-RC_6H_4NH_2$ ($R=Me,OMe,NO_2$) did not give well characterizable products, while with Bu^t-NH_2 an already known cluster complex was obtained.

Introduction

The reactions of amines with metal oxo derivatives represent a useful method for the synthesis of imido complexes [1, 2] (eq. 1):

$$L_nM(O) + RNH_2 \longrightarrow L_nM(NR) + H_2O$$
 (1)

and we have recently extended this reaction to sulphinylamines [3] (eq. 2):

$$Re(PPh_3)_2(O)Cl_3 + ArNSO \longrightarrow Re(PPh_3)_2(NAr)Cl_3 + SO_2 \qquad (2)$$

Owing to our interest in the chemistry of imido complexes and related derivatives [2, 3] and to the reactivity of amines with transition metal complexes [4, 5], we have undertaken a study of the reactions of peroxo complexes such as M(PPh₃)₂O₂ (M = Pd, Pt) with a series of amines. It is known that the oxidation of primary aromatic amines with an inorganic nickel peroxide generally leads to the corresponding symmetrical azo compounds, while aliphatic amines are oxidized to the corresponding nitriles [6]. It was thus of interest to investigate whether an oxidant such as a transition metal peroxo complex could dehydrogenate in a selective way these organic molecules.

Results

Reactions with ortho-Phenylenediamines

By reaction of Pt(PPh₃)₂O₂ in ethanol with a series of *ortho*-phenylenediamines, deeply coloured diamido derivatives of platinum have been isolated (eq. 3) (Table I):

$$Pt(PPh_3)_2O_2 + \underset{R}{\overset{\text{NH}_2}{\longrightarrow}} \underbrace{\underset{\text{NH}_2}{\text{EtOH}}}_{\text{NH}_2} \xrightarrow{\text{EtOH}}$$

$$Pt(PPh_3)_2(\underset{\text{NH}}{\overset{\text{NH}_2}{\longrightarrow}} \underset{\text{R'}}{\overset{\text{NH}_2}{\longrightarrow}} \underbrace{\text{EtOH}}_{\text{-H}_2O_2}$$
(3)

$$[R = R' = H(I); R = H, R' = NO_2(II); RR' =)$$
(III)

A similar reaction has been carried out between $Pd(PPh_3)_2O_2$ and NH_2 , a complex having an i.r.

spectrum comparable to that of (I) being isolated. However elemental analyses were not entirely satisfactory (see Experimental).

^{*}To whom correspondence should be addressed.

TABLE I. Analytical a and I.r. (cm⁻¹, nujol) Data for Pt(PPh₃) (NH R) Complexes.

Compound			Colour	M.p. (°C)	C _p	Н _р	N ^b	ν _{NH}	νc-n
	R	R '							
(I) ^{e,f}	Н	Н	deep red	>240	60.75 (60.50)	4.48 (4.80)	3.42 (3.20)	3390	1295
(II)	Н	NO ₂	violet	>240	57.02 (57.60)	4.39 (4.48)	4.16 (4.58)	3400	1275
(III)			brick red	>240	62.35 (63.00)	4.23 (4.34)	3.24 (3.20)	3400	1335
(IV) ^c	Н	Н	yellow	>240	60.88 (60.94)	4.16 (4.11)	_	-	d

a Required values in parentheses. b Compounds (I) and (II) clathrate one mol of ethanol in the lattice, as seen by ¹H n.m.r. ^cThis compound corresponds to Pt(PPh₃)₂(${}^{0}_{0}$). d ν_{C-O} = 1480–1270–1260. e λ (nm) = 378 in CHCl. f By rapid crystallisation

from CHCl₃/n-hexane the complex free of solvent was obtained (found: C, 59.46; H, 4.36; N, 3.23. No signals were detected in the ¹H n.m.r. spectrum attributable to clathrated ethanol).

benzene in a nitrogen atmosphere, no reaction was observed and the platinum compound was recovered unchanged. This emphasized the role of the peroxo group in this reaction.

Compound (I) was shown to be diamagnetic in the solid state, monomeric in chloroform and nonelectrolyte in nitrobenzene.

Some of these derivatives chlathrate ethanol in the lattice (Table I) as seen by ¹H n.m.r. By rapid crystallisation of (I) from chloroform the corresponding solvent-free derivative was obtained.

Compounds (I)–(III) show in their i.r. spectra a band at ca. 3400 cm⁻¹ due to $\nu_{\rm NH}$ and a band at ca. 1300 cm⁻¹ due to $\nu_{\rm C-N}$ (Table I), a value slightly higher than that observed in the free ligands. Even the absorptions in the visibile region were not particularly different from those observed in the free amines (Table I). A related reaction can also be

conducted on
$$\bigcirc_{OH}^{OH}$$
 (eq. 4):
$$Pt(PPh_3)_2O_2 + \bigcirc_{OH}^{OH} \xrightarrow{EtOH}_{-H_2O_2}^{Pt(PPh_3)_2(\bigcirc_{O}^{OH})} \stackrel{\circ}{\longrightarrow} (4)$$

$$\stackrel{NaOH}{\longleftarrow}_{-NaCl} Pt(PPh_3)_2Cl_2 + \bigcirc_{OH}^{OH} (4)$$

The same ortho-diphenol derivative (IV) was also obtained from cis-Pt(PPh₃)₂Cl₂ and \bigcirc in the presence of NaOH.

Analogous platinum derivatives have been previously obtained from Pt(PPh₃)₃, but by reaction with a series of substituted ortho-quinones [7]. Compound (I) does not react with neutral ligands such as pyridine or carbon monoxide, even in refluxing benzene or with dioxygen, while compounds (I) and (II) and the impure palladium complex can be readily protonated with an acid having an anion with poor nucleophilic character, to give the cationic complexes (V)-(VII) (Table II) (eq. 5):

$$(PPh_{3})_{2} M (\underbrace{\begin{array}{c} NH \\ NH \\ NH \end{array}}_{R}) \underbrace{\begin{array}{c} 2HBF_{4} \\ base \\ \\ \hline \\ (PPh_{3})_{2} M (\underbrace{\begin{array}{c} NH_{2} \\ NH_{2} \\ \end{array}}_{NH_{2}} \underbrace{\begin{array}{c} R \\ R' \end{array}}_{R})^{2} (8F_{4}^{-})_{2} H_{2} 0 \tag{5}$$

$$\underbrace{\begin{array}{c} 4HC1 \\ M = Pt \\ \end{array}}_{R} \underbrace{\begin{array}{c} cis - Pt(PPh_{3})_{2}Cl_{2} + \\ R \\ NH_{2} \\ \end{array}}_{NH_{2}} 2HCI \tag{5}$$

$$(R = R' = H; R = H, R' = Me)$$

This protonation reaction is reversible, and by reaction with bases the starting complexes can be readily reobtained. On the other hand, by reaction of (I) with HCl (eq. 5), cis-Pt(PPh₃)₂Cl₂ and the corresponding salt of the ortho-diamine were obtained. Compounds (V)–(VII) invariably contain water, as seen by elemental analyses and i.r. spectra, while $\nu_{\rm NH_2}$ were observed at lower frequencies (Table II) with respect to $\nu_{\rm NH}$ in the starting complexes, as is usually observed in amido and amino derivatives [5]. In these

TABLE II Analytical a and I r (cm⁻¹, nujol) Data for $\left[M\left(PPh_{3}\right)_{2}\left(\begin{array}{c}NH_{2}\\NH_{2}\end{array}\right)_{R}^{R}\right]_{R}^{2}+\left(BF_{4}^{-}\right)_{2}^{2}$ (Geomplexes (M = Pd, Pt)

Compound			Colour	Mp (°C)	С	Н	N	$\Lambda_{\mathbf{M}}^{\mathbf{d}}$	ν _{H₂O^e}	νNH ₂	
	М	R	R'								
(V)	Pt	H	Н	pınk	>240	49 27 (49 50)	3 80 (3 92)	2 42 (2 75)	36 0	3550	3290–3190
(VI)	Pd	Н	Н	pınk	183	54 60 (54 20)	4 33 (4 30)	3 15 (3 00)	36 4	3550	3310-3210
(VII)	Pt	Н	NO ₂	ochre	203	46 86 (47 30)	3 62 (3 66)	3 48 (3 94)	28 0	3520	3380–3270
(VIII) ^b	Pt	Н	Me	light brown	>240	50.14 (49 70)	4 00 (4 06)	2 91 (2 70)	37 2	3550	3330-3240-3195
(IX) ^c	Pt	Ме	Me	light brown	>240	51 43 (50 43)	4 06 (4 20)	2 63 (2 67)	35 0	3560	3300-3245-3190

a Required values in parentheses ${}^{b}T_{Me} = 7.68$ in CDCl₃ ${}^{c}T_{Me} = 7.9$ in CD₂Cl₂ d In nitrobenzene e Broad absorptions.

cationic complexes the band at ca 1300 cm⁻¹ was no more observed in the 1r spectrum, and it probably lies in the region where the BF₄ absorbs This indicates that there is no carbon-nitrogen double bond character in these derivatives, as one would expect by effect of the coordination of the amine via the nitrogen lone pair A very peculiar fact was observed for the products obtained from the reactions of

$$Pt(PPh_3)_2O_2$$
 and $R \longrightarrow NH_2 = H$, $R' = Me$, $R =$

R' = Me), which have satisfactory elemental analyses and 1r spectra (see Experimental) consistent with a formulation analogous to that of compounds (I)—(III). In their ¹H n m.r spectra the methyl resonances were not detected from -6 to $+25 \tau$ in solvents such as CDCl₃ or CD₂Cl₂ and on changing the temperature (R = R' = Me, down to -50 °C in CD₂Cl₂) a broad peak appeared between 7 5 and 8 τ Even the homologous complex having deuterated triphenylphos-

phine as ligand,
$$P(c_6D_5)_3$$
2 $(NH)_{Me}$, did not

show any signal in the ¹H n m r spectrum in CD₂Cl₂ attributable to the methyl resonances Moreover the ¹³C n m r spectrum (R = H, R' = Me) in CDCl₃, showed only the peaks due to clathrated ethanol in the methyl resonances region, although the compound isolated from the still clear solution had entirely changed after one night in the n.m r tube Finally the ¹H n m r spectra of both complexes in CS₂ at room temperature showed broad and complex signals at around 8 τ On the other hand the mass spectrum (R = H, R' = Me) showed a peak due to the Pt(PPh₃)-(N₂C₇H₇)[†] ion while compounds (VIII) and (IX), obtained from these derivatives by reaction with HBF₄ (eq 5), clearly showed in their ¹H n m r spectra the methyl resonances at ca. 7.8 τ in CDCl₃, a region

where the free amines absorb Finally the reaction of the complex with R = H, R' = Me with HCl (eq 5) gave as the organic product a compound with an 1 r.

spectrum identical to that of
$$\frac{Me}{NH_2}$$
 2 HCI,

obtained from the free amine and HCl

When the same complex was left in CDCl₃ for one hour, it showed an ir spectrum slightly different from that of the starting material, however, even this material by reaction with HCl gave the salt of the unreacted amine. Thus we cannot propose at the moment any reasonable hypothesis to explain these unusual facts.

Reactions with Other Amines

The reaction of $Pt(PPh_3)_2O_2$ with amines such as $NH_2CH_2CH_2NH_2$ and $p-RC_6H_4NH_2$ (R = Me, OMe, NO_2) and with ammonia in various conditions did not give well characterizable products

The pale yellow $(NH_3, NH_2CH_2CH_2NH_2)$ or redviolet $(p\text{-RC}_6H_4NH_2)$ materials isolated did contain nitrogen, but they could not be purified. In any case it is interesting that a reaction with ammonia took place and under smooth conditions (at room temperature in benzene or in ethanol), since the heterogenous oxidation of ammonia to produce NO_x (x = 1, 2) proceeds at T > 800 °C over Pt/Rh [18]

From the reaction conducted in benzene, one mol of OPPh₃ per mol of reacted complex was isolated, while the platinum containing product having PPh₃ as ligand (1 r evidence) has an approximate ratio Pt P N of 1 1 1 Elemental analyses also showed the presence of oxygen in the complex

When Bu^t-NH₂ was employed in the reaction with Pt(PPh₃)₂O₂, an already known platinum cluster complex [9, 10] was isolated (eq 6)

$$Pt(PPh_3)_2O_2 \xrightarrow{Bu^{\underline{t}}NH_2} Pt_4(PPh_3)_5$$
 (6)

The elemental analysis does not clearly distinguish between this [9] and other alternative formulations [10], and one of us has already discussed this point [9].

In the reactions with monoamines the palladium peroxo complex generally decomposed to palladium metal, and we had no evidence for the formation of characterizable products.

Conclusions

The platinum diamido derivatives (I)—(III) can be formulated either as derivatives of the metal in the +2 oxidation state having the amide as ligand (A), or as derivatives of the zerovalent metals and of the ortho-benzoquinonediimine (B):

Derivatives having the *ortho* [11] or *para-* [12] benzoquinonediimine as ligands are known. However

the X-ray structure of
$$Ni(\frac{NH}{NH})_2$$
 has shown only little α -dimine character [13], and polarographic measurements for $M(\frac{NH}{NH})_2$ $(M=Ni,\frac{NH}{NH})_2$

Pd, Pt) are in accordance with the metals being in a +2 oxidation state [14]. Structure (A) seems the most reasonable even for compounds (I)—(III), their spectroscopic properties and chemical reactivity being in agreement with such a formulation. Polarographic measurements for compound (I) in DMF solution did not show any reduction (but also no oxidation) of the organic ligand. Furthermore, bonding parameters

palladium(II) hydroquinone formulation [15], and this supports an analogous structure for (IV).

The dehydrogenation reactions of *ortho*-diamines with NiO₂ [6] or with Cu₂Cl₂ and dioxygen [16], lead to *cis*, *cis*-mucononitrile, probably *via* the intermediate formation of a bis-nitrene species.

In this type of reaction, ortho-benzoquinonedimine is also believed to be the initial, though transient, product [14]. Under our conditions this unstable molecule is stabilized by coordination to the metal, but as the anionic amide ligand, with formation of a stable, five membered metallacycle which prevents further dehydrogenation to the bis-nitrene species.

Several mechanisms can be considered for the deprotonation reaction of the ortho-diamines [6, 17] (eq. 3). It has been reported that the insertion reaction of organic carbonyl groups into the platinumoxygen bond of Pt(PPh₃)₂O₂ requires prior coordination of the substrate to the metal [18]. Prior coordination of the amine to the metal appears to be also necessary, since the coordinatively saturated peroxo complexes Ru(CO)₂(PPh₃)₂O₂, [Rh(PPh₃)₂-Cl(O₂)]₂, IrCl(CO)(PPh₃)₂O₂ and [Ir(Ph₂PCH₂CH₂-PPh₂)₂O₂] ⁺ do not react at room temperature even with the very reactive ortho-diamines. The intermediate Pt(PPh₃)₂O₂(amine) should then collapse to the final product. However, it has been recently reported that the catalytic oxidation of PR₃ by Pt(PR₃)₂O₂ in protic medium proceeds via the displacement of species such as HO₂ from the catalyst by a strong nucleophile like PR₃, and these species are the real oxidant of the uncomplexed PR₃ [19]. Thus only a kinetic [18] and spectroscopic [19] study could elucidate the true mechanism of the reaction of the amines reported here.

Experimental

All the reactions were carried out under nitrogen at room temperature with stirring, but work-up of the reaction mixtures was carried out in air unless otherwise stated. Ethyl ether was purified from peroxides and dried over sodium; ethanol was distilled. The starting complexes were prepared as described in the literature. I.r. spectra were obtained using a Perkin-Elmer 457 instrument. ¹H n.m.r. spectra were recorded on a Varian NV-14 instrument operating at 60 MHz with Me₄Si as internal standard. Melting points were determined on a Leitz Heiztischmikroskop. Elemental analyses were carried out by the Analytical Laboratories of Milan University. Conductivity data were obtained with a Philips PR 9500 conductivity bridge.

Pt (PPh₃)₂(
$$\searrow_{NH}$$
) (I)
Pt(PPh₃)₂O₂ (0.3 g) and \bigvee_{NH_2} (0.087 g)

were mixed in ethanol (20 ml). After one hr the deep red precipitate was filtered off, washed with ethanol and ethyl ether and dried in vacuo (ca. 75% yields).

Reaction between
$$Pd(PPh_3)_2O_2$$
 and \bigcirc NH₂

To a solution of \bigcirc NH₂ (0.18 g) in ethanol (10

ml) maintained at 10 °C, Pd(PPh₃)₂O₂ (0.5 g) was added. After one hr the green-black precipitate was

filtered off under nitrogen, washed with ethanol and n-hexane degassed with nitrogen, and dried *in vacuo*. The compound was stored under nitrogen. M.p. 161 °C (found: C, 66.73; H, 4.94; N, 4.07; calcd. for

Pu (PPh₃)₂(
$$\frac{NH}{NH}$$
) : C, 68.40; H, 4.89; N, 3.80).

To a solution of
$$0.0^{N_{12}}$$
 N_{12} N_{12} N_{12} N_{12} N_{12} N_{12} N_{12} N_{12} N_{12}

ethanol (13 ml), filtered under nitrogen from insoluble impurities, Pt(PPh₃)₂O₂ (0.15 g) was added. After one hr the violet precipitate was filtered off, washed repeatedly with ethanol and ethyl ether and dried *in vacuo*.

ethanol (30 ml), filtered under nitrogen from insoluble impurities, Pt(PPh₃)₂O₂ (0.15 g) was added. After 3 hr the brick red precipitate was filtered off, washed with a little ethanol and n-hexane and dried in vacuo.

Reactions between
$$Pt(PPh_3)_2O_2$$
 and $R = H, CH_3$

$$R = H$$

To a solution of CH_3 $O(0.065 g)$ in

ethanol (15 ml), filtered under nitrogen from insoluble impurities, Pt(PPh₃)₂O₂ (0.2 g) was added. After 2 hr the brick red precipitate was filtered off, washed repeatedly with ethanol and dried *in vacuo*. M.p. >240 °C (found: C, 61.05; H, 4.38; N, 3.13;

calcd. for
$$Pt(PPh_3)_2(< NH) \longrightarrow CH_3$$
). C_2H_50H : C, 61.0;

H, 4.9; N, 3.16). This compound shows $\nu_{\rm NH}$ = 3400 cm⁻¹, $\nu_{\rm C-N}$ = 1300 cm⁻¹ and $\lambda(\rm nm)$ = 370, in CHCl₃.

$$R = CH_2$$

To a solution of
$$_{CH_3}^{CH_3}$$
 \bigcirc $_{NH_2}^{NH_2}$ (0.036 g) in ethanol

(8 ml) filtered under nitrogen from insoluble impurities, Pt(PPh₃)₂O₂ (0.1 g) was added. After one hr the deep red precipitate was filtered off, washed

repeatedly with ethanol and n-hexane and dried in vacuo. M.p. >240 °C (found: C, 61.07; H, 4.73; N,

3.18; calcd. for
$$Pt(PPh_3)_2(\begin{cases} NH \\ NH \end{cases} CH_3) C_2H_5OH :$$

C, 61.4; H, 5.13; N, 3.13). This compound shows $\nu_{\rm NH} = 3400~{\rm cm}^{-1}$, $\nu_{\rm C-N} = 1300~{\rm cm}^{-1}$ and $\lambda({\rm nm}) = 377$ in CHCl₃. The same procedure was used for the

reaction between CH₃
$$\rightarrow$$
 NH₂ and Pt{P(C₆D₅)₃}₂-O₂.

$$Pt(PPh_3)_2(\bigcup_{0})$$
 (IV)

(a) To a solution of
$$\bigcirc_{OH}^{OH}$$
 (0.044 g) in ethanol

(10 ml) Pt(PPh₃)₂O₂ (0.15 g) was added. After one hr the yellow product was filtered off, washed with ethanol and dried *in vacuo*.

(b) To a suspension of cis-Pt(PPh₃)₂Cl₂ (0.26 g) in chloroform (20 ml), a solution of NaOH (330 mg)

and
$$\bigcirc$$
 (0.073 g) in methanol (20 ml) was

added. The mixture was stirred and refluxed for 30 min. The yellow precipitate was filtered off and washed with chloroform, ethanol and n-hexane. Its i.r. spectrum was identical with that of the complex prepared as described under (a).

$$\left[\Pr(PPh_{3})_{2}(\{NH_{2}\})\right]^{2} + \{BF_{4}^{-}\}_{2} \cdot H_{2}0 \quad (V)$$

To a suspension of (I) (0.12 g) in ethanol (5 ml), five drops of HBF₄ (40% solution in water) were added. The suspension immediately turned pink. After one hr the precipitate was filtered off, washed with water, ethanol, n-hexane and dried *in vacuo*.

When (V) (0.085 g) suspended in ethyl ether (10 ml) was treated with a solution of NaHCO₃ (0.036 g) in water (8 ml), a deep red precipitate was formed. After 3 hr it was filtered off, washed with water, then n-hexane and dried *in vacuo*. Its i.r. spectrum was identical to that of compound (I). The same reaction can also be carried out with KOH in ethanol, compound (I) being again obtained.

$$\left[P_{d}(PPh_{3})_{2}(\sqrt[NH_{2}]{NH_{2}})\right]^{2}(BF_{4}^{-})_{2}\cdot H_{2}O \quad (VI)$$

To a suspension of the product (0.1 g) of the reaction between $Pd(PPh_3)_2O_2$ and NH_2 in ethanol

(20 ml), 20 drops of HBF₄ (40% sol. in water) were added. The green suspension rapidly turned pink, After one hr the precipitate was filtered off, washed

with ethanol, ethyl ether, n-hexane and dried in vacuo. By reaction of (VI) with NaHCO₃ the starting material could not be reobtained.

$$\left[\Pr^{\text{Pr} \, (PPh_3)} {}_{2} (\begin{array}{c} {}_{NH_2} \\ {}_{NH_2} \end{array} \right]^{2} (BF_4^-)_{2} {}_{2} {}_{1} (VII)$$

To a suspension of (II) (0.069 g) in ethanol (7 ml), 20 drops of HBF₄ (40% solution in water) were added. After 15 hr the ochre precipitate was filtered off, washed with water, ethanol, n-hexane and dried in vacuo. By reaction of (VII) in ethanol with a solution of NaHCO₃ in water for one hr, compound (II) was readily reobtained.

$$\left[P_{1} \left(P_{1} \right)_{3} \left(\begin{array}{c} N_{1} \\ N_{1} \end{array} \right) \right]^{2} \left(B_{1} \right)_{3}^{2} \left(B_{1} \right)_{3}^{2} \left(V_{1} \right)$$

To a suspension of the product (0.17 g) of the reaction between $Pt(PPh_3)_2O_2$ and CH_3 NH_2 , NH_2 ,

in ethanol (10 ml) 4 drops of HBF₄ (40% solution in water) were added. The suspension turned immediately brown. After one hr the solution was evaporated to a small volume and on addition of ethyl ether a light brown precipitate was obtained. It was filtered off, washed with ethyl ether and dried in vacuo.

By reaction of (VIII) (0.18 g) in ethanol (10 ml) with a solution of NaHCO₃ (0.06 g) in water (10 ml), a deep red precipitate was obtained. After 3 hr it was filtered off, washed with ethanol, water, ethyl ether, n-hexane, and dried *in vacuo*. Its i.r. spectrum was identical to that of the starting material of the protonation reaction described above.

$$\left[\Pr{\text{PPh}_3} \right)_2 (\left\langle \Pr{\text{NH}_2} \right\rangle \bigcap \left(\Pr{\text{CH}_3} \right) \right]^{2+} (\text{BF}_4 \overline{\ \)}_2 \cdot \text{H}_2 \cdot 0 \quad \text{(IX)}$$

To a suspension of the product (0.15 g) of the reaction between $Pt(PPh_3)_2O_2$ and CH_3 O_4 O_5 O_6 O_8 $O_$

ethanol (7 ml), 8 drops of HBF₄ (40% solution in water) were added. After one hr the light brown precipitate was filtered off, washed with ethyl ether, n-hexane and dried *in vacuo*.

Reaction between (I) and HCl

Dry HCl was bubbled in ethanol (15 ml) for 5 min. Solid (1) (0.08 g) was added. After one hr the white-pink precipitate was filtered off and washed with ethanol, n-hexane and dried *in vacuo*. It was shown to be *cis*-Pt(PPh₃)₂Cl₂ by its i.r. spectrum.

On evaporation to dryness of the mother liquor of the reaction, a product with an i.r. spectrum identical to that of o-(NH₂)₂C₆H₄·2HCl was obtained.

The same procedure was used for the reaction of HCl with the product of the reaction between

$$Pt(PPh_3)_2O_2$$
 and CH_3 O_2 O_3 O_4 O_4 O_5 O_5 O_7 O_8 O_8

the salt of the ortho-diamine being isolated.

Reaction between Pt(PPh3)2O2 and But-NH2

To Pt(PPh₃)₂O₂ (0.25 g) in ethanol (10 ml), Bu^t-NH₂ (5 ml) was added. The mixture was refluxed for 1.5 hr. After cooling the brown-red precipitate was filtered off and dried *in vacuo*. Found: C, 51.08; H, 3.35; N, nil. For the formulation of this product see text.

Reaction between Pt(PPh3)2O2 and NH3

To wet benzene (35 ml) saturated with ammonia, Pt(PPh₃)₂O₂ (0.3 g) was added. The solution was left in a nitrogen atmosphere for 5 hr under stirring. A small amount of undissolved material was filtered off under nitrogen and the solution was evaporated to a small volume. By addition of ethyl ether a pale brown precipitate was obtained. It was filtered off under nitrogen and washed repeatedly with ethyl ether. In the mother liquor of the reaction the presence of triphenylphosphine oxide was detected.

References

- 1 J. Chatt and G. A. Rowe, J. Chem. Soc., 4019 (1962).
- 2 S. Cenini and G. La Monica, *Inorg. Chim. Acta*, 18, 279 (1976) and references therein.
- 3 G. La Monica and S. Cenini, *Inorg. Chim. Acta*, 29, 183 (1978).
- 4 G. La Monica, S. Cenini, F. Porta and M. Pizzotti, J. Chem. Soc. Dalton, 1777 (1976).
- 5 S. Cenini, M. Pizzotti, F. Porta and G. La Monica, J. Organometal. Chem., 125, 95 (1977).
- 6 M. V. George and K. S. Balachandran, Chem. Rev., 75, 491 (1975).
- 7 S. Cenini, R. Ugo and G. La Monica, J. Chem. Soc. A, 416 (1971).
- 8 K. Joekers, *Nitrogen*, N 50, 27 (1967).
- 9 R. Ugo, S. Cenini, M. F. Pilbrow, B. Deibl and G. Schneider, *Inorg. Chim. Acta*, 18, 113 (1976).
- N. J. Taylor, P. C. Chieh and A. J. Carty, Chem. Comm., 448 (1975).
- 11 G. Christoph and V. L. Goedken, J. Am. Chem. Soc., 95, 3869 (1973).
- 12 K. Rieder, U. Hauser, H. Siegenthaler, E. Schmidt and A. Ludi, *Inorg. Chem.*, 14, 1902 (1975).
- 13 G. Swartz Hall and R. H. Soderberg, *Inorg. Chem.*, 7, 2300 (1968).
- 14 A. L. Balch and R. H. Holm, J. Am. Chem. Soc., 88, 5201 (1966) and references therein.
- C. G. Pierpont and H. H. Downs, *Inorg. Chem.*, 14, 343 (1975).
- 16 J. Tsuji, H. Takayanagi and Y. Toshida, Chem. Letters, 147 (1976).
- 17 M. Hedayatullah, Bull. Chem. Soc. France, 2957 (1972).
- 18 G. M. Zanderighi, R. Ugo, A. Fusi and Y. Ben Taarit, Inorg. Nucl. Chem. Letters, 12, 729 (1976).
- 19 A. Sen and J. Halpern, J. Am. Chem. Soc., 99, 8337 (1977).