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Summarv: 3-phenylthio-2-(trimethylsilylmethyl)propene is a convenient conjunctive reagent for the 
preparation of methylenecyclohexanes via a [3+3] annulation The trimethylsilyl group facilitates the 
Lewis acid catalyzed allylation of an aldehyde or acetal while the phenylthio group directs a 6- 
endo-trig radical cyclization reaction. 

In connection with a synthetic project, we became interested in exploring methods of 

convertmg a 3-hydroxyaldehyde Into a 3-hydroxycyclohexanone (see Scheme I). While several 

scenarios can be envisaged for such a transformation l, the need for stereoselectivity and for mild 

reaction conditions prompted us to investrgate a free radical based protocoL2 

Our strategy was based on two well known C-allylation reactions Lewis acid catalyzed 

addition of allylsilanes to aldehydess (formally, a “two electron” process) and free radical mediated 

allylation using allylic sulfides 2,4,5 (formally, a “one electron” process). The combination of these 

two processes leads to the consideration of 3-phenylthio-2-(trimethylsilylmethyl)propene (1)s as a 

conjunctive reagent in a [3+3] annulation process (see Scheme 1). 

Our plan starts with an aldehyde bearing a substltuent capable of converslon into a carbon 

centered radrcal at the 3 posltion. After Lewis acid catalyzed addition of 1 and generation of the 

radical, a regioselectlve @-endo-tng vs 5exo-trig) radical cyclization is required While there are 

many examples of highly regioselective ring closure of 5-hexenyl radicals in the 5-exo-trrg sense2, 

reports of high levels of 6-endo-trig selectivity are less common 2.7 We were hopeful of achlevlng 

the desired selectivltysa since the presence of the phenylthiomethyl substituent should reduce the 

rate of 5-exo cyclization relative to that of 6-endo cyclization. 2 Moreover, the presence of the allyllc 

phenylthio group mlght*h increase the rate of 6-endo cyclization and shouldsc-e allow for the use of 

the fragmentation methodza to generate the chain transfer agent This use of this method (as 

opposed to the tm hydride methodpa) should increase the lifetimes of intermediate radicals and 

facilitate the formation of the 6-endo cyclization product 

Scheme I 
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Table 1. [3+3] Annulation with 1 

Lewis Acid Catalyzed Addition 

w Substrate Methoda Produtib m Substrate Methoda Productb 

1. 2 TiCI4 6 (95%) 6 5a T1Cl4 1 la (>9 1, 56%)d 

2 3 TiCI4 7 (32%)c 7. 5a SnCl4 lfa (>9’1, 70%)d 

3. 4a T1C14 8a (1 1, 95%) 8. 5b TiCI4 I I b (4 I , m$ 

4. 4b Tic14 9a (1 1, 87%) 9. 5b SnCl4 lib (2 1, so%)d 
5 4c TiCI4 1Oa (1 :l, 83%) 

Free Radical Cyclizatlon 

10 6 A 12 (35%) 16. IOC B 17 (1.3:1, 61%)e 

11 7 A 13 (75%) 17. loci B 17 (1.311, 17%)e 

12. 8b A 14 (1.2:1, 60%)e 18. IOd C 17 (1.2 1, 61%)e 

13. 9b A 15 (1.3:1, 44%)e 19. IOe B 18 (1.4.1, 48%)e 

14. lob A 16 (1 .I :I, 55%p 20. 1 Oe C 18 (1.3:1, 58%)e 

15. 1oc A 17 (I .5.1, 25%)e 

(a) A. (BugSn)z, hv (Hg lamp), PhH, 1OOC; B: (Me$n)z, PhzCO, hv (Hg lamp or Rayonette [300 nm]), PhH, 

lO”C, C. (Me$nOCPh&, PhH, 8OcC (b) Values in parentheses refer to the ratto of diastereomers and the 
isolated yreld. (c) The dloxepane formed by intramolecular displacement of the bromide was also formed (30%). 
No attempt was made to optmnze the formation of 7. (d) The major isomer is assumed to be anti on the basis of 
analogy.3-1na (e) The major isomer is czs on the basis of ratio of the axial vs equator-A CBOR protons m the 11~ 
NMR spectrum. 
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To test our hypothesis, the readily available 2 9a was coupled3 with 1 in the presence of TICI~ 

to give the adduct 6 in 95% yield. Treatment of 6 with Bu3SnH (1.5 eq.) in refluxmg benzene 

containing AIBN provided 12 (30%) together with the reduced product 6 (X=H; 17%). By contrast, 

irradiation of a benzene solution of 6 and (BusSn)z with a medium pressure Hg lamp gave the 

cyclized product 12 (35%) in the absence of the reduced product. That the low isolated yield of was 

due to the volatlilty of 12 was evident when analogous treatment of 7 provided the 6-endo-trig 

cycllzation product 13 in 75% yield. The results of [3+3] annulation obtained with 1 and other 

acetals and aldehydes are presented in the Table l.9,11 

The reagent 1 (1 1 eq.) couples with acetals under TiCI4 (1 eq., -78*C) catalysis to give 

adducts In high yield (Table I, Entries 1-5) The addition of 1 to P-hydroxyaldehyde derivatives 

(Table I, Entries 6-9) is less efficient. The lower yields obtained in these cases is due to the 

instability of the substrates towards the Lewis acid. 10 Improved yields (and diastereoselectivity) 

were obtained with the benzyl ether derivative 5a, presumably due to the formation of a stable 

chelate.‘ob In our hands, best results were obtained in CH2Cl2 with 1 .l eq. of 1, 1.5 eq. of SnCl4, at 

-78--->OoG (Table I, Entry 7). 

Suitable substrates” underwent 6-endo-trig free radical cyclization using the fragmentation 

method.*a We typically employed (BusSn)z (1 eq.) with photochemical initiation (Hg lamp) as the 

source of the chain carrying organotin radicals (Method A) Because of the sensitivity of some 

substrates to prolonged Irradiation, we also investigated alternative methods for generating 

organotin radicals (Methods B, C). 12 By comparison, using the tin hydride method always gave a 

mixture of cycllzed and reduced products. For example, reaction of lob with PhsSnH (PhH, AIBN, 

80%) gave 16, 19 (as a 1:l mixture of 2 diastereomers), and the reduced products lob (X=H) and 

the S&!’ substitution’s congener lob (X=H, SPh--->SnPhs). 14 In no case were we able to detect or 

isolate products derived from a 5exo-trig cyclization.‘s 

In all cases examined, free radical cycllzation proceeded with poor stereoselectivity 15 

Changing the steric bulk of the substituents had little effect on the ratio of diastereomers produced 

(Table I, compare Entries 14, 15, 19 and 12-l 4) Similarly, changing the reaction temperature had 

only a modest effect on the stereoselectivity (Table I, compare Entries 17-20). As expected, 

subjecting the individual diastereomers to cycllzatlon gave identical results.17 

Further applications of this methodology will be reported in due course.18 
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