

Available online at www.sciencedirect.com

Tetrahedron

Tetrahedron 64 (2008) 4332-4346

www.elsevier.com/locate/tet

Diastereoselective synthesis of highly functionalized fluoroalkene dipeptide isosteres and its application to Fmoc-based solid-phase synthesis of a cyclic pentapeptide mimetic

Tetsuo Narumi, Kenji Tomita, Eriko Inokuchi, Kazuya Kobayashi, Shinya Oishi, Hiroaki Ohno, Nobutaka Fujii*

Graduate School of Pharmaceutical Sciences, Kyoto University, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan

Received 23 January 2008; received in revised form 22 February 2008; accepted 22 February 2008 Available online 4 March 2008

Abstract

A diastereoselective and divergent method for synthesis of a highly functionalized (Z)-fluoroalkene dipeptide isosteres has been developed. The key feature of this synthetic method is an efficient one-pot reaction involving reduction/asymmetric alkylation via transmetalation, which produces *trans*-amide type (Z)-fluoroalkenes flanking two stereogenic centers in high yields, with excellent (Z)-selectivity and diastereoselectivity. Practical Fmoc-based solid-phase synthesis of a specific CXCR4 antagonistic pseudopeptide **25** containing (Z)-fluoroalkene isostere is also described.

© 2008 Elsevier Ltd. All rights reserved.

Keywords: Fluoroalkene; Peptide isosteres; Transmetalation; CXCR4 antagonist

1. Introduction

Replacement of native hydrolyzable peptide bonds with non-hydrolyzable mimetics is an established approach toward overcoming the major limitations of peptides, including poor bioavailability and short physiological half-life due to rapid proteolysis, which limit their use as therapeutic or chemical probes.¹ Furthermore, conformationally restricted analogs of biologically active peptides represent an attractive structural motif leading to the more effective agents.

Alkene-type dipeptide isosteres (ADIs),² whose design is based on the partial double-bond character of the peptide bond in its most stable conformation, have been thought to be ideal dipeptide mimetics. ADIs possessing an (*E*)- or (*Z*)-alkene unit³ with increased lipophilicity relative to native dipeptides are resistant to enzymatic cleavage. Because of their fixed *cis/trans* conformation, ADIs can be used as chemical probes for determining the bioactive conformation of peptide bonds,^{4a,b} which is difficult by other means such as NMR analysis or X-ray diffraction, and for the precise functional analysis of the role of each peptide bond⁵ (Fig. 1).

Figure 1. Native peptide bond and its corresponding isosteres.

^{*} Corresponding author. Tel.: +81 75 753 4551; fax: +81 75 753 4570. *E-mail address:* nfujii@pharm.kyoto-u.ac.jp (N. Fujii).

Over the past 15 years, we have engaged in the syntheses of several types of ADIs and have developed diastereoselective methods toward synthesis of (*E*)-Alkene Dipeptide Isosteres (EADIs),^{2a} (*Z*)-Alkene Dipeptide Isosteres (ZADIs),³ Trisubstituted Alkene Dipeptide Isosteres (TADIs),^{4a,b} and Xaa– Pro isosteres⁶ utilizing organocopper-mediated S_N2' alkylation as a key reaction. These methodologies have been applied to the preparation of biologically active peptidomimetics.^{2c,3e,4a} The studies have revealed that a simple alkene unit is not always sufficient for replacement of peptide bond probably because of (1) the lack of a hydrogen-bonding site, (2) a smaller dipole moment [$\mu_{peptide bond}$ =3.6 D vs μ_{alkene} =0.1 D], and (3) flexible ϕ - and ψ -angle rotations due to the lack of steric interactions between the carbonyl oxygen and the side chain on the β -carbon.

On the other hand, in 1986, Abraham et al. reported a theoretical and crystallographic study of fluoroalkene as peptide bond analog.^{7a} They have shown that the fluoroalkene unit could be a more effective peptide bond analog than a simple alkene unit due to the presence of a highly electronegative fluorine substituent with a larger dipole moment [$\mu_{F-alkene}$ = 1.4 D].⁸ The van der Waals radii of the fluorine atom (1.47 Å) is sufficiently close to that of the oxygen atom (1.52 Å),⁹ thus it favors the induction of the steric restriction of ϕ - and ψ -dihedral angles. A computational study with water molecules has revealed that the fluoroalkene moiety can be involved in hydrogen-bonding interactions.¹⁰

In spite of their potency as dipeptide mimetics, difficulties in the stereoselective and divergent synthesis of fluoroalkene isosteres have hampered their application to biologically active peptides.^{7b,d,f,12e,g} As such, there is an upsurge of interest in the development of efficient methodologies to synthesize α substituted fluoroalkene isosteres. For the synthesis of fluoroalkene isosteres, it is necessary to stereoselectively construct a (*Z*)- or (*E*)-fluoroalkene unit as well as to control the configuration of two stereogenic centers at the α - and δ -positions. It is more desirable to introduce a variety of 'functionalized' alkyl side chains, which play important roles in bioactivity.

Although numerous synthetic approaches to fluoroalkene isosteres have been developed including classical olefination reactions such as the Peterson reaction,^{7c,e} the aldol condensation,^{7d} and the Horner–Wadsworth–Emmons reaction,^{7f} only a few examples of diastereoselective synthesis of FADIs have been reported to date. Recently, Pannecoucke's group have provided a practical route for synthesis of FADIs using a temperature-controlled Negishi-coupling reaction¹¹ and asymmetric reductive amination of α -fluoroenones^{7g} as key transformations. This approach has significant advantages in synthesizing both (*E*)- and (*Z*)-isomer.

Alternatively, we¹² and Taguchi's group¹³ have independently developed effective approaches to (*Z*)-fluoroalkene isosteres via a reductive defluorination reaction of α , β -enoates **1** possessing two fluorine atoms at the γ -positions, in which organocopper reagents derived from CuX (X=CN or I) and the MeLi·LiBr complex were utilized for carbon–fluorine bond cleavage via a single electron transfer mechanism^{12d,14,15} (Scheme 1). In these reactions, the dienolate intermediates **2**

can be trapped in situ by an alkyl halide, resulting in the formation of α -substituted fluoroalkene isosteres **3a**.^{12b} The reaction with samarium diiodide (SmI₂) in the presence of *t*-BuOH easily provides fluoroalkene isosteres **3b**, and the replacement of *t*-BuOH with carbonyl compounds such as aldehydes or ketones provides α -substituted fluoroalkene isosteres **3c** via aldol reactions of Sm dienolates.^{12d} Although this reductive defluorination is useful for the regio- and stereoselective formation of the (*Z*)-fluoroalkene unit, the method has not addressed the stereoselective construction of the α -side chain.

Scheme 1. Synthesis of fluoroalkene dipeptide isosteres by reductive defluorination/enolate trapping methodology.

In this paper, we describe a diastereoselective, divergent, and practical approach for the synthesis of highly functionalized fluoroalkene isosteres utilizing an efficient one-pot reaction involving organocopper-mediated reduction/asymmetric alkylation via transmetalation. Its application to Fmoc-based solid-phase peptide synthesis (SPPS) of a fluoroalkene isostere-containing potential CXCR4 antagonist is also presented.

2. Results and discussion

2.1. Diastereoselective synthesis of L-Val–(D/L)-Xaa type (Z)-fluoroalkene dipeptide isosteres by one-pot reaction involving organocopper-mediated reduction/asymmetric alkylation via transmetalation

On the basis of our previous study on reductive defluorination shown in Scheme 1,^{12b,d} we envisioned extending this approach to the diastereoselective synthesis of (*Z*)-fluoroalkene isosteres as depicted in Scheme 2. It was our expectation that formation of the fluoroalkene-containing dienolates carrying a chiral auxiliary by organocopper- or SmI₂-mediated reduction of γ , γ -difluoro- α , β -unsaturated carbonyl compounds **4**, followed by trapping with electrophiles, would result in regio- and stereoselective construction of (*Z*)-fluoroalkene isosteres **5**. This synthetic strategy can be extended to diastereoselective syntheses of (L,L), (L,D), (D,L), and (D,D)-type isosteres by simply using an appropriate starting material and a chiral auxiliary. Introduction of various alkyl groups at the α -position in the final stage would allow diversity-oriented synthesis of (*Z*)-fluoroalkene isosteres.

Scheme 2. Planned diastereoselective synthesis of (Z)-fluoroalkene dipeptide isosteres.

The synthetic sequence leading to the key *N*-enoyl sultam intermediates **12** is illustrated in Scheme 3. The known α, α -di-fluoro- β -amino ester **9**,^{12d} prepared from isobutyl aldehyde **7** by a Rh-catalyzed Reformatsky–Honda reaction,¹⁶ was subjected to hydrogenolysis with Pd(OH)₂/C–H₂ in the presence of (Boc)₂O, affording the Boc-protected ester **10**.^{12d} The resulting ester **10** was converted to the desired *N*-enoyl sultam **12a** in 89% yield, by a sequence of reactions involving reduction by DIBALH and Horner–Wadsworth–Emmons coupling with (*S*)-*N*-[(diethoxyphosphono)acetyl]camphorsultam **11a**,¹⁷ with exclusive *E*-selectivity. The diastereomer **12b** was also prepared using (*R*)-sultam derivative **11b** in 96% yield.

Scheme 3. Synthesis of key substrates **12** for one-pot reduction/asymmetric alkylation.

In order to achieve consecutive one-pot reduction/asymmetric alkylation, the following two-step sequence was needed: (1) the reduction of **12a** to give the Li or Cu dienolate intermediate; (2) trapping of the dienolate intermediate with an alkyl halide in a regio- and stereoselective fashion. However, to the best of our knowledge, there is no example of Table 1

Reduction of γ,γ -difluoro- α,β -N-enoyl sultam 12a with organocopper reagents and $Sm {I_2}^a$

Entry	Reagents ^b	Additives (equiv)	Yield ^d (%)
1	SmI ₂ ^c	_	e
2	Me ₃ CuLi ₂ ·LiI	—	52
3	Me ₂ Cu(CN)Li ₂	—	74
4	Me2CuLi · LiI	_	95
5	Me ₂ CuLi · LiI	HMPA (10)	85
6	Me2CuLi · LiI	TMSCl (4)	81
7	Me ₂ CuLi · LiI	$BF_3 \cdot OEt_2$ (4)	87

^a Unless otherwise stated, the reactions were carried out with 4 equiv of the reagent at -78 °C for 30 min.

^b Organocopper reagents include other Li salts (LiCl and/or LiBr).

^c 0 °C, 60 min, with 6 equiv of SmI_2 .

^d Isolated yield.

^e A mixture of unidentified compounds was obtained.

the reduction of N-enoyl sultam, which has a different electron density compared with the corresponding enoates with a single electron reductant. In this regard, we first examined the organocopper- or SmI₂-mediated reduction of **12a** without any alkyl halides (Table 1). We previously reported that the reaction of the enoates with SmI2 gave better results than using organocopper reagents.^{12d} The reduction of the enoyl sultam **12a** with SmI₂ only afforded a mixture of unidentified products (entry 1). In contrast, organocopper reagents were effective in producing the reduced product 13^{7h} (entries 2–7): the reaction with a higher order cuprate (Me₃CuLi₂·LiI·3LiBr) produced 13 in moderate yield (entry 2).¹⁸ The reactions using either the cyano Gilman reagent (Me2CuLi·LiCN·2LiBr) or the Gilman reagent (Me₂CuLi·LiI·2LiBr), which shows lower electron-donating ability,¹⁵ proceeded more smoothly to give **13** with yields of 74% and 95%, respectively (entries 3 and 4). We examined the introduction of additives such as HMPA, TMSCl, and BF₃·OEt₂; however, no obvious differences in reactivity or in chemical yield were observed (entries 5-7). Based on these results, the Gilman reagent was chosen as a single electron reductant.¹⁹

Next, trapping of the Cu or Li dienolate intermediate **14a**, generated from **12a** by organocopper-mediated reduction with methyl iodide to construct a stereogenic center at the α -position (Scheme 4) was investigated. Direct treatment of **14a** with methyl iodide yielded only a complex mixture. As this unsuccessful result might be attributed to the low reactivity of Cu or Li dienolate **14a** toward alkylation, the next step was to use the more reactive Sn dienolate.²⁰ After reduction of

Scheme 4. Diastereoselective synthesis of L-Val–L-Ala (Z)-fluoroalkene isostere by one-pot reduction/asymmetric alkylation via transmetalation.

Table 2

Diastereoselective synthesis of (Z)-fluoroalkene isosteres by one-pot organocopper-mediated reduction/transmetalation/asymmetric alkylation

Entry	Electrophiles	Substrates	Products ^a (%)	% de ^b
1	MeI	12a	F Me NHBoc O 15a (93) ^c	>95
2	MeI	12b	F Me NHBoc O 15b (69) ^c	95
3	BnBr	12a	F Bn Xs NHBoc O 16a (93)°	95
4	BnBr	12b	F Bn NHBoc O 16b (77) ^c	91
5	Br ∕ CO₂t-Bu	12a	F NHBoc 17a (80) ^c	>95
6	Br∕∕CO₂ <i>t</i> -Bu	12b	F NHBoc 17b (75) ^c CO ₂ t-Bu X _R N	92
7	BrCO ₂ Me	12a	d	_
8	MeO	12b	COMe F NHBoc O 18b (77) ^c	93
9	Br	12a	F NHBoc 19a (99) ^c	>95

(continued on next page)

Table 2	(continued))
---------	-------------	---

^a Isolated yield.

^c A trace amount of either γ -alkylated products or *E*-isomer was detected by RP-HPLC.

^d Reduced product **13** was obtained.

12a with Me₂CuLi·LiI·2LiBr, sequential treatment with HMPA, triphenyltin chloride, and methyl iodide, regioselectively produced an α -methyl fluoroalkene isostere **15a** in 93% yield with exclusive Z-selectivity. RP-HPLC analysis showed that the α -methylation proceeded with >95% de.²¹

With these results in hand, the scope of this one-pot reduction/asymmetric alkylation via transmetalation with various alkyl halides was examined (Table 2). In all cases, good to excellent yields of α -alkylated fluoroalkene isosteres were obtained with excellent diastereo- and Z-selectivity. Successive treatments of N-enoyl sultam 12a with the organocopper reagent, HMPA, triphenyltin chloride, and benzyl bromide proceeded smoothly to yield L-Val-L-Phe isostere 16a in 93% yield and 95% de (entry 3). This one-pot strategy also showed comparable reactivity and selectivity to the corresponding (R)-sultam 12b to provide L-Val-D-Phe isostere 16b in 77% yield and 91% de (entry 4). The use of tert-butyl bromoacetate as an electrophile produced an L-Val-L-Asp(Ot-Bu) isostere 17a in 80% isolated yield and >95% de (entry 5); also (L,D)-type 17b in 75% isolated yield and 92% de (entry 6). For the synthesis of the L-Val-D-Glu fluoroalkene isostere, however, use of methyl 3-bromopropionate gave reduced product 13 with no alkylated product (entry 7). Treatment of dienolate 14b with *p*-methoxybenzyl bromide

proceeded smoothly to give an L-Val-D-Tyr(Me) fluoroalkene isostere 18b in 77% isolated yield and 93% de (entry 8). As expected, this one-pot strategy can also be applied to the synthesis of fluoroalkene isosteres of unnatural amino acids. Trapping of the dienolates 14a and 14b with allyl bromide afforded L-Val-L-Gly(allyl) isostere 19a (99% yield, >95% de, entry 9) and (L,D) isostere 19b (86% yield, 91% de, entry 10), respectively. In a similar manner, the reaction of dienolates 14a with 1-bromo-2-methyl-2-propene (methallyl bromide) also yielded an L-Val–L-(γ' -dehydro)Leu isostere 20a in 99% yield and >95% de (entry 11). The use of 2-(bromomethyl)naphthalene and methyl 4-bromocrotonate stereoselectively gave the corresponding α -alkylated fluoroalkene isosteres 21a and 22a (entries 12 and 13). Synthesis of a fluoroalkene isostere 23b bearing an aryl bromide moiety is of significant synthetic value with respect to the further elaboration. For such purposes, we attempted to trap the dienolates 14b with *p*-bromobenzyl bromide, chemoselectively affording the corresponding isostere 23b in 71% yield and 92% de (entry 14).

The de of each product was determined by RP-HPLC. Fluoroolefinic geometries of all the products were established by ¹H NMR,²² and the absolute configurations of the alkyl groups at the α -position were determined by circular dichroism

^b Determined by RP-HPLC of purified products.

FCN001 (**25**): $X = -\psi[(Z)-CF=CH]$ -

Figure 2. FC131 and its cyclic fluoroalkene pseudopeptide (FCN001). Nal=L-3-(2-naphthyl)alanine.

measurements with an empirical rule after converting to the corresponding methyl esters.²³

2.2. Diastereoselective synthesis of L-Arg–L-Arg (Z)–fluoroalkene isosteres and its application to a cyclic pseudopeptide analog of specific CXCR4 antagonist, FC131

Efforts were then made to apply the developed methodology to synthesize a fluoroalkene-containing pseudopeptide. Previously, bioactivity investigations replacing the L-Arg–L-Nal and L-Nal–Gly peptide bonds of the specific CXCR4 antagonistic peptide, FC131 [*cyclo*(–D-Tyr-Arg-Arg-Nal-Gly–)] **24**,²⁴ were carried out.^{2c} Replacement of the amide-bonds with (*E*)-alkene isosteres led to a significant loss of CXCR4 antagonistic activity. On the other hand, the importance of the amide bond between Arg and Arg has not been studied. To this end, FCN001 (**25**) was designed bearing an Arg-Arg fluoroalkene isostere, which is a mimetic of **24** (Fig. 2).

Our synthesis began with commercially available 4-(*tert*butyldimethylsilyloxy)butan-1-ol **26** (Scheme 5). Swern oxidation of the alcohol **26**, and subsequent Reformatsky—Honda reaction gave ester **27** in a synthetically acceptable yield (39%). Cleavage of the chiral auxiliary of **27** by hydrogenation in the presence of $(Boc)_2O$, reduction of the resulting Boc-protected ester **28** with DIBALH, and coupling with (*S*)-sultam derivative **11a** produced the desired sultam **29**.

Scheme 5. Synthesis of N-enoyl sultam 29.

One-pot reaction of sultam **29** with allyl bromide in a larger scale (>1500 mg) yielded the desired α -allyl sultam **30** (Scheme 6). Despite its excellent diastereoselectivity (>95% de), the chemical yield of the one-pot reaction was relatively low compared with the results shown in Table 2. Initially,

Scheme 6. One-pot reaction of N-enoyl sultam 29.

we speculated that the TBS group would be removed by the fluoride anion, which is generated by organocopper-mediated reduction. However, the addition of TMSCl to trap the fluorine anion was not effective for improvement of the yield. Considering that the good to high yields shown in Table 2 might be attributed to the relatively small scale of the reaction (<100 mg), we next attempted the reaction under more dilute conditions. Slow addition of sultam **29** (0.01 M in THF) to Me₂CuLi·LiI·2LiBr, subsequent transmetalation, and asymmetric alkylation proceeded readily to give the α -allyl sultam **30** (97% yield, >95% de).

Next, synthesis of Fmoc-protected isostere 34 having a 3hydroxypropyl group was investigated (Scheme 7). The α -allyl sultam 30 was subjected to disiamylborane [(Sia)₂BH]-mediated hydroboration, readily producing the corresponding alkyl borane compound. Mild oxidation conditions were required for conversion of the alkyl borane to the corresponding alcohol, since the chiral auxiliary would be cleaved easily by hydroperoxide anion. The use of aqueous 20% AcOK and 50% H₂O₂ in THF was entirely successful, chemoselectively effecting the desired conversion to give the desired alcohol 31 in 69% isolated yield on a small scale (<100 mg). However, upon increasing the reaction scale (2000 mg), the chiral auxiliary was cleaved to produce the corresponding hydroxy acid in 44% yield, along with the desired alcohol 31 in 30% yield. Under more dilute THF conditions, with slow addition of the minimum amount of aqueous 20% AcOK and 50% H₂O₂ provided **31** in good conversion. To employ Fmoc-based SPPS, the conversion of N-Boc to the N-Fmoc group was attempted. The alcohol 31 was protected with TBSCl in CH_2Cl_2 to yield the TBS ether **32**, which was converted to the corresponding acid under basic conditions without epimerization at the α -carbon. The resulting acid 33 was subjected to several conditions to remove the Boc group in the presence of TBS ethers; however, all attempted conditions [TFA, 0 °C;

Scheme 7. Conversion of α -allyl sultam **30** to Fmoc-protected fluoroalkene isostere.

HCl/AcOEt, $0 \,^{\circ}C$;²⁵ ZnBr₂;²⁶ etc.] produced the desilylated products with no detectable amount of the desired amine.

Attention was next turned to synthesis of an L-Orn–L-Orn isostere **36** by introduction of two nitrogen functionalities (Scheme 8), which could be converted to guanidino groups using 1*H*-pyrazole-1-carboxamidine hydrochloride. Thus, bis-TBS ether **32** was cleaved readily by aqueous $3.28 \text{ N H}_2\text{SiF}_6$ to give the diol, which was subsequently subjected to the Mitsunobu reaction with NsNHBoc,²⁷ leading to the formation of bis(sulfonamide) **35** in 85% yield. The sulfonamide **35** was converted to the corresponding acid under basic conditions, which was subjected to cleavage of the three Boc groups with TFA followed by Fmoc protection to give desired isostere **36** with the L-Orn–L-Orn sequence (94% in 3 steps).

Scheme 8. Synthesis of Fmoc-protected Orn-Orn fluoroalkene isostere 36.

Finally, synthesis of a cyclic pseudopeptide utilizing Fmocbased SPPS and well-established cyclic peptide synthesis protocols²⁸ was investigated (Scheme 9). Fmoc-amino acidcontaining fluoroalkene isostere **36** was coupled onto the resin **38**. A protected peptide resin **39** was treated with 1,1,1,3,3,3hexafluoro-2-propanol (HFIP)– CH_2Cl_2 (3:7) to afford the side chain-protected pseudopeptide **40**. Cyclization of linear

peptide **40** with diphenylphosphoryl azide (DPPA)²⁹ and NaHCO₃ in DMF, led to the formation of protected cyclic pseudopeptide **41** with a 64% isolated yield based on the initial resin-loading. Completion of the synthesis of FCN001 thus required three further transformations: removal of the *t*-Bu group with aqueous 95% TFA, deprotection of bis-Ns groups with β -mercaptoethanol and DBU in DMF,³⁰ and guanidination of the resulting diamine. These functional group modifications thus provided the expected cyclic pseudopeptide FCN001 **25** bearing an L-Arg–L-Arg fluoroalkene isostere in 8% overall yield from **41**. During the synthesis of **25** via Fmoc-base SPPS, cyclization, deprotection, and guanidination, neither isomerization of double bonds nor epimerization of stereogenic centers was detected.

3. Conclusion

In conclusion, we have developed an effective one-pot methodology for the diastereoselective synthesis of (Z)-fluoroalkene dipeptide isosteres, which are potential *trans*-peptide bond mimetics. This synthetic procedure consists of three successive steps: (1) organocopper-mediated reduction of N-enoyl sultam bearing two fluorine atoms at the γ -position, (2) transmetalation of the Li or Cu dienolate intermediate to the more reactive tin dienolates, and (3) Oppolzer sultam-assisted stereoselective trapping of the dienolate intermediate with alkyl halides. Our methodology features smooth *a*-alkylation to produce fluoroalkene isosteres in good to excellent yields with high diastereoselectivity. Since a broad range of reactive alkyl halides can be used to trap the tin dienolate intermediates, many natural and unnatural amino acid-containing isosteres can be prepared. Moreover, cyclic pseudopeptide 25, which contains the L-Arg-L-Arg isostere, was synthesized utilizing Fmoc-based SPPS with no detectable quantity of the epimerized product at the α -position. To the best of our knowledge, this is the first example successfully applying fluoroalkene isosteres with stereogenic centers at both the α - and the δ position to Fmoc-based SPPS. A biological evaluation of FCN001 is currently underway and will be reported in due course.

4. Experimental

4.1. General

¹H NMR spectra were recorded using a JEOL AL-400 and JEOL ECA-500 spectrometer. Chemical shifts are reported in δ (ppm) relative to TMS (in CDCl₃) or solvent peak (in D₂O, CD₃OD) as internal standard. ¹³C NMR spectra were recorded using a JEOL AL-400 and JEOL ECA-500, and referenced to the residual CHCl₃ signal. ¹⁹F NMR spectra were recorded using a JEOL AL-400 and JEOL ECA-500, and referenced to the residual CFCl₃ signal (δ_F 0.00 ppm). Exact mass (HRMS) spectra were recorded on a JMS-HX/HX 110A mass spectrometer. Optical rotations were measured with a JASCO sodium automatic polarimeter P-1020. Infrared (IR) spectra were obtained on a JASCO FT/IR-4100 FT-IR spectrometer with

JASCO ATR PRO410-S. For flash chromatography, Wakosil C-300, C-300E, and silica gel 60H (silica gel for thin-layer chromatography, Merck) were employed.

4.2. (5S,2E)-5-[N-(tert-Butoxycarbonyl)amino]-4,4-difluoro-6-methylhept-2-enoyl (S)-sultam (**12a**)

To a solution of the ester 10^{12d} (687 mg, 2.00 mmol) in CH₂Cl₂ (20 mL) at -78 °C under argon was added dropwise a solution of DIBALH in toluene (0.93 M, 3.44 mL, 3.20 mmol), and the mixture was stirred for 2 h at -78 °C. The reaction was quenched with aqueous 0.5 N Rochelle salt and extracted with Et₂O. The extract was washed with brine and dried over MgSO₄. Concentration under reduced pressure gave the aldehyde as an oil, which was used immediately in the next step without purification. To a stirred solution of (S)-D-N-(diethoxyphosphonoacetyl)camphorsultam (970 mg, 2.46 mmol) in CH₃CN (15 mL) at 0 °C under argon were added LiCl (112 mg, 2.60 mmol) and *i*-Pr₂NEt (452 µL, 2.60 mmol). After stirring for 30 min, a solution of the above aldehyde in CH₃CN (5 mL) was added to the mixture at 0 °C, and the mixture was stirred for 2 h at 0 °C and for 12 h at room temperature. The reaction was quenched with saturated NH₄Cl and extracted with Et₂O. The extract was washed with brine and dried over MgSO₄. Concentration under reduced pressure followed by flash chromatography over silica gel with n-hexane-AcOEt (5:1) gave the title compound 12a (845 mg, 89% yield) as a colorless oil: $[\alpha]_D^{23} - 73.6$ (c 1.05, CHCl₃); IR (ATR): 3376 (NHCO), 1712 (CO), 1686 (CO), 1330 (NSO₂), 1164 (NSO₂); ¹H NMR (400 MHz, CDCl₃) δ 0.90–0.99 (m, 6H), 0.99 (s, 3H), 1.17 (s, 3H), 1.32-1.49 (m, 2H), 1.43 (s, 9H), 1.90-1.98 (m, 3H), 2.04-2.17 (m, 3H), 3.43-3.55 (m, 2H), 3.92-4.03 (m, 2H), 4.70 (d, J=10.5 Hz, 1H), 6.87 (dt, J=15.4, 11.5 Hz, 1H), 7.01 (d, J=15.4 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 16.6, 19.8, 20.7, 20.8, 26.4, 27.3, 28.2 (3C), 32.9, 38.3, 44.7, 47.8, 48.7, 53.0, 58.2 (t, *J*=24.8 Hz), 65.1, 79.9, 120.1 (t, J=246.6 Hz), 124.9 (t, J=7.9 Hz), 138.4 (t, J=26.5 Hz), 155.7, 162.2; ¹⁹F NMR (376 MHz, CDCl₃) δ -107.4 (dt, J=249.7, 11.9 Hz), -105.3 (dt, J=251.0, 13.4 Hz); HRMS (FAB), m/z calcd for $C_{23}H_{37}F_2N_2O_5S$ ([M+H]⁺) 491.2391, found 491.2385.

4.3. (5S,2E)-5-[N-(tert-Butoxycarbonyl)amino]-4,4-difluoro-6-methylhept-2-enoyl (R)-sultam (12b)

By use of a procedure similar to that described for the preparation of (*S*)-sultam derivative **12a**, the ester **10** (687 mg, 2.00 mmol) was converted into the title compound **12b** (913 mg, 96% yield) as a colorless oil: $[\alpha]_D^{24}$ +44.7 (*c* 1.14, CHCl₃); IR (ATR): 3400 (NHCO), 1709 (CO), 1684 (CO), 1334 (NSO₂), 1165 (NSO₂); ¹H NMR (400 MHz, CDCl₃) δ 0.92–1.00 (m, 6H), 0.98 (s, 3H), 1.17 (s, 3H), 1.35–1.47 (m, 2H), 1.43 (s, 9H), 1.86–1.98 (m, 3H), 2.07–2.18 (m, 3H), 3.43–3.55 (m, 2H), 3.91–4.03 (m, 2H), 4.68 (d, *J*=11.0 Hz, 1H), 6.89 (dt, *J*=15.4, 11.0 Hz, 1H), 7.01 (d, *J*=15.4 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 16.8, 19.8, 20.7, 20.8, 26.4, 27.3, 28.2 (3C), 32.8, 38.3, 44.6, 47.8,

48.7, 53.0, 58.1 (t, J=25.7 Hz), 65.1, 80.0, 120.1 (t, J=246.2 Hz), 124.8 (t, J=8.3 Hz), 138.5 (t, J=26.1 Hz), 155.7, 162.2; ¹⁹F NMR (376 MHz, CDCl₃) δ -107.5 (dt, J=249.7, 14.0 Hz), -105.5 (dt, J=252.4, 11.4 Hz); HRMS (FAB), m/z calcd for C₂₃H₃₇F₂N₂O₅S ([M+H]⁺) 491.2391, found 491.2398.

4.4. General procedure for one-pot reduction/asymmetric alkylation via transmetalation. synthesis of (2R,5S,3Z)-5-[N-(tert-butoxycarbonyl)amino]-4-fluoro-2,6-dimethylhept-3-enoyl (S)-sultam (15a)

To a suspension of CuI (64.0 mg, 0.335 mmol) in THF (1 mL) at -78 °C under argon was added dropwise a solution MeLi·LiBr complex in Et₂O (1.5 M, 0.45 mL, of 0.670 mmol), and the mixture was stirred for 10 min at 0 °C. To the solution of the above organocopper reagent at -78 °C was added dropwise a solution of the N-enovl sultam 12a (40.0 mg, 0.0815 mmol) in THF (1.5 mL). The mixture was stirred for 30 min at -78 °C and HMPA (233 μ L, 1.34 mmol) was added dropwise to the mixture. After stirring for 30 min at -78 °C, a solution of triphenyltin chloride (64.6 mg, 0.168 mmol) in THF (1.5 mL) was added dropwise, and the mixture was then stirred for 30 min at -40 °C. Methyl iodide (95 µL, 0.670 mmol) was added dropwise and the mixture was stirred for 20 h at -40 °C. The reaction was quenched at -40 °C by addition of a 1:1 saturated NH₄Cl-28% NH₄OH solution (4 mL) and the mixture was stirred at room temperature for additional 30 min. The mixture was extracted with Et₂O and the extract was washed with brine and dried over MgSO₄. Concentration under reduced pressure followed by flash chromatography over silica gel with n-hexane-AcOEt (5:1) gave the title compound 15a (36.9 mg, 93% yield) as a colorless oil: $[\alpha]_D^{24}$ -95.5 (c 0.945, CHCl₃); IR (ATR): 3370 (NHCO), 1698 (CO), 1333 (NSO₂), 1165 (NSO₂); ¹H NMR (400 MHz, CDCl₃) δ 0.92–0.94 (m, 6H), 0.97 (s, 3H), 1.16 (s, 3H), 1.19-1.41 (m, 2H), 1.33 (d, J=7.1 Hz, 3H), 1.44 (s, 9H), 1.81-1.96 (m, 4H), 2.02-2.06 (m, 2H), 3.42-3.52 (m, 2H), 3.86-3.97 (m, 1H), 3.89 (t, J=6.1 Hz, 1H), 4.12–4.19 (m, 1H), 4.70 (d, J=9.8 Hz, 1H), 5.02 (dd, J=37.8, 9.0 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 18.4, 19.3, 19.8, 20.8 (2C), 26.4, 28.3 (3C), 30.4, 32.8, 35.9, 38.3, 44.6, 47.7, 48.4, 53.0, 57.4 (d, J=26.5 Hz), 65.0, 79.6, 105.9 (d, J=11.6 Hz), 155.7, 157.4 (d, J=251.6 Hz), 173.8; ¹⁹F NMR (376 MHz, CDCl₃) δ -119.63 (dd, J=37.8 22.8 Hz); HRMS (FAB), m/z calcd for $C_{24}H_{40}FN_2O_5S$ ([M+H]⁺) 487.2642, found 487.2636.

4.5. (2S,5S,3Z)-5-[N-(tert-Butoxycarbonyl)amino]-4-fluoro-2,6-dimethylhept-3-enoyl (R)-sultam (15b)

By use of a procedure similar to that described for the preparation of Boc–L-Val–L-Ala FADI derivative **15a**, the (*R*)-sultam derivative **12b** (40.0 mg, 0.0838 mmol) was converted into the title compound **15b** (28.0 mg, 69% yield): $[\alpha]_D^{24}$ +49.2 (*c* 1.13, CHCl₃); IR (ATR): 3383 (NHCO), 1703 (CO), 1335 (NSO₂), 1166 (NSO₂); ¹H NMR (400 MHz,

CDCl₃) δ 0.83–0.86 (m, 6H), 0.90 (s, 3H), 1.09 (s, 3H), 1.17– 1.33 (m, 2H), 1.26 (d, *J*=7.1 Hz, 3H), 1.37 (s, 9H), 1.77–1.89 (m, 4H), 1.97–1.99 (m, 2H), 3.42–3.52 (m, 2H), 3.81 (t, *J*=6.3 Hz, 1H), 3.90–3.99 (m, 1H), 4.06–4.14 (m, 1H), 4.62 (d, *J*=9.3 Hz, 1H), 4.99 (dd, *J*=37.2, 8.8 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 17.8, 19.2, 19.8, 19.9, 20.8, 26.4, 28.3 (3C), 30.2, 32.8, 35.9 (d, *J*=4.1 Hz), 38.3, 44.6, 47.7, 48.4, 53.0, 56.8 (d, *J*=27.3 Hz), 65.0, 79.5, 105.2 (d, *J*=11.6 Hz), 155.1, 157.7 (d, *J*=260.7 Hz), 173.6; ¹⁹F NMR (376 MHz, CDCl₃) δ –117.2 (dd, *J*=37.2, 18.6 Hz); HRMS (FAB), *m*/*z* calcd for C₂₄H₃₈FN₂O₅S ([M–H][–]) 485.2491, found 485.2491.

4.6. (2R,5S,3Z)-2-Benzyl-5-[N-(tert-butoxycarbonyl)amino]-4-fluoro-6-methylhept-3-enoyl (S)-sultam (16a)

By use of a procedure similar to that described for the preparation of Boc-L-Val-L-Ala FADI derivative 15a, the (S)-sultam derivative 12a (40.0 mg, 0.0838 mmol) was converted into the title compound 16a (43.6 mg, 93% yield) as a colorless oil: $[\alpha]_D^{25}$ -82.5 (c 1.51, CHCl₃); IR (ATR): 3370 (NHCO), 1698 (CO), 1333 (NSO₂), 1164 (NSO₂); ¹H NMR (400 MHz, CDCl₃) δ 0.70 (s, 3H), 0.86–0.90 (m, 9H), 1.13-1.36 (m, 2H), 1.45 (s, 9H), 1.69-2.04 (m, 6H), 2.79 (dd, J=13.2, 7.6 Hz, 1H), 3.11 (dd, J=12.9, 8.1 Hz, 1H), 3.34-3.42 (m, 2H), 3.77 (br, 1H), 3.89 (dt, J=23.3, 9.0 Hz, 1H), 4.45 (q, J=8.1 Hz, 1H), 4.64 (d, J=9.5 Hz, 1H), 4.97 (dd, J=35.6, 9.5 Hz, 1H), 7.14–7.26 (m, 5H); ¹³C NMR (100 MHz, CDCl₃) δ 18.4, 19.1, 19.8, 20.4, 26.4, 28.3 (3C), 30.4, 32.7, 38.2, 40.4, 43.0, 44.6, 47.5, 48.1, 53.0, 57.6 (d, J=24.8 Hz), 65.0, 79.5, 104.3 (d, J=12.4 Hz), 126.6, 128.2 (2C), 129.5 (2C), 137.5, 155.1, 158.2 (d, J=261.5 Hz), 172.3; ¹⁹F NMR (376 MHz, CDCl₃) δ –119.4 to –119.1 (br m); HRMS (FAB), m/z calcd for C₃₀H₄₄FN₂O₅S ([M+H]⁺) 563.2955, found 563.2965.

4.7. (2S,5S,3Z)-2-Benzyl-5-[N-(tert-butoxycarbonyl)amino]-4-fluoro-6-methylhept-3-enoyl (R)-sultam (**16b**)

By use of a procedure similar to that described for the preparation of Boc-L-Val-L-Ala FADI derivative 15a, the (R)-sultam derivative 12b (40.0 mg, 0.0838 mmol) was converted into the title compound **16b** (36.2 mg, 77% yield): $[\alpha]_D^{26}$ +21.9 (c 0.825, CHCl₃); IR (ATR): 3379 (NHCO), 1701 (CO), 1334 (NSO₂), 1165 (NSO₂); ¹H NMR (400 MHz, CDCl₃) δ 0.75 (s, 3H), 0.77–0.81 (m, 6H), 0.89 (s, 3H), 1.10-1.35 (m, 2H), 1.44 (s, 9H), 1.74-1.99 (m, 6H), 2.76-2.81 (m, 1H), 3.11-3.16 (m, 1H), 3.34-3.44 (m, 2H), 3.77 (br, 1H), 3.94-4.02 (m, 1H), 4.48 (q, J=8.3 Hz, 1H), 4.64 (d, J=9.8 Hz, 1H), 4.93 (dd, J=36.2, 9.2 Hz, 1H), 7.13–7.28 (m, 5H); ¹³C NMR (100 MHz, CDCl₃) δ 17.6, 18.9, 19.8, 20.5, 26.4, 28.3 (3C), 30.2, 32.8, 38.2, 40.3, 42.9, 44.6, 47.6, 48.1, 53.0, 56.7 (d, J=29.0 Hz), 65.0, 79.5, 103.6 (d, J=12.4 Hz), 126.6, 128.2 (2C), 129.4 (2C), 137.5, 155.1, 158.7 (d, J=262.3 Hz), 172.3; ¹⁹F NMR (376 MHz, CDCl₃) $\delta - 115.88$ (dd, J=36.2, 17.6 Hz); HRMS (FAB), m/z calcd for C₃₀H₄₂FN₂O₅S ([M–H]⁻) 561.2804, found 561.2797.

4.8. (2R,5S,3Z)-5-[N-(tert-Butoxycarbonyl)amino]-2-(2-tertbutoxy-2-oxoethyl)-4-fluoro-6-methylhept-3-enoyl (S)sultam (17a)

By use of a procedure similar to that described for the preparation of Boc-L-Val-L-Ala FADI derivative 15a, the (S)-sultam derivative 12a (40.0 mg, 0.0838 mmol) was converted into the title compound 17a (46.6 mg, 80% yield) as a colorless oil: $[\alpha]_{D}^{26} - 81.7$ (c 1.01, CHCl₃); IR (ATR): 3369 (NHCO), 1703 (CO), 1337 (NSO₂), 1164 (NSO₂); ¹H NMR (400 MHz, CDCl₃) δ 0.92–0.94 (m, 6H), 0.96 (s, 3H), 1.21 (s, 3H), 1.25–1.47 (m, 2H), 1.41 (s, 9H), 1.43 (s, 9H), 1.82-1.94 (m, 4H), 2.00-2.06 (m, 1H), 2.12-2.16 (m, 1H), 2.51 (dd, J=16.0, 5.7 Hz, 1H), 2.82 (dd, J=16.0, 8.2 Hz, 1H), 3.41-3.51 (m, 2H), 3.88-3.98 (m, 2H), 4.33-4.39 (m, 1H), 4.72 (d, J=9.8 Hz, 1H), 4.90 (dd, J=36.3, 9.3 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 18.4, 19.2, 19.9, 20.6, 26.5, 28.0 (3C), 28.3 (3C), 30.5, 32.8, 37.8 (d, J=3.3 Hz), 37.9, 39.2, 44.6, 47.8, 48.5, 52.9, 57.4 (d, J=25.7 Hz), 65.1, 79.6, 81.0, 103.5 (d, J=12.4 Hz), 155.0, 158.5 (d, J=262.3 Hz), 169.8, 171.7; ¹⁹F NMR (376 MHz, CDCl₃) δ -117.1 (br s); HRMS (FAB), m/z calcd for $C_{29}H_{46}FN_2O_7S$ ([M-H]⁻) 585.3015, found 585.2998.

4.9. (2S,5S,3Z)-5-[N-(tert-Butoxycarbonyl)amino]-2-(2-tertbutoxy-2-oxoethyl)-4-fluoro-6-methylhept-3-enoyl (R)sultam (**17b**)

By use of a procedure similar to that described for the preparation of Boc-L-Val-L-Ala FADI derivative 15a, the (R)-sultam derivative 12b (40.0 mg, 0.0838 mmol) was converted into the title compound **17b** (37.0 mg, 75% yield): $[\alpha]_D^{23}$ +39.5 (c 1.06, CHCl₃); IR (ATR): 3367 (NHCO), 1702 (CO), 1335 (NSO₂), 1162 (NSO₂); ¹H NMR (500 MHz, CDCl₃) δ 0.87–0.92 (m, 6H), 0.96 (s, 3H), 1.21 (s, 3H), 1.24-1.46 (m, 2H), 1.41 (s, 9H), 1.43 (s, 9H), 1.86-2.16 (m, 6H), 2.51-2.56 (m, 1H), 2.78-2.84 (m, 1H), 3.39-3.50 (m, 2H), 3.90-4.07 (m, 2H), 4.33-4.38 (m, 1H), 4.66 (d, J=9.8 Hz, 1H), 4.91 (dd, J=36.2, 9.3 Hz, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 17.6, 19.2, 19.9, 20.6, 26.5, 28.0 (3C), 28.3 (3C), 29.9, 32.8, 37.7 (d, J=3.3 Hz), 37.9, 39.1, 44.6, 47.8, 48.5, 52.9, 56.7 (d, J=29.0 Hz), 65.1, 79.6, 81.0, 102.8 (d, J=12.4 Hz), 155.1, 159.0 (d, J=264.0 Hz), 169.8, 171.7; ¹⁹F NMR (376 MHz, CDCl₃) δ -114.7 (dd, J=36.2, 15.5 Hz); HRMS (FAB), m/z calcd for C₂₉H₄₆FN₂O₇S ([M-H]⁻) 585.3015, found 585.3016.

4.10. (2S,5S,3Z)-5-[N-(tert-Butoxycarbonyl)amino]-4-fluoro-2-(4-methoxybenzyl)-6-methylhept-3-enoyl (R)-sultam (18b)

By use of a procedure similar to that described for the preparation of Boc–L-Val–L-Ala FADI derivative **15a**, the (*R*)-sultam derivative **12b** (50.0 mg, 0.102 mmol) was converted into the title compound **18b** (50.2 mg, 77% yield) as a colorless oil: $[\alpha]_D^{24} + 24.6$ (*c* 1.31, CHCl₃); IR (ATR): 1701 (CO), 1335 (NSO₂), 1165 (NSO₂); ¹H NMR (500 MHz, CDCl₃) δ 0.74 (s, 3H), 0.89 (s, 3H), 0.79–0.83 (m, 6H), 1.26–1.35 (m,

2H), 1.44 (s, 9H), 1.75–1.98 (m, 6H), 2.73–2.77 (m, 1H), 3.03–3.08 (m, 1H), 3.34–3.42 (m, 2H), 3.75–3.76 (m, 4H), 3.96–4.03 (m, 1H), 4.41–4.45 (m, 1H), 4.66 (d, J=9.6 Hz, 1H), 4.92 (dd, J=35.2, 9.3 Hz, 1H), 6.77 (d, J=8.4 Hz, 2H), 7.13 (d, J=8.4 Hz, 2H); ¹³C NMR (125 MHz, CDCl₃) δ 17.6, 19.0, 19.8, 20.4, 26.4, 28.3 (3C), 30.2, 32.8, 38.2, 39.6, 43.2, 44.6, 47.5, 48.1, 53.0, 55.2, 56.7 (d, J=29.4 Hz), 65.0, 79.5, 103.7 (d, J=12.6 Hz), 113.7 (2C), 129.6, 130.4 (2C), 155.1, 158.4, 158.6 (d, J=262.1 Hz), 172.4; ¹⁹F NMR (376 MHz, CDCl₃) δ –116.01 (dd, J=35.2, 16.6 Hz); HRMS (FAB), m/z calcd for C₃₁H₄₄FN₂O₆S ([M–H][–]) 591.2910, found 591.2905.

4.11. (2R,5S,3Z)-5-[N-(tert-Butoxycarbonyl)amino]-4-fluoro-6-methyl-2-(prop-2-enyl)hept-3-enoyl (S)-sultam (**19a**)

By use of a procedure similar to that described for the preparation of Boc-L-Val-L-Ala FADI derivative 15a, the (S)sultam derivative 12a (40.0 mg, 0.0838 mmol) was converted into the title compound 19a (42.9 mg, 99% yield) as a colorless oil: $[\alpha]_{D}^{22}$ -81.0 (c 1.06, CHCl₃); IR (ATR): 3380 (NHCO), 1699 (CO), 1335 (NSO₂), 1166 (NSO₂); ¹H NMR (400 MHz, CDCl₃) δ 0.92-0.94 (m, 6H), 0.97 (s, 3H), 1.16 (s, 3H), 1.21-1.40 (m, 2H), 1.44 (s, 9H), 1.76-1.94 (m, 4H), 1.97-2.09 (m, 2H), 2.31-2.40 (m, 1H), 2.49-2.59 (m, 1H), 3.42-3.52 (m, 2H), 3.83-3.97 (m, 2H), 4.22 (q, J=9.8 Hz, 1H), 4.72 (d, J=9.8 Hz, 1H), 4.90-5.09 (m, 3H), 5.67–5.84 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 18.5, 19.2, 19.8, 20.8, 26.4, 28.3 (3C), 30.3, 32.8, 38.3, 38.6, 40.7, 44.6, 47.7, 48.3, 53.0, 57.5 (d, J=26.5 Hz), 65.2, 79.5, 104.1 (d, J=11.6 Hz), 117.8, 134.0, 155.1, 158.0 (d, J=263.2 Hz), 172.4; ¹⁹F NMR (376 MHz, CDCl₃) δ -119.0 (dd, J=36.2, 23.8 Hz); HRMS (FAB), m/z calcd for $C_{26}H_{40}FN_2O_5S$ ([M–H]⁻) 511.2647, found 511.2629.

4.12. (2S,5S,3Z)-5-[N-(tert-Butoxycarbonyl)amino]-4-fluoro-6-methyl-2-(prop-2-enyl)hept-3-enoyl (R)-sultam (**19b**)

By use of a procedure similar to that described for the preparation of Boc-L-Val-L-Ala FADI derivative 15a, the (R)-sultam derivative 12b (40.0 mg, 0.0838 mmol) was converted into the title compound 19b (37.1 mg, 86% yield) as a colorless oil: $[\alpha]_{D}^{24} + 34.3$ (c 0.900, CHCl₃); IR (ATR): 3380 (NHCO), 1699 (CO), 1334 (NSO₂), 1165 (NSO₂); ¹H NMR (400 MHz, CDCl₃) δ 0.90-0.93 (6H), 0.97 (s, 3H), 1.16 (s, 3H), 1.25-1.40 (m, 2H), 1.44 (s, 9H), 1.85-2.08 (m, 6H), 2.34-2.41 (m, 1H), 2.51-2.58 (m, 1H), 3.41-3.52 (m, 2H), 3.86-3.97 (m, 1H), 3.99-4.07 (m, 1H), 4.23 (dt, J=9.0, 6.8 Hz, 1H), 4.69 (d, J=9.8 Hz, 1H), 4.91-5.09 (m, 3H), 5.70–5.81 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 17.8, 19.1, 19.9, 20.8, 26.4, 28.3 (3C), 30.2, 32.8, 38.6, 38.7, 40.7, 44.6, 47.7, 48.3, 53.0, 56.8 (d, J=28.1 Hz), 65.2, 79.5, 103.5 (d, J=12.4 Hz), 117.8, 134.1, 155.1, 158.4 (d, J=262.3 Hz), 172.3; ¹⁹F NMR (376 MHz, CDCl₃) δ -115.8 (dd, J=36.2, 17.6 Hz); HRMS (FAB), m/z calcd for $C_{26}H_{40}FN_2O_5S$ ([M–H]⁻) 511.2647, found 511.2647.

4.13. (2R,5S,3Z)-5-[N-(tert-Butoxycarbonyl)amino]-4-fluoro-6-methyl-2-(2-methylprop-2-enyl)hept-3-enoyl (S)sultam (**20a**)

By use of a procedure similar to that described for the preparation of Boc-L-Val-L-Ala FADI derivative 15a, the (S)-sultam derivative 12a (78.2 mg, 0.159 mmol) was converted into the title compound 20a (82.7 mg, 99% yield) as a colorless oil: $[\alpha]_{D}^{23}$ -89.7 (c 1.09, CHCl₃); IR (ATR): 3381 (NHCO), 1698 (CO), 1333 (NSO₂), 1163 (NSO₂); ¹H NMR (500 MHz, CDCl₃) δ 0.92–0.93 (m, 6H), 0.96 (s, 3H), 1.15 (s, 3H), 1.24-1.40 (m, 2H), 1.44 (s, 9H), 1.77-2.04 (m, 9H), 2.15-2.19 (m, 1H), 2.57-2.61 (m, 1H), 3.41-3.51 (m, 2H), 3.87-3.95 (m, 2H), 4.32-4.37 (m, 1H), 4.73 (s, 3H), 4.89 (dd, J=36.4, 8.9 Hz, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 18.5, 19.2, 19.8, 20.6, 21.7, 26.4, 28.3 (3C), 30.3, 32.7, 38.3, 39.5, 42.6, 44.6, 47.7, 48.2, 53.0, 57.5 (d, J=25.8 Hz), 65.1, 79.4, 104.5 (d, J=12.0 Hz), 113.7, 141.7, 155.0, 158.0 (d, J=262.7 Hz), 172.7; ¹⁹F NMR (470 MHz, CDCl₃) δ -119.4 to -119.33 (m); HRMS (FAB), m/z calcd for C₂₇H₄₂FN₂O₅S ([M–H]⁻) 525.2804, found 525.2809.

4.14. (2R,5S,3Z)-5-[N-(tert-Butoxycarbonyl)amino]-4-fluoro-6-methyl-2-(naphth-2-ylmethyl)hept-3-enoyl (S)-sultam (21a)

By use of a procedure similar to that described for the preparation of Boc-L-Val-L-Ala FADI derivative 15a, the (S)-sultam derivative **12a** (50.0 mg, 0.105 mmol) was converted into the title compound **21a** (64.0 mg, 99% yield) as a colorless oil: [α]_D²⁴ -71.8 (*c* 1.41, CHCl₃); IR (ATR): 3368 (NHCO), 1710 (CO), 1678 (CO), 1341 (NSO₂), 1160 (NSO₂); ¹H NMR (CDCl₃) & 0.21 (s, 3H), 0.74 (s, 3H), 0.85-0.89 (m, 6H), 1.19-1.30 (m, 2H), 1.44 (s, 9H), 1.55-1.61 (m, 2H), 1.73-1.92 (m, 4H), 2.97-3.01 (m, 1H), 3.24-3.31 (m, 3H), 3.72 (br s, 1H), 3.88-3.96 (m, 1H), 5.03 (dd, J=36.6, 8.9 Hz, 1H), 7.38–7.43 (m, 3H), 7.64 (s, 1H), 7.72–7.76 (m, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 18.4, 19.1, 19.6, 19.7, 26.3, 28.3 (3C), 30.4, 32.7, 38.1, 40.7, 43.0 (d, J=3.0 Hz), 44.5, 47.3, 48.0, 52.9, 57.6 (d, J=25.8 Hz), 64.9, 79.5, 104.5 (d, J=13.8 Hz), 125.3, 125.7, 127.4, 127.5, 127.8, 127.9, 127.9, 132.5, 133.4, 135.0, 155.1, 158.2 (d, J=263.3 Hz), 172.3; ¹⁹F NMR (470 MHz, CDCl₃) δ –118.9 (br s); HRMS (FAB), m/z calcd for $C_{34}H_{44}FN_2O_5S$ ([M–H]⁻) 611.2960, found 611.2958.

4.15. (2R,5S,3Z)-5-[N-(tert-Butoxycarbonyl)amino]-4-fluoro-2-(4-methoxy-4-oxobut-2-enyl)-6-methylhept-3-enoyl (S)sultam (22a)

By use of a procedure similar to that described for the preparation of Boc–L-Val–L-Ala FADI derivative **15a**, the (*S*)-sultam derivative **12a** (50.0 mg, 0.105 mmol) was converted into the title compound **22a** (56.3 mg, 94% yield) as a colorless oil: $[\alpha]_D^{23}$ –68.8 (*c* 1.30, CHCl₃); IR (ATR): 3371 (NHCO), 1703 (CO), 1335 (NSO₂), 1165 (NSO₂); ¹H NMR (500 MHz, CDCl₃) δ 0.90–0.94 (m, 6H), 0.96 (s, 3H), 1.11 (s, 3H), 1.31–1.43 (m, 2H), 1.44 (s, 9H), 1.85–2.07 (m, 6H),

2.44–2.50 (m, 1H), 2.66–2.72 (m, 1H), 3.42–3.52 (m, 2H), 3.70 (s, 3H), 3.86–3.98 (m, 2H), 4.29–4.33 (m, 1H), 4.70 (d, J=9.7 Hz, 1H), 4.96 (dd, J=36.2, 9.1 Hz, 1H), 5.86 (d, J=15.6 Hz, 1H), 6.82–6.88 (m, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 18.4, 19.2, 19.8, 20.6, 26.4, 28.3 (3C), 30.3, 32.8, 36.8, 38.3, 40.1 (d, J=3.0 Hz), 44.6, 47.7, 48.4, 51.4, 53.0, 57.5 (d, J=25.8 Hz), 65.2, 79.6, 103.6 (d, J=12.6 Hz), 123.7, 144.0, 155.1, 158.6 (d, J=263.9 Hz), 166.2, 171.7; ¹⁹F NMR (470 MHz, CDCl₃) δ –117.3 to –117.2. (m); HRMS (FAB), m/z calcd for C₂₈H₄₂FN₂O₇S ([M–H]⁻) 569.2702, found 569.2709.

4.16. (2S,5S,3Z)-2-(4-Bromobenzyl)-5-[N-(tert-butoxycarbonyl)amino]-4-fluoro-6-methylhept-3-enoyl (R)sultam (**23b**)

By use of a procedure similar to that described for the preparation of Boc-L-Val-L-Ala FADI derivative 15a, the (R)-sultam derivative 12b (50.0 mg, 0.105 mmol) was converted into the title compound 23b (47.8 mg, 71% yield) as a colorless oil: $[\alpha]_{D}^{24}$ +25.1 (c 1.12, CHCl₃); IR (ATR): 1703 (CO), 1337 (NSO₂), 1165 (NSO₂); ¹H NMR (500 MHz, CDCl₃) δ 0.72 (s, 3H), 0.80-0.84 (m, 6H), 0.90 (s, 3H), 1.21-1.45 (m, 2H), 1.44 (s, 9H), 1.70-1.98 (m, 6H), 2.74-2.78 (m, 1H), 3.04-3.08 (m, 1H), 3.35-3.43 (m, 2H), 3.78 (br s, 1H), 3.97-4.03 (m, 1H), 4.42-4.47 (m, 1H), 4.65 (d, J=9.6 Hz, 1H), 4.92 (dd, J=35.9, 9.2 Hz, 1H), 7.10 (d, J=8.2 Hz, 2H), 7.35 (d, J=8.3 Hz, 2H); ¹³C NMR (125 MHz, CDCl₃) δ 17.6, 19.0, 19.7, 20.2, 26.4, 28.3 (3C), 30.1, 32.8, 38.2, 39.7, 42.8, 44.6, 47.6, 48.2, 53.0, 56.7 (d, J=28.2 Hz), 65.1, 79.6, 103.3 (d, J=13.2 Hz), 120.6, 131.3 (2C), 131.3 (2C), 136.5, 155.1, 159.0 (d, J=263.9 Hz), 172.0; ¹⁹F NMR (376 MHz, CDCl₃) δ -115.4 (dd, J=35.9, 15.5 Hz); HRMS (FAB), m/z calcd for C₃₀H₄₁BrFN₂O₅S ([M-H]⁻) 639.1909, found 639.1902.

4.17. Ethyl (3S)-6-(tert-butyldimethylsiloxy)-2,2-difluoro-3-{N-[(1R)-(2-methoxy-1-phenylethyl)]amino}hexanoate (27)

To a solution of oxalyl chloride (7.45 g, 58.7 mmol) in CH₂Cl₂ (120 mL) at -78 °C under argon was added dropwise a solution of DMSO (3.82 mL, 53.8 mmol) in CH₂Cl₂ (84 mL). After 10 min, 4-(tert-butyldimethylsilyloxy)-1-butanol 26 (10.2 g, 48.9 mmol) in CH₂Cl₂ (72 mL) was added dropwise. After 0.5 h, Et₃N (33.8 mL, 244.5 mmol) was added dropwise. After stirring at -78 °C for 1 h, the mixture was diluted with CH₂Cl₂ (200 mL). The diluted mixture was washed with saturated NH₄Cl and brine, and dried over MgSO₄. Concentration under reduced pressure gave an oily aldehyde, which was used immediately in the next step without purification. A solution of the above aldehyde and amine 8 in THF (263 mL) was stirred at 0 °C for 4 h under argon in the presence of activated molecular sieves 4 Å. To the mixture were successively added a suspension of RhCl(PPh₃)₃ (2.07 g, 2.24 mmol) in THF (20 mL), a solution of BrCF₂CO₂Et (9.96 mL, 48.9 mmol) in THF (20 mL), and a solution of Et₂Zn in *n*-hexane (1.0 M, 195.6 mL, 195.6 mmol). After

stirring at 0 °C for 1 h, the reaction was guenched with saturated NaHCO₃. The mixture was filtered over Celite and the filtrate was extracted with AcOEt. The extract was washed with saturated NaHCO₃ and brine, and dried over MgSO₄. Concentration under reduced pressure followed by flash chromatography over silica gel with *n*-hexane-AcOEt (40:1) gave the title compound 27 (8.69 g, 39% yield) as a colorless oil: $[\alpha]_{D}^{24}$ -33.9 (c 1.28, CHCl₃); IR (ATR): 1770 (CO), 1758 (CO); ¹H NMR (500 MHz, CDCl₃) δ -0.10 (m, 6H), 0.77 (s, 9H), 1.33-1.15 (m, 5H), 1.48-1.42 (m, 1H), 1.68-1.60 (m, 1H), 3.28–3.25 (m, 4H), 3.39–3.31 (m, 3H), 4.25–4.16 (m, 3H), 7.28–7.15 (m, 5H); ¹³C NMR (125 MHz, CDCl₃) δ -5.4 to -5.5 (2C), 13.8, 18.2, 25.8, 26.3, 28.9, 56.3 (t, J=22.5 Hz), 58.4, 59.7, 62.5 (d, J=6.6 Hz), 77.8, 117.7 (t, J=256.7 Hz), 127.7, 128.0, 128.3, 140.3, 164.1 (t, J= 32.4 Hz); 19 F NMR (470 MHz, CDCl₃) δ -110.5 (dd, J=256.7, 10.2 Hz), -112.6 (dd, J=256.8, 12.6 Hz); HRMS (FAB), m/z calcd for C₂₃H₃₈F₂NO₄Si ([M-H]⁻) 458.2544, found 458.2566.

4.18. Ethyl (3S)-3-[N-(tert-butoxycarbonyl)amino]-6-(tert-butyldimethylsiloxy)-2,2-difluorohexanoate (28)

To a solution of the ester 27 (7.05 g, 15.2 mmol) in EtOH (50.0 mL) were added 20% Pd(OH)₂/C (1.11 g, 1.58 mmol) and (Boc)₂O (7.26 g, 33.3 mmol), and the suspension was stirred for 12 h under H₂ at room temperature. The mixture was filtered through a pad of Celite and the filtrate was concentrated under reduced pressure, followed by flash chromatography over silica gel with n-hexane-AcOEt (40:1) to give the title compound 28 (5.47 g, 85% yield) as a colorless oil: $[\alpha]_D^{22}$ –13.9 (c 1.16, CHCl₃); IR (ATR): 3364 (NHCO), 1770 (CO), 1717 (CO); ¹H NMR (500 MHz, CDCl₃) δ 0.00 (s, 6H), 0.84 (s, 9H), 1.29 (t, J=7.2 Hz, 3H), 1.37-1.66 (m, 12H), 1.78-1.84 (m, 1H), 3.56-3.63 (m, 2H), 4.17-4.29 (m, 3H), 4.85 (d, J=10.2 Hz, 1H); ¹³C NMR (125 MHz, CDCl₃) δ -5.7 (2C), 13.6, 18.0, 23.7, 25.6 (3C), 27.9 (3C), 28.2, 52.3 (dd, J=27.6, 23.4 Hz), 61.8, 62.6, 79.6, 114.4 (t, J=255.2 Hz), 155.0, 163.1 (dd, J=33.3, 30.9 Hz); ¹⁹F NMR $(376 \text{ MHz}, \text{CDCl}_3) \delta -113.6 \text{ (dd}, J=256.6, 8.3 \text{ Hz}), -119.8$ (dd, J=256.6, 18.6 Hz); HRMS (FAB), m/z calcd for $C_{19}H_{36}F_{2}NO_{5}Si$ ([M–H]⁻) 424.2336, found 424.2343.

4.19. (5S,2E)-5-[N-(tert-Butoxycarbonyl)amino]-8-(tertbutyldimethylsiloxy)-4,4-difluorooct-2-enoyl (S)-sultam (29)

By use of a procedure similar to that described for the preparation of the (*S*)-sultam derivative **12a**, the ester **28** (5.49 mg, 12.9 mmol) was converted into the title compound **29** (5.83 g, 73% yield) as a colorless oil: $[\alpha]_D^{20}$ –59.8 (*c* 1.33, CHCl₃); IR (ATR): 3370 (NHCO), 1713 (CO), 1692 (CO), 1332 (NSO₂), 1165 (NSO₂); ¹H NMR (400 MHz, CDCl₃) δ 0.00 (s, 6H), 0.84 (s, 9H), 0.94 (s, 3H), 1.12 (s, 3H), 1.30–1.44 (m, 12H), 1.48–1.65 (m, 2H), 1.77–1.94 (m, 4H), 2.06–2.08 (m, 2H), 3.39–3.50 (m, 2H), 3.54–3.61 (m, 2H), 3.88–3.91 (m, 1H), 3.94–4.03 (m, 1H), 4.56 (d, *J*=10.2 Hz, 1H), 6.79–6.87 (m, 1H), 6.95 (d, *J*=15.3 Hz, 1H); ¹³C NMR

(100 MHz, CDCl₃) δ –5.5 (2C), 18.1, 19.6, 20.7, 24.3, 25.8 (3C), 26.2, 28.0 (3C), 28.4, 32.6, 38.1, 44.5, 47.6, 48.5, 52.8, 54.0 (t, *J*=27.3 Hz), 62.0, 64.9, 79.6, 119.6 (t, *J*=245.4 Hz), 125.2, 137.7 (t, *J*=26.5 Hz), 155.2, 161.9; ¹⁹F NMR (376 CDCl₃) δ –108.1 (dt, *J*=248.3, 10.3 Hz), –110.8 (dt, *J*=248.3, 12.4 Hz). Anal. Calcd for C₂₉H₅₀F₂N₂O₆SSi: C, 56.10; H, 8.12; N, 4.51. Found: C, 56.20; H, 8.14; N, 4.45.

4.20. (2R,5S,3Z)-5-[N-(tert-Butoxycarbonyl)amino]-8-(tertbutyldimethylsiloxy)-4-fluoro-2-(prop-2-enyl)oct-3-enoyl (S)sultam (**30**)

By use of a procedure similar to that described for the preparation of Boc-L-Val-L-Ala FADI derivative 15a, the (S)-sultam derivative 29 (1.01 g, 1.62 mmol) was converted into the title compound 30 (1.03 g, 97% yield) as a colorless oil: $[\alpha]_{D}^{21}$ -71.9 (c 1.11, CHCl₃); IR (ATR): 3352 (NHCO), 3300 (NHCO), 1716 (CO), 1695 (CO), 1331 (NSO₂), 1166 (NSO₂); ¹H NMR (400 MHz, CDCl₃) δ 0.04 (s, 6H), 0.88 (s, 9H), 0.97 (s, 3H), 1.15 (s, 3H), 1.25-1.66 (m, 15H), 1.85-2.04 (m, 5H), 2.38-2.32 (m, 1H), 2.52-2.59 (m, 1H), 3.39-3.53 (m, 2H), 3.57-3.63 (m, 2H), 3.84-3.90 (m, 1H), 4.09-4.25 (m, 2H), 4.76 (d, J=9.0 Hz, 1H), 4.93-5.10 (m, 3H), 5.69–5.81 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ -5.4 (2C), 18.2, 19.8, 20.7, 25.6, 25.9 (3C), 26.4, 28.2 (3C), 28.6 (m), 32.8, 38.3, 38.4, 40.7, 44.6, 47.6, 48.2, 51.5 (d, J=27.3 Hz), 53.0, 62.4, 65.1, 79.4, 103.3 (d, J=11.6 Hz), 117.7, 134.0, 154.8, 158.6 (d. *J*=263.2 Hz), 172.2; ¹⁹F NMR $(376 \text{ MHz}, \text{ CDCl}_3) \delta -119.6 \text{ (dd}, J=35.2, 20.7 \text{ Hz}); \text{ HRMS}$ (FAB), m/z calcd for C₃₂H₅₄FN₂O₆SSi ([M-H]⁻) 641.3461, found 641.3469.

4.21. (2R,5S,3Z)-5-[N-(tert-Butoxycarbonyl)amino]-8-(tertbutyldimethylsiloxy)-2-[3-(tert-butyldimethylsiloxy)propyl]-4fluorooct-3-enoyl (S)-sultam (**32**)

To a solution of the (S)-sultam derivative 30 (929 mg, 1.45 mmol) in THF (30 mL) at 0 °C under argon was added dropwise (Sia)₂BH in THF (0.49 M, 8.88 mL, 4.35 mmol), and the mixture was stirred at room temperature overnight. After being diluted with THF (60 mL), aqueous 50% H₂O₂ (1.15 mL) and 20% AcOK (1.45 mL) were added with additional stirring at room temperature for 2 h. The mixture was extracted with Et₂O and the extract was washed with saturated Na₂S₂O₃ and dried over MgSO₄. Concentration under reduced pressure followed by flash chromatography over silica gel gave the corresponding alcohol. To a solution of the alcohol in CH₂Cl₂ (20 mL) at room temperature under argon was added imidazole (120 mg, 1.75 mmol) and TBSCl (240 mg, 1.60 mmol). After stirring for 1 h, the precipitate was filtrated off and the filtrate was concentrated under reduced pressure, followed by flash chromatography over silica gel to give the title compound **32** (930.7 mg, 83%) as a colorless oil: $[\alpha]_D^{23}$ -57.7 (c 1.32, CHCl₃); IR (ATR): 3375 (NHCO), 1702 (CO), 1336 (NSO₂), 1165 (NSO₂); ¹H NMR (500 MHz, CDCl₃) δ 0.02 (s, 6H), 0.04 (s, 6H), 0.87 (s, 9H), 0.88 (s, 9H), 0.97 (s, 3H), 1.15 (s, 3H), 1.32-1.72 (m, 18H), 1.84–1.95 (m, 4H), 2.04–2.06 (m, 2H), 3.40–3.50 (m, 2H), 3.56–3.64 (m, 4H), 3.85–3.88 (m, 1H), 4.04–4.21 (m, 2H), 4.75 (d, *J*=8.3 Hz, 1H), 4.97 (dd, *J*=36.4, 9.0 Hz, 1H); ¹³C NMR (125 MHz, CDCl₃) δ –5.4 (2C), –5.3 (2C), 18.2, 18.3, 19.9, 20.8, 25.9 (3C), 26.0 (3C), 26.4, 28.3 (3C), 28.7, 28.8, 29.9, 30.7, 32.9, 38.4, 41.0, 44.6, 47.7, 48.3, 51.7 (d, *J*=27.6 Hz), 53.0, 62.5 (2C), 65.1, 79.5, 103.9 (d, *J*=12.0 Hz), 154.9, 158.7 (d, *J*=261.5 Hz), 173.0; ¹⁹F NMR (470 MHz, CDCl₃) δ –120.7 (dd, *J*=36.4, 19.3 Hz); HRMS (FAB), *m*/*z* calcd for C₃₈H₇₀FN₂O₇SSi₂ ([M–H]⁻) 773.4432, found 773.4454.

4.22. (2R,5S,3Z)-5-[N-(tert-Butoxycarbonyl)amino]-8-[N-(tert-butoxycarbonyl)-N-(2-nitrophenylsulfonyl)amino]-2-{3-[N-(tert-butoxycarbonyl)-N-(2-nitrophenylsulfonyl)amino]propyl}-4-fluorooct-3-enoyl (S)-sultam (**35**)

To a solution of the bis-TBS ether **32** (259.7 mg, 0.335 mmol) in CH₃CN-H₂O (1:1, 6.7 mL) at 0 °C under argon was added aqueous H_2SiF_6 (3.28 N, 104 µL), and the mixture was stirred at room temperature for 1 h. After diluted with AcOEt (100 mL), the reaction mixture was washed with aqueous 5% K₂CO₃ and dried over MgSO₄. Concentration under reduced pressure gave the corresponding diol, which was used in the next step without purification. To a solution of the diol, PPh₃ (529.3 mg, 2.02 mmol) and NsNHBoc (606.8 mg, 2.01 mmol) in THF (6.7 mL), and a solution of DEAD in toluene (2.2 M, 913 µL, 2.01 mmol) were successively added at 0 °C under argon. After being stirred at room temperature overnight, concentration under reduced pressure followed by flash chromatography over silica gel gave the title compound 35 (320 mg, 85%) as a semisolid: $[\alpha]_{D}^{25}$ -35.9 (c 1.00, CHCl₃); IR (ATR): 3394 (NHCO), 1728 (CO), 1336 (NSO₂), 1152 (NSO₂); ¹H NMR (500 MHz, CDCl₃) δ 0.96 (s, 3H), 1.18 (s, 3H), 1.30-1.48 (m, 30H), 1.61-1.93 (m, 10H), 2.04-2.11 (m, 2H), 3.42-3.50 (m, 2H), 3.73-3.79 (m, 4H), 3.90-3.91 (m, 1H), 4.11-4.13 (m, 1H), 4.19-4.29 (m, 1H), 4.76 (d, J=9.0 Hz, 1H), 5.03 (dd, J=36.1, 9.2 Hz, 1H), 7.72-7.73 (m, 6H), 8.26-8.29 (m, 2H); ¹³C NMR (125 MHz, CDCl₃) δ 19.7, 20.7, 26.2, 26.3, 27.1, 27.6 (3C), 27.6 (3C), 28.1 (3C), 29.4, 31.0, 32.5, 38.2, 40.7, 44.4, 47.3, 47.3, 47.5, 48.2, 51.3 (d, J=28.8 Hz), 52.7, 64.9, 79.5, 84.7, 84.9, 103.7, 103.7, 124.1, 124.2, 131.6, 131.6, 132.7, 132.8, 133.2, 134.0, 134.1, 147.4 (2C), 150.1 (2C), 154.7, 158.5 (d, J=262.7 Hz), 172.2; ¹⁹F NMR (470 MHz, CDCl₃) δ -119.1 to -119.0 (m); HRMS (FAB), m/z calcd for $C_{48}H_{66}FN_6O_{17}S_3$ $([M-H]^{-})$ 1113.3636, found 1113.3624.

4.23. (2R,5S,3Z)-5-[N-(9-Fluorenylmethoxycarbonyl)amino]-4-fluoro-8-[N-(2-nitrophenylsulfonyl)amino]-2-{3-[N-(2nitrophenylsulfonyl)amino]propyl}oct-3-enoic acid (**36**)

To a solution of the sultam **35** (376.2 mg, 0.337 mmol) and aqueous 50% H_2O_2 (119.6 μ L, 1.75 mmol) in THF- H_2O (5:1, 6 mL) at 0 °C was added aqueous 1 N LiOH (670 μ L, 0.67 mmol), and the mixture was stirred at room temperature

for 2 h. After being diluted with AcOEt (20 mL), the mixture was washed with 0.1 N HCl and dried over MgSO₄. Concentration under reduced pressure gave the corresponding acid, which was used in the next step without purification. To a solution of the acid in CH₂Cl₂ (15 mL) at 0 °C was added TFA (4 mL), and the mixture was stirred at room temperature for 0.5 h. Concentration under reduced pressure gave an oily residue, which was dissolved in MeCN-DMF-H₂O (10:9:1, 20 mL). Fmoc-OSu (159.2 mg, 0.472 mmol) and Et_3N (94 μ L, 0.675 mmol) were added to the mixture at 0 °C, and the mixture was stirred at room temperature for 12 h. After being diluted with AcOEt (70 mL), the reaction mixture was washed with 1 N HCl and dried over dried over MgSO₄. Concentration under reduced pressure followed by flash chromatography over silica gel gave the title compound 36 (267.3 mg, 94% yield) as a semisolid: $[\alpha]_{D}^{23}$ –21.1 (c 1.05, CHCl₃); IR (ATR): 3347 (OH), 1709 (CO), 1341 (NSO₂), 1165 (NSO₂); ¹H NMR (500 MHz, CDCl₃) δ 1.43–1.81 (m, 8H), 3.04–3.10 (m, 4H), 3.38–3.41 (m, 1H), 4.17-4.19 (m, 2H), 4.34-4.43 (m, 2H), 4.86 (dd, J=35.8, 9.5 Hz, 1H), 5.08 (d, J=8.4 Hz, 1H), 5.50-5.54 (m, 2H), 7.27-7.39 (m, 4H), 7.56-7.57 (m, 2H), 7.68-7.71 (m, 4H), 7.74 (d, J=7.4 Hz, 2H), 7.78-7.81 (m, 2H), 8.07-8.10 (m, 2H); ¹³C NMR (125 MHz, CDCl₃) δ 25.7, 26.8, 28.7, 28.9, 39.7, 43.0, 43.1, 50.2, 51.7 (d, J=28.8 Hz), 66.8, 104.7 (d, J=13.2 Hz), 119.8 (2C), 124.9, 125.0, 125.1, 125.1, 127.0 (2C), 127.6 (2C), 130.8 (2C), 132.6, 132.7, 133.3, 133.5, 133.5, 141.1 (2C), 143.6, 143.7, 147.8 (2C), 155.8, 158.4 (d, J=261.5 Hz), 176.1; ¹⁹F NMR (470 MHz, CDCl₃) δ -120.8 to -120.7 (m); HRMS (FAB), m/z calcd for $C_{38}H_{37}FN_5O_{12}S_2$ ([M-H]⁻) 838.1870, found 838.1882.

4.24. General procedure for synthesis of protected peptide resin

Protected peptide resin was manually constructed by Fmocbased solid-phase synthesis. *t*-Bu ether for D-Tyr was employed for side-chain protection. Fmoc deprotection was achieved by 20% piperidine in DMF (20 min). Fmoc-amino acids except for Fmoc–L-Orn(Ns)– $\psi[(Z)$ -CF=CH]–L-Orn(Ns)–OH **36** were coupled by treatment with 3 equiv of reagents [Fmoc–amino acid, DIPCI, and HOBt·H₂O] to free amino acids in DMF for 1.5 h (for **39**, see the following).

4.24.1. H-D-Tyr(t-Bu)-Orn(Ns)- $\psi[(Z)$ -CF=CH]-Orn(Ns)-Nal-Gly-(2-Cl)Trt resin (39)

Nal residue was coupled by general coupling protocol on H– Gly–(2-Cl)Trt resin (0.87 mmol/g, 114.9 mg, 0.100 mmol). Fmoc–Orn(Ns)– $\psi[(Z)$ -CF=CH]–Orn(Ns)–OH **36** (92.2 mg, 0.110 mmol) was incorporated by treatment of DIPCI (34 μ L, 0.220 mmol) and HOBt·H₂O (84.3 mg, 0.550 mmol) for 12 h. D-Tyr(*t*-Bu) was coupled by general coupling protocol to afford the title protected peptide resin **39**.

4.24.2. $cyclo[-D-Tyr(t-Bu)-Orn(Ns)-\psi[(Z)-CF=CH]-Orn(Ns)-Nal-Gly-]$ (41)

The protected peptide resin **39** (0.100 mmol) was subjected to HFIP- CH_2Cl_2 (3:7, 15 mL) treatment at room temperature for 2 h. After filtration of the residual resin, the filtrate was

concentrated under reduced pressure to give a crude linear peptide. To a mixture of the linear peptide and NaHCO₃ (57.1 mg, 0.680 mmol) in DMF (41 mL) was added diphenylphosphoryl azide (DPPA, 87.9 μ L, 0.408 mmol) at -40 °C. The mixture was stirred for 48 h with warming to room temperature and then filtered. The filtrate was concentrated under reduced pressure, followed by flash chromatography over silica gel with CHCl₃-MeOH (99:1) to give the title cyclic pseudopeptide **41** (68.3 mg, 64% yield) as a white powder: $[\alpha]_D^{25}$ -45.0 (c 0.565, DMSO); IR (ATR): 3288 (NHCO), 1644 (CO), 1340 (NSO₂), 1161 (NSO₂); ¹H NMR (500 MHz, DMSO-d₆) & 0.80-0.88 (m, 2H), 0.99-1.08 (m, 1H), 1.11-1.45 (m, 13H), 1.56-1.62 (m, 1H), 2.47-2.56 (m, 2H), 2.67-2.89 (m, 5H), 3.04-3.14 (m, 2H), 3.48 (dd, J=14.4, 3.9 Hz, 1H), 3.80 (dd, J=14.5, 6.9 Hz, 1H), 4.01 (br s, 1H), 4.34-4.39 (m, 2H), 4.74 (dd, J=37.8, 9.8 Hz, 1H), 6.77 (d, J=8.4 Hz, 2H), 7.02 (d, J=8.5 Hz, 2H), 7.30-7.33 (m, 3H), 7.61 (br s, 1H), 7.70-7.97 (m, 16H), 8.48 (d, J=8.2 Hz, 1H); HRMS (FAB), m/z calcd for $C_{51}H_{56}FN_8O_{13}S_2$ ([M-H]⁻) 1071.3398, found 1071.3409.

4.24.3. FCN001: cyclo(-*D*-Tyr-Arg-ψ[(Z)-CF=CH]-Arg-Nal-Gly-)·2TFA (**25**)

The cyclic pseudopeptide 41 (34.4 mg, 0.0320 mmol) was treated with aqueous 95% TFA (3 mL) for 3 h. Concentration under reduced pressure gave an oily residue, which was used immediately in the next step without purification. To a solution of the crude mixture in DMF (5 mL) were added 2-mercaptoethanol (22.4 µL, 0.32 mmol) and DBU (193 µL, 1.56 mmol), and the mixture was stirred at 50 °C for 2.5 h. After concentration under reduced pressure, the residue was washed three times with Et₂O and treated with Et₃N (392 µL, 2.84 mmol) and 1H-pyrazole-1-carboxamidine hydrochloride (55.8 mg, 0.38 mmol) in DMF (5 mL). After concentration under reduced pressure, purification by preparative HPLC gave the ditrifluoroacetate of the title cyclic pseudopeptide 25 (2.4 mg, 8%) as colorless freeze-dried powder: $[\alpha]_D^{25}$ -24.9 (c 0.150, DMSO); IR (ATR): 3275, 3191, 3071, 2925, 2852, 1651, 1644, 1634, 1537, 1514, 1435, 1367, 1182, 1132; ¹H NMR (500 MHz, DMSO-d₆) δ 1.12-1.38 (m, 6H), 1.57-1.67 (m, 2H), 2.68 (dd, J=13.7, 7.8 Hz, 1H), 2.87 (dd, J=13.8, 7.2 Hz, 1H), 2.93-3.01 (m, 5H), 3.12-3.22 (m, 2H), 3.55 (dd, J=14.6, 4.2 Hz, 1H), 3.79 (dd, J=14.7, 6.7 Hz, 1H), 4.20 (br s, 1H), 4.33-4.41 (m, 2H), 4.92 (dd, J=38.2, 9.6 Hz, 1H), 6.63 (d, J=8.5 Hz, 2H), 6.67–7.55 (br m, 4H), 6.97 (d, J=8.5 Hz, 2H), 7.34-7.36 (m, 2H), 7.43-7.51 (m, 5H), 7.67 (s, 1H), 7.79-7.81 (m, 2H), 7.84-7.87 (m, 2H), 7.94-7.99 (m, 2H), 8.46 (d, J=8.1 Hz, 1H), 9.18 (br s, 1H); HRMS (FAB), m/z calcd for $C_{37}H_{48}FN_{10}O_5$ ([M+H]⁺) 731.3793, found 731.3754.

Acknowledgements

This research was supported in part by the 21st Century COE Program 'Knowledge Information Infrastructure for Genome Science', a Grant-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science, and Technology, Japan, the Japan Society for the Promotion of Science (JSPS), and the Japan Health Science Foundation. T.N. and K.T. are grateful for the JSPS Research Fellowships for Young Scientists.

Supplementary data

Copies of ¹H NMR spectra for all new compounds; preparation and copies of CD spectra of methyl ester derivatives of **15a,b, 16a,b,** and **18a,b.** Supplementary data associated with this article can be found in the online version, at doi:10.1016/j.tet.2008.02.076.

References and notes

- (a) Peptidomimetics Protocols; Kazmierski, W. M., Ed.; Human: Totowa, NJ, 1999; (b) Burgess, K. Acc. Chem. Res. 2001, 34, 826–835; (c) Bursavich, M. G.; Rich, D. H. J. Med. Chem. 2002, 45, 541–558; (d) Hruby, V. J. J. Med. Chem. 2003, 46, 4215–4231.
- For some recent examples of (E)-Alkene isostere, see: (a) Tamamura, H.; Hiramatsu, K.; Ueda, S.; Wang, Z.; Kusano, S.; Terakubo, S.; Trent, J. O.; Peiper, S. C.; Yamamoto, N.; Nakashima, H.; Otaka, A.; Fujii, N. J. Med. Chem. 2005, 48, 380–391; (b) Badur, N. G.; Harms, K.; Koert, U. Synlett 2005, 773–776; (c) Wiktelius, D.; Luthman, K. Org. Biomol. Chem. 2007, 5, 603–605; (d) Badur, N. G.; Harms, K.; Koert, U. Synlett 2007, 99–102 and references cited therein.
- For the synthesis of 3,6-dihydropyridine-2-one, see: (a) Niida, A.; Tanigaki, H.; Inokuchi, E.; Sasaki, Y.; Oishi, S.; Ohno, H.; Tamamura, H.; Wang, Z. X.; Peiper, S. C.; Kitaura, K.; Otaka, A.; Fujii, N. J. Org. Chem. 2006, 71, 3942–3951; (b) Niida, A.; Mizumoto, M.; Narumi, T.; Inokuchi, E.; Oishi, S.; Ohno, H.; Otaka, A.; Kitaura, K.; Fujii, N. J. Org. Chem. 2006, 71, 4118–4129 and references cited therein.
- For some recent examples of tri- or tetrasubstituted alkene isosteres, see:

 (a) Oishi, S.; Kamano, T.; Niida, A.; Odagaki, Y.; Hamanaka, N.; Yamamoto, M.; Ajito, K.; Tamamura, H.; Otaka, A.; Fujii, N. *J. Org. Chem.*

 2002, 67, 6162–6173; (b) Oishi, S.; Miyamoto, K.; Niida, A.; Yamamoto, M.; Ajito, K.; Tamamura, H.; Otaka, A.; Kuroda, Y.; Asai, A.; Fujii, N. *Tetrahedron* 2006, 62, 1416–1424.
- Vasbinder, M. M.; Jarvo, E. R.; Miller, S. J. Angew. Chem., Int. Ed. 2001, 40, 2824–2827.
- Xaa-Pro type isosteres: (a) Sasaki, Y.; Niida, A.; Tsuji, T.; Shigenaga, A.; Fujii, N.; Otaka, A. J. Org. Chem. 2006, 71, 4969–4979 and references cited therein.
- Fluoroalkene isosteres: (a) Abraham, R. J.; Ellison, S. L. R.; Schonholzer, P.; Thomas, W. A. *Tetrahedron* **1986**, *42*, 2101–2110; (b) Allmendinger, T.; Felder, E.; Hungerbühler, E. *Tetrahedron Lett.* **1990**, *31*, 7301–7304; (c) Boros, L. G.; De Corte, B.; Gimi, R. H.; Welch, J. T.; Wu, Y.; Handschumacher, R. E. *Tetrahedron Lett.* **1994**, *35*, 6033–6036; (d) Bartlett, P. A.; Otake, A. J. Org. Chem. **1995**, *60*, 3107–3111; (e) Welch, J. T.; Lin, J. *Tetrahedron* **1996**, *52*, 291–304; (f) Van der Veken, P.; Senten, K.; Kertèsz, I.; Meester, I. D.; Lambeir, A.-M.; Maes, M.-B.; Scharpé, S.; Haemers, A.; Augustyns, K. J. Med. Chem. **2005**, *48*, 1768–1780; (g) Dutheuil, G.; Couve-Bonnaire, S.; Pannecoucke, X. Angew. Chem., Int. Ed. **2007**, *46*, 1290–1292; (h) Narumi, T.; Tomita, K.; Inokuchi, E.; Kobayashi, K.; Oishi, S.; Ohno, H.; Fujii, N. Org. Lett. **2007**, *9*, 3465– 3468.
- Wipf, P.; Henninger, T. C.; Geib, S. J. J. Org. Chem. 1998, 63, 6088– 6089.
- 9. Bondi, A. J. Phys. Chem. 1964, 68, 441-451.
- (a) Howard, J. A. K.; Hoy, V. J.; O'Hagan, D.; Smith, G. T. *Tetrahedron* 1996, 52, 12613–12622; (b) O'Hagan, D.; Rzepa, H. S. *Chem. Commun.* 1997, 645–652; (c) Plenio, H. *Chem. Rev.* 1997, 97, 3363–3384; (d) Hiyama, T.; Kanie, K.; Kusumoto, T.; Morizawa, Y.; Shimizu, M. *Organofluorine Compounds, Chemistry and Applications*; Yamamoto, H., Ed.;

Springer: Berlin, Germany, 2000; (e) Urban, J. J.; Tillman, B. G.; Cronin, W. A. J. Phys. Chem. A 2006, 110, 11120–11129.

- Dutheuil, G.; Lei, X.; Pannecoucke, X.; Quirion, J.-C. J. Org. Chem. 2005, 70, 1911–1914.
- Copper- or SmI₂-mediated reductive defluorination: (a) Otaka, A.; Mitsuyama, E.; Watanabe, H.; Oishi, S.; Tamamura, H.; Fujii, N. Chem. Commun. 2000, 1081–1082; (b) Otaka, A.; Watanabe, H.; Mitsuyama, E.; Yukimasa, A.; Tamamura, H.; Fujii, N. Tetrahedron Lett. 2001, 42, 285–287; (c) Otaka, A.; Watanabe, H.; Yukimasa, A.; Oishi, S.; Tamamura, H.; Fujii, N. Tetrahedron Lett. 2001, 42, 5443–5446; (d) Otaka, A.; Watanabe, J.; Yukimasa, A.; Sasaki, Y.; Watanabe, H.; Kinoshita, T.; Oishi, S.; Tamamura, H.; Fujii, N. J. Org. Chem. 2004, 69, 1634– 1645; (e) Niida, A.; Tomita, K.; Mizumoto, M.; Tanigaki, H.; Terada, T.; Oishi, S.; Otaka, A.; Inui, K.; Fujii, N. Org. Lett. 2006, 8, 613–616; (f) Narumi, T.; Niida, A.; Tomita, K.; Oishi, S.; Otaka, A.; Ohno, H.; Fujii, N. Chem. Commun. 2006, 4720–4722; (g) Tomita, K.; Narumi, T.; Niida, A.; Oishi, S.; Ohno, H.; Fujii, N. Biopolymers 2007, 88, 272–278.
- R₃Al-copper-mediated alkylative defluorination: (a) Okada, M.; Nakamura, Y.; Saito, A.; Sato, A.; Horikawa, H.; Taguchi, T. *Chem. Lett.* **2002**, 28–29; (b) Nakamura, Y.; Okada, M.; Horikawa, H.; Taguchi, T. *J. Fluorine Chem.* **2002**, *117*, 143–148; (c) Okada, M.; Nakamura, Y.; Saito, A.; Sato, A.; Horikawa, H.; Taguchi, T. *Tetrahedron Lett.* **2002**, *43*, 5845–5847; (d) Nakamura, Y.; Okada, M.; Sato, A.; Horikawa, H.; Koura, M.; Saito, A.; Taguchi, T. *Tetrahedron* **2005**, *61*, 5741–5753; (e) Nakamura, Y.; Okada, M.; Koura, M.; Saito, A.; Sato, A.; Taguchi, T. *J. Fluorine Chem.* **2006**, *127*, 627–636.
- Copper-mediated reduction of γ-substituted-α,β-enoates: (a) Ibuka, T.; Aoyagi, T.; Yamamoto, Y. *Chem. Pharm. Bull.* **1986**, *34*, 2417–2427; (b) Fujii, N.; Habashita, H.; Shigemori, N.; Otaka, A.; Ibuka, T.; Tanaka, M.; Yamamoto, Y. *Tetrahedron Lett.* **1991**, *32*, 4969–4972; (c) Ibuka, T.; Yoshizawa, H.; Habashita, H.; Fujii, N.; Chounan, Y.; Tanaka, M.; Yamamoto, Y. *Tetrahedron Lett.* **1992**, *33*, 3783–3786.
- (a) Ibuka, T.; Aoyagi, T.; Kitada, K.; Yoneda, F.; Yamamoto, Y. J. Organomet. Chem. 1985, 287, C18–C22; (b) Chounan, Y.; Ibuka, T.; Yamamoto, Y. J. Chem. Soc., Chem. Commun. 1994, 2003–2004; (c) Chounan, Y.; Horino, H.; Ibuka, T.; Yamamoto, Y. Bull. Chem. Soc. Jpn. 1997, 70, 1953–1959.
- Honda, T.; Wakabayashi, H.; Kanai, K. Chem. Pharm. Bull. 2002, 50, 307–308.
- Oppolzer, W.; Dupuis, D.; Poli, G.; Raynham, T. M.; Bernardinelli, G. Tetrahedron Lett. 1988, 29, 5885–5888.
- Relatively lower yield observed in the reaction with the higher order cuprate can be partly due to cleavage of chiral auxiliary by a small amount of MeLi remaining in the reaction media.
- 19. Although the exact mechanism of the described reductive defluorination is unclear at this stage, single electron transfer from an organocopper to the substrate is responsible for the observed results.^{12d,14,15}
- (a) Tardella, P. A. *Tetrahedron Lett.* **1969**, *10*, 1117–1120; (b) Nishiyama,
 H.; Sakuta, K.; Itoh, K. *Tetrahedron Lett.* **1984**, *25*, 223–226; (c) Nishiyama, H.; Sakuta, K.; Itoh, K. *Tetrahedron Lett.* **1984**, *25*, 2487–2488; (d) Suzuki, M.; Yanagisawa, A.; Noyori, R. J. Am. Chem. Soc. **1985**, *107*, 3348–3349; (e) Suzuki, M.; Yanagisawa, A.; Noyori, R. J. Am. Chem. Soc. **1988**, *110*, 4718–4726.
- 21. A trace amount of γ -alkylated regioisomer was observed by RP-HPLC.
- Fluoroalkene compounds obtained in this study have coupling constants in a range of J_{HF}=35.2-37.8 Hz. These values are consistent with those of compounds possessing (Z)-fluoroolefin units. See: Waschüsch, R.; Carran, J.; Savignac, P. *Tetrahedron* **1969**, *52*, 14199–14216.
- See supplementary data, and Ibuka, T.; Habashita, H.; Funakoshi, S.; Fujii, N.; Baba, K.; Kozawa, M.; Oguchi, Y.; Uyehara, T.; Yamamoto, Y. *Tetrahedron: Asymmetry* **1990**, *1*, 389–394.
- Fujii, N.; Oishi, S.; Hiramatsu, K.; Araki, T.; Ueda, S.; Tamamura, H.; Otaka, A.; Kusano, S.; Terakubo, S.; Nakashima, H.; Broach, J. A.; Trent, J. O.; Wang, Z.; Peiper, S. C. Angew. Chem., Int. Ed. 2003, 42, 3251–3253.
- 25. Cavelier, F.; Enjalbal, C. Tetrahedron Lett. 1996, 37, 5131–5134.
- Williams, R. M.; Cao, J.; Tsujishima, H. Angew. Chem., Int. Ed. 2000, 39, 2540–2544.
- 27. Fukuyama, T.; Cheung, M.; Kan, T. Synlett 1999, 1301-1303.

- (a) Barlos, K.; Gatos, D.; Kallitsis, J.; Papaphotiu, G.; Sotiriu, P.; Wenqing, Y.; Schäfer, W. *Tetrahedron Lett.* **1989**, *30*, 3943–3946; (b) Barlos, K.; Gatos, D.; Kapolos, S.; Papaphotiu, G.; Schäfer, W.; Wenqing, Y. *Tetrahedron Lett.* **1989**, *30*, 3947–3950; (c) Barlos, K.; Gatos, D.; Kapolos, S.; Poulos, C.; Schäfer, W.; Wenqing, Y. *Int. J. Pept. Protein Res.* **1991**, *38*, 555–561.
- (a) Shioiri, T.; Yamada, S. Chem. Pharm. Bull. 1974, 22, 849–854; (b) Shioiri, T.; Yamada, S. Chem. Pharm. Bull. 1974, 22, 854–858; (c) Shioiri, T.; Yamada, S. Chem. Pharm. Bull. 1974, 22, 859–863.
- Miller, S. C.; Scanlan, T. S. J. Am. Chem. Soc. 1997, 119, 2301– 2302.