Highly enantioselective synthesis of α, α -disubstituted malonamic acids through asymmetric hydrolysis of dinitriles with *Rhodococcus* sp. CGMCC 0497[†]

Zhong-Liu Wu and Zu-Yi Li*

State Key Laboratory of Bio-organic & Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 354 Fenglin Road, Shanghai 200032, China. *E-mail: lizy@pub.sioc.ac.cn; Fax:* (+86)021-64166128; Tel: (+86)021-64163300-1406

Received (in Cambridge, UK) 31st October 2002, Accepted 3rd January 2003 First published as an Advance Article on the web 14th January 2003

Highly enantioselective hydrolysis of α, α -disubstituted malononitriles by the strain *Rhodococcus* sp. CGMCC 0497 expressing both nitrile hydratase and amidase activity to give (*R*)- α, α -disubstituted malonamic acids which could be converted to valuable (*R*)- or (*S*)- α -alkylated amino acids are reported and the yields of the products are improved remarkably at a lower reaction temperature.

Nitrile-converting enzymes have been known for several decades¹ and demonstrated great potential in organic synthesis. Moreover, organonitriles are versatile intermediates in organic synthesis and can be readily prepared by a number of methods. However, the substrates studied for nitrile-converting enzymes are still very limited² and the ability of the enzymes to catalyze stereoselective conversion remains largely unexploited. So far, most studies focus on the enantioselective conversion of racemic nitriles, such as α -alkyl nitriles, α -hydroxy nitriles, α -amino nitriles and β -acetoxy nitriles,³ while only a few on prochiral nitriles^{4,5} especially malononitrile derivatives.⁶

The products of asymmetric hydrolysis of α, α -disubstituted malononitriles catalyzed by nitrile-converting enzymes could serve as precursors of α -alkylated α -amino acids. This class of non-proteinogenic amino acids play an important role in the design of conformationally modified bioactive peptides and in the inhibition of enzyme activities.⁷ Their extensive use is only limited by the availability of enantiopure compounds in large scale.⁸ As a result, the synthesis of optically pure α -alkylated α -amino acids has attracted considerable attention in recent years.

We have screened and optimized the culture condition of the strain *Rhodococcus* sp. CGMCC 0497, which was isolated by our group and proved to have high nitrile-converting activity and enantioselectivity.⁹ We report here a highly efficient enantioselective hydrolysis of α, α -disubstituted malononitriles using *Rhodococcus* sp. CGMCC 0497 to afford (*R*)- α, α -disubstituted malonamic acids. We found that the results were improved remarkably when the reaction temperature decreased from 30 to 20 °C. A number of malonamic acid derivatives were obtained with excellent enantiomeric excesses and high yields.

The reactions were initially carried out at 30 °C, the conventional incubation temperature in asymmetric hydrolysis catalyzed by nitrile-converting enzymes. In accordance with the literature,⁶ α -butyl- α -methylmalononitrile can be converted to (*R*)- α -butyl- α -methylmalonamic acid neatly by the strain *Rhodococcus* sp. CGMCC 0497. However, when α -benzyl- α -methylmalononitrile **1a** was used as substrate, most probably due to the steric hindrance, the product isolated was a complex mixture of hydrolysis intermediates. After 24 h, the reaction gave a mixture of (*S*)-**2** (70%, 48% ee), (*R*)-**3** (19%, 72% ee) and **4** (8%). After 90 h, the reaction gave a mixture of (*S*)-**2** (22%, 99% ee), (*R*)-**3** (35%, 6% ee) and **5a** (41%, 88% ee)(Fig. 1). By prolonging reaction time to 112 h, the mixture converted to **5a**

† Electronic supplementary information (ESI) available: full experimental details. See http://www.rsc.org/suppdata/cc/b2/b210743k/

Fig. 1 Hydrolysis products of α -benzyl- α -methylmalononitrile 1a.

(52%, 95% ee) and **3** (44%, 1.2% ee). The high enantiomeric excess of **5a** encouraged us to better explore reaction conditions to improve its chemical yield.

It is well known that enzyme-catalyzed hydrolysis of nitriles proceeds by two routes: by nitrilase or by a combination of nitrile hydratase (NHase) and amidase through an intermediate amide.¹⁰ *Rhodococcus* sp. CGMCC 0497 acts mainly by the latter route.^{9b} The possible pathway of the hydrolysis of **1a** was illustrated as Scheme 1. It is clear that α -benzyl- α -methylmalonamic acid **5a** may derive from two ways: one involved 2-cyano-2-methyl-3-phenylpropionic acid **3** and the other involved α -benzyl- α -methylmalonamide **4**.

Scheme 1 Possible procedure of the hydrolysis of 1a.

Further experiments were carried out using racemic **3** and **4** as substrates respectively (Scheme 2). The transformation of racemic **3** did not occur at all after one day and **3** was recovered quantitatively, while the diamide **4** was converted to **5a** in 94% ee and >99% yield, which demonstrated that **5a** derived mostly from diamide **4** and the ratio of products **5a** to **3** depends on the value of k_3/k_2 .

Scheme 2 Hydrolysis of racemic 3 and 4.

In the successful application of NHase to the industrial production of acryamide, the reaction is performed at an especially low temperature (2-4 °C),^{11,12} which, as M. Kobayashi *et al.* explained, reduces the amidase activity and exerts little effect on the NHase activity.¹¹ This phenomenon promoted us to explore the possibility of enhancing the value of k_3/k_2 by decreasing reaction temperature. Expectedly, decreas-

10.1039/b210743k

ö

386

ing the reaction temperature to 20 $^{\circ}$ C increased the yield of **5a** to 84% and the enantiomeric excess was 96% ee.

The results of enantioselective hydrolysis of various α, α disubstituted malononitriles by *Rhodococcus* sp. CGMCC 0497 (Scheme 3) at 20 °C or 30 °C are summarized in Table 1.‡ As shown, in all cases, the chemical yields of α, α -disubstituted malonamic acids **5** were greatly improved at 20 °C compared to that at 30 °C and all the products were achieved in excellent enantioselectivity. The strain tolerates aromatic ring substituents in the *ortho-*, *meta-*, and *para-*positions and all *para*substituted substrates gave slightly high enantiomeric excesses than *ortho-* and *meta-* ones. 2-Phenylethyl-2-methylmalononitrile **1i** gave product 2-phenylethyl-2-methylmalonamic acid **5i** with 96% yield and >99% ee as the exclusive product at 20 °C.

Scheme 3 Asymmetric hydrolysis of α, α -disubstituted malononitriles.

Table 1 Enantioselective hydrolysis of various α , α -disubstituted malononitriles by *Rhodococcus* sp. CGMCC 0497

Entry ^a	Substrate	Х	T/°C	Yield (%)	ee (%) ^b
1	1b	p-CH ₃	30	31	>99
2	1b	p-CH ₃	20	58	>99
3	1c	p-F	30	43	>99
4	1c	p-F	20	80	>99
5	1d	p-Cl	30	42	>99
6	1d	p-Cl	20	83	>99
7	1e	p-Br	30	40	>99
8	1e	p-Br	20	81	>99
9	1f	p-MeO	30	30	>99°
10	1f	p-MeO	20	58	>99°
11	1g	m-Cl	30	40	97
12	1g	m-Cl	20	85	98
13	1h	o-Cl	30	34	98 ^c
14	1h	o-Cl	20	65	99 ^c
15	1i	Н	30	90	99^d
16	Ii	Н	20	96	>99e

^{*a*} All the reactions were carried out for 6 days at 30 °C or 7 days at 20 °C unless stated otherwise. ^{*b*} Determined by HPLC on a Chiralpak AS column with hexane–propan-2-ol mixtures unless stated otherwise. ^{*c*} Determined by HPLC on a Chiralcel OJ column. ^{*d*} The reactions were carried out for 90 h. ^{*e*} The reactions were carried out for 98 h.

The products of the enantioselective hydrolysis of α , α -disubstituted malononitriles, (*R*)- α , α -disubstituted malonamic acids **5**, could afford either (*R*)- or (*S*)- α -alkylated amino acids after routine conversion. For example, (*R*)- α -benzyl- α -methylmalonamic acid **5a** was transferred to (*R*)-**9** or (*S*)-**9** in a yield of 81% or 89%. (Scheme 4). α -Methylphenylalanine **9** is an efficient β -turn and helix former, much stronger than its non-methylated parent compound phenylalanine.⁸

In conclusion, we have demonstrated a successful application of the strain *Rhodococcus* sp. CGMCC 0497 in the asymmetric hydrolysis of α , α -disubstituted malononitriles to afford enantiopure (*R*)- α , α -disubstituted malonamic acids, which can be converted to either (*R*)- or (*S*)- α -alkylated amino acids. The new strategy to carry out the reaction at a lower temperature greatly improved the efficacy of the reaction.

We are grateful to the National Science Foundation of China (Grant No. 20032020) for financial support. We also thank

Scheme 4 Synthesis of either (*R*)- or (*S*)- α -alkylated amino acid: (a) DMF, EtBr, K₂CO₃, rt; (b) DMF, Hg(OAc)₂, NBS, EtOH, rt; (c) 20% HCl, reflux; (d) P₂O₅, toluene; (e) 3 N NaOH, THF, rt; (f) SOCl₂, NaN₃, MeOH.

Professor Lijun Xia and Miss Zuoding Ding for performing the HPLC analysis.

Notes and references

‡ A suspension of 10 g washed wet cells and 80 ml 0.1 mM potassium phosphate buffer (pH = 7.0) was incubated at 30 or 20 °C for 30 min with continuously magnetic stirring before the addition of 1 (100 mg in 100 μ l acetone). The reaction was quenched by centrifugation. The resulting supernatant was acidified and extracted with ethyl acetate and dried over Na₂SO₄. After concentration, the residue was purified by flash chromatography on silica gel (elute: petroleum ether–EtOAc–AcOH 150:100:1).

- K. V. Thimann and S. Mahadervan, Arch. Biochem. Biophys, 1964, 105, 133; Y. Asano, K. Fujishiro, Y. Tani and H. Yamada, Agri. Biol. Chem., 1982, 46, 1165.
- 2 J. Crosby, J. Moilliet, J. S. Parratt and and N. J. Turner, J. Chem. Soc., Perkin Trans. 1, 1994, 1679; M. Wieser and T. Nagasawa, in Stereoselective Biocatalysis, ed. R. N. Patel, Dekker, New York, 2000, pp. 461–486.
- M.-X. Wang, G. Lu, G.-J. Ji, Z.-T. Huang, O. Meth-Cohn and J. Colby, *Tetrahedron: Asymmetry*, 2000, **11**, 1123; S. Payne, S. Wu, R. D. Fallon, G. Tudor, B. Stieglitz, J. M. Turner and M. J. Nelson, *Biochemistry*, 1997, **36**, 5447; K. Yamamoto, K. Oishi, I. Fujimatsu and K. I. Komatus, *Appl. Environ. Microbiol.*, 1991, **57**, 3028; N. Layh, A. Stolz, S. Forster, F. Effenberger and H.-J. Knackmuss, *Arch. Microbiol.*, 1992, **158**, 405; A. M. Macadam and C. J. Knowles, *Biotechnol. Lett.*, 1985, **7**, 865; M.-X. Wang and S.-J. Lin, *J. Org. Chem.*, 2002, **67**, 6542; H. Idogaki, N. Kasai, M. Takeuchi, M. Hatada and T. Suzuki, *Tetrahedron: Asymmetry*, 2001, **12**, 369.
- 4 G. DeSantis, Z. Zhu, W. A. Greenberg, K. Wong, J. Chaplin, S. R. Hanson, B. Farwell, L. W. Nicholson, C. L. Rand, D. P. Weiner, D. E. Robertson and M. J. Burk, *J. Am. Chem. Soc.*, 2002, **124**, 9024.
- 5 F. Effenberger and S. Osswald, *Synthesis*, 2001, **12**, 1866; T. Beard, M. A. Cohen, J. S. Parratt, N. J. Turner, J. Crosby and J. Moilliet, *Tetrahedron: Asymmetry*, 1993, **4**, 1085; H. Kakeya, N. Sakai, A. Sano, M. Yokoyama, T. Sugai and H. Ohta, *Chem. Lett.*, 1991, 1823.
- 6 M. Yokoyama, T. Sugai and H. Ohta, *Tetrahedron: Asymmetry*, 1993, 4, 1081.
- 7 B. M. Trost and X. Ariza, *Angew. Chem., Int. Ed. Engl.*, 1997, 36, 2635 and references therein; D. Ma and K. Ding, *Org. Lett.*, 2000, 2, 2515; J. S. Clark and M. D. Middleton, *Org. Lett.*, 2002, 4, 765; T. Ooi, M. Takeuchi, M. Kameda and K. Maruoka, *J. Am. Chem. Soc.*, 2000, 122, 5228.
- 8 C. Cativiela and M. D. Diaz-de-Villegas, *Tetrahedron: Asymmetry*, 1998, **9**, 3517 and references therein.
- 9 (a) Z.-L. Wu and Z.-Y. Li, *Tetrahedron: Asymmetry*, 2001, 12, 3305; (b)
 Z.-L. Wu and Z.-Y. Li, *Biotechnol. Appl. Biochem.*, 2002, 35, 61.
- 10 K. Faber, Biotransformations in organic chemistry: a textbook, 4th ed., Spring-Verlag, Berlin, 2000.
- 11 M. Kobayashi, T. Nagasawa and H. Yamada, *TIBTECH*, 1992, 10, 402.
- 12 M. Kobayashi and S. Shimizu, Curr. Opin. Chem. Biol., 2000, 4, 95.