

Available online at www.sciencedirect.com

Bioorganic & Medicinal Chemistry Letters

Bioorganic & Medicinal Chemistry Letters 18 (2008) 1017-1021

BACE-1 inhibitors part 2: Identification of hydroxy ethylamines (HEAs) with reduced peptidic character

Brian Clarke, Emmanuel Demont,* Colin Dingwall, Rachel Dunsdon, Andrew Faller, Julie Hawkins, Ishrut Hussain, David MacPherson, Graham Maile, Rosalie Matico, Peter Milner, Julie Mosley, Alan Naylor, Alistair O'Brien, Sally Redshaw, David Riddell, Paul Rowland, Virginie Soleil, Kathrine J. Smith, Steven Stanway, Geoffrey Stemp, Sharon Sweitzer, Pam Theobald, David Vesey, Daryl S. Walter, John Ward and Gareth Wayne

Neurology and Gastrointestinal Centre of Excellence for Drug Discovery, GlaxoSmithKline R&D, New Frontiers Science Park, Third Avenue, Harlow, Essex CM19 5AW, United Kingdom

> Received 30 October 2007; revised 7 December 2007; accepted 11 December 2007 Available online 15 December 2007

Abstract—This paper describes the discovery of non-peptidic, potent, and selective hydroxy ethylamine (HEA) inhibitors of BACE-1 by replacement of the prime side of a lead di-amide **2**. Inhibitors with nanosmolar potency and high selectivity were identified. Depending on the nature of the P'_1 and P'_2 substituents, two different binding modes were observed in X-ray co-crystal structures. © 2007 Elsevier Ltd. All rights reserved.

The preceding paper in this series¹ described how a focused library of potential BACE-1 inhibitors delivered a hit (compound 1, Table 1), which was then optimised to give compounds such as 2, a sub-micromolar inhibitor of amyloid- β (A β 40 and A β 42) production in cells expressing amyloid precursor protein (APP) Wild-Type. A precise combination of *meta*-substituents on the phenyl ring of the non-prime side benzamide was found to be important for good potency and selectivity.

The next round of optimisation focused on modifications to the prime side. The strategy was to replace the amide bond-containing $P'_1 - P'_2$ fragment by groups with lower molecular weight, fewer heteroatoms and a lower polar surface area, in order to obtain inhibitors with improved potential for oral absorption and brain penetration.

The routes used to generate a library of such compounds are depicted in Figure 1 and involved either opening of

0960-894X/\$ - see front matter @ 2007 Elsevier Ltd. All rights reserved. doi:10.1016/j.bmcl.2007.12.019

commercially available epoxide 3 or reductive aminations using amine $4.^3$

In total, 150 potential inhibitors were prepared and four were found to have IC_{50} s of less than 200 nM (Fig. 2).

The first of these, compound 6, which incorporates a cyclohexylamine at the prime side, was especially interesting since it is only 10-fold less potent than lead compound 2, despite significant truncation (Table 2). Analogues containing cyclopentylamine or cycloheptylamine were \sim 10-fold less potent (compounds 7 and 8). Introduction of a heteroatom into the ring (compound 9) or replacing the cyclohexyl with cyclohexylmethyl (compound 10) was also detrimental to activity. Compounds in which the cyclohexyl ring was replaced with smaller alkyl fragments were also more than 10fold less potent than 6 (data not shown).

The co-crystal structure of inhibitor **6** with the enzyme⁴ showed that the cyclohexyl moiety was binding into the S'_1 pocket which contrasts with the observation that the peptidic prime side of inhibitor **2** binds into the S'_2 pocket (Fig. 3). It was difficult to pinpoint additional potential interactions within the pocket and consequently further derivatization of the cyclohexyl ring was not explored.

Keywords: Alzheimer; BACE-1; Aspartic protease; Hydroxy ethylamine.

^{*} Corresponding author. Tel.: +44 1279643468; fax: +44 1279622727; e-mail: emmanuel.h.demont@gsk.com

Table 1. Activity and selectivity of inhibitors 1 and 2

Compound	\mathbf{R}^1	\mathbb{R}^2	BACE-1 ^{a,b} IC ₅₀ (nM)	BACE-2 IC ₅₀ (nM)	Cat-D IC ₅₀ (nM)	$A\beta 40^{b,c} IC_{50} (\mu M)$	$A\beta42^{b,c}\ IC_{50}\ (\mu M)$
1	CH ₃ SO ₂ -	Н	5400 (3)	41770	7700	_	_
2		-NHEt	13 (2)	1810	2695	0.31	0.36

^a In all tables, IC₅₀s reported are means of the values of *n* different experiments, *n* being reported in bracket and identical for BACE-1, BACE-2 and Cat-D. Each IC₅₀ is within 3-fold of the mean value.

^b See Ref. 2 for protocol.

 c IC₅₀ values are means of at least two separate experiments. Each IC₅₀ is within 3-fold of the mean value.

Figure 1. Conditions and reagents: (a) NHR¹R², EtOH, reflux; (b) TFA, CH₂Cl₂, 0 °C or HCl, CH₃CN or Dioxan, 25 °C; (c) **5**, EDAC.HCl, HOBT, CH₂Cl₂ or DMF, 25 °C; (d) NH₃, MeOH/H₂O, 25 °C; (e) Z-Cl, NEt₃, DMF, 25 °C; (f) NH₄COOH, Pd/C, EtOH/H₂O, 60 °C; (g) aldehyde or ketone, AcOH, (CHCl₂)₂, NaHB(OAc)₃, 0 °C.

Figure 2. Activity of the four hits from the prime side replacement library.

The second hit (compound 11, Table 3) was tested as a mixture of diastereoisomers.⁵ However, the analogous dimethyl derivative 12 proved to be equipotent and the co-crystal structure of this inhibitor with the enzyme showed that the prime side adopted an extended conformation when interacting with the enzyme and could be superimposed on the peptidic prime side of compound 2 (Fig. 4).

The SAR around inhibitor 12 was investigated. Removal of both methyl groups from the carbon adjacent to the nitrogen led to a 10-fold decrease in potency (compound 13). Removal of one of the terminal methyl substituents (compound 14) also resulted in a significant reduction in potency. Incorporating a heteroatom in the

Table 2. Prime side SAR from inhibitor 6

Compound	R	BACE-1 IC ₅₀ (nM)	BACE-2 IC ₅₀ (nM)	Cat-D IC ₅₀ (nM)
2	N N N	13 (2)	1810	2695
6		180 (1)	5010	780
7	+	1120 (1)	12,020	2400
8	\sum_{x}	2450 (1)	41,690	10,960
9	s	650 (1)	5890	1550
10	\sim	5890 (1)	57,540	12,020

Compound	R	BACE-1 IC ₅₀ (nM)	BACE-2 IC ₅₀ (nM)	Cat-D IC ₅₀ (nM)
2		13 (2)	1810	2695
11	X	33 (2)	3090	1095
12		33 (1)	5890	2510
13	\times	305 (2)	3610	970
14	\times	550 (1)	30,200	10,720
15	× o	790 (2)	69,010	22,325

Figure 3. Superimposition of inhibitors 2 (red) and 6 (yellow) prime sides bound to BACE-1.

alkyl chain also led to at least a 10-fold reduction in potency (see compound **15** for a representative example) and replacement of the alkyl prime side of compound **12** by shorter branched alkyl chains always resulted in at least an order of magnitude loss of potency (data not shown).

Figure 4. Superimposition of compounds 2 (red) and 12 (blue) prime sides bound to BACE-1.

The similar potencies of compounds 11 and 12 were difficult to rationalize until the co-crystal structures of these compounds were superimposed onto those of the remaining hits from the initial array (compounds 16 and 17, Table 4). These inhibitors were as potent and selective as compound 12 but, interestingly, removal of

Table 4. Prime side SAR from inhibitors 16 and 17

Compound	R	BACE-1 IC ₅₀ (nM)	BACE-2 IC ₅₀ (nM)	Cat-D IC ₅₀ (nM)
2	H H	13 (2)	1810	2695
12		33 (1)	5890	2510
16	CF3	40 (1)	4070	5750
17	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	43 (1)	7590	5010
18	${\leftarrow}$	760 (1)	63,100	19,050
19	CF3	17 (1)	600	930
20	o-	1350 (1)	44,670	9770
21	↓ o I	2090	>10 ⁶	18,620

the *meta*-substituent from the phenyl ring gave a 50-fold reduction in potency (compound **18**). Di-methylation of the benzylic position of compound **16** gave compound **19** with similar potency but slightly lower selectivity.

Figure 5 shows the enzyme-bound conformations of the prime side of inhibitors 12 and 16 superimposed. The *meta*-CF₃ group of compound 16 fills the same subpocket as the terminal methyl substituent of compound 12 which may explain the similar loss of potency when these substituents are removed. The 10-fold difference in potency between dimethyl compound 12 and the unsubstituted analogue 13 is not replicated in compounds with a benzylic prime side. Here, compound 16 and the dimethyl analogue 19 show similar potency. It may be hypothesized that in the former case, the substituents are necessary to orientate the alkyl chain towards the crucial S'_2 pocket: filling this pocket is essential for good activity as shown by the significantly reduced

Figure 5. Superimposition of compounds 12 (blue) and 16 (red) prime sides bound to BACE-1.

potency of compounds lacking the *meta*- substituent or those in which the substituent is moved to the *ortho*or *para*-position (compare activities of **20** and **21** versus **17**).

Having identified benzylamines and, specifically, metasubstituted benzylamines as suitable prime side replacements, variations in the linker between the amine and the aromatic ring were explored. As shown in Table 5, compound 22, incorporating a phenyl prime side, was somewhat less potent than compound 18 whilst compound 23, with a phenethyl residue, had similar potency to 18. However, the potency of compound 23 was not significantly increased by substitution in the *ortho- meta*or *para*-positions (data not shown) and further efforts focused on the benzylamine series. Modelling based on co-crystal structures suggested that conformational restriction of the benzylic residue should be possible

Table 5. Chain length modification and constrained derivatives

Compound	R ^a	BACE-1 IC ₅₀ (nM)	BACE-2 IC ₅₀ (nM)	Cat-D IC_{50} (nM)
22		1700 (1)	21380	4680
23	\sim	600 (1)	3390	1780
24		160 (1)	3720	5250
25		34,670 (1)	93,330	10,230
26		14 (2)	370	380

^a See structure above in Table 4 for definition of R.

Table 6. Optimisation of the prime side substituent

Compound	1 R ^a	BACE-1 IC ₅₀ (nM)	BACE-2 IC ₅₀ (nM)	Cat-D IC ₅₀ (nM)
17	×~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	42 (1)	7590	5010
27		20 (1)	2000	3550
28	CI	83 (1)	15,140	5620
29		100 (1)	6920	5890
30	N,O,	330 (1)	33,100	26,300
31	N N	230 (1)	33,110	46,770

^a See structure above in Table 4 for definition of R.

Table 7. Cellular activity of representative inhibitors

Compound	BACE-1 IC ₅₀ (nM)	Αβ40 ^{a,b} IC ₅₀ (μM)	Αβ42 ^{a,b} IC ₅₀ (μM)
2	13 (2)	0.31	0.36
6	180 (1)		_
12	33 (1)	0.23	0.21
16	40 (1)	0.18	0.20

^a See Ref. 2 for protocol.

 b IC₅₀ values are means of at least two separate experiments. Each IC₅₀ is within 3-fold of the mean value.

and that the S-indane should be more potent than the corresponding R-isomer. This was confirmed experimentally (compounds 24 and 25) with the S-indane 24 showing a 5-fold improvement in potency compared with $18.^{6,7}$

Combining some of the observations described above, it was hoped that filling both the S'_1 and S'_2 pockets simultaneously might lead to increased potency but compound **26**, incorporating both the S'_1 cyclohexyl group and the S'_2 meta-methoxy benzyl group, was not significantly more potent than inhibitor **17** (3-fold) which is able to interact with only one of the prime-side pockets. Compound **26** was also less selective versus BACE-2 and Cat-D than compound **17**.

Further exploration of different *meta*-substituents on the phenyl ring did not lead to more potent inhibitors. A large range of lipophilic substituents was tolerated but no significant improvement in potency or selectivity was obtained compared with the initial hit **17** (Table 6, see representative examples **27** and **28**). Moreover, incorporation of additional substituents in the aromatic

ring resulted in no significant benefit in terms of potency or selectivity (compare for example **29** versus **17**). Replacement of the *meta*-substituted phenyl ring by *meta*-substituted heteroaromatic rings led to compounds such as **30** and **31** with decreased potency and selectivity.

In summary, it was shown that reduction in the peptidic nature of the prime side of compound 2 led to a range of nanomolar inhibitors of BACE-1 with two different binding modes and with improved cell potency when compared to 2 (Table 7).

The absorption and brain penetrance of these compounds were predicted to be sub-optimal (high PSA, CMR and MW, large number of HBAs and HBDs).⁸ We postulated that, with modest levels of CNS penetration, amyloid lowering in an animal model would most likely be achieved by a compound with low nanomolar potency in a cell-based assay.⁹ The further optimisation of this series of inhibitors towards highly potent, orally active inhibitors will form the subject of a subsequent publication.

References and notes

- 1. See the preceding paper.
- Hussain, I.; Hawkins, J.; Harisson, D.; Hille, C.; Wayne, G.; Cutler, L.; Buck, T.; Walter, D.; Demont, E.; Howes, C.; Naylor, A.; Jeffrey, P.; Gonzalez, M. I.; Dingwall, C.; Michel, A.; Redshaw, S.; Davis, J. B. J. Neurochem. 2007, 100, 802.
- 3. The synthesis of acid 5 is described in the preceding paper.
- 4. See preceding paper for references on BACE-1 construct. The X-ray data were collected at ESRF beamline ID14-4. The PDB deposition codes and refinement details for the BACE-1 complex crystal structures are: compound **2** (2vj6, 1.8Å resolution, R = 0.187, $R_{\text{free}} = 0.212$), compound **6** (2vj9, 1.6Å resolution, R = 0.203, $R_{\text{free}} = 0.232$), compound **12** (2vie, 1.9Å resolution, R = 0.191, $R_{\text{free}} = 0.216$) and compound **16** (2vj7, 1.6Å resolution, R = 0.209, $R_{\text{free}} = 0.231$).
- 5. The stereoisomers of compound 11 were not separated.
- 6. Similar conformational constraint of the phenethyl prime side did not give an improvement in potency (data not shown).
- 7. In a further optimised series of compounds, introduction of a *meta*-substituent into the *S*-indane did not lead to a significant improvement in potency. See following paper.
- For discussion on absorption and brain-penetration, see for examples: (a) Lipinski, C. A.; Lombardo, F.; Dominy, B. W.; Feeney, P. J. Adv. Drug Deliv. Rev. 1997, 23, 3; (b) Clark, D. E. J. Pharm. Sci. 1999, 88, 807; (c) Seelig, A. Eur. J. Biochem. 1998, 251, 252.
- It was felt that IC₅₀ ≈ 10 nM could be achieved in a cellbased assay, as it has been in the HIV protease field. See for example: Ami, E.; Nakahara, K.; Sato, A.; Nguyen, J.-T.; Hidaka, K.; Hamada, Y.; Nakatani, S.; Kimura, T.; Hayashi, Y.; Kiso, Y. *Bioorg. Med. Chem. Lett* 2007, *17*, 4213.