

Tetrahedron Letters 44 (2003) 489-491

TETRAHEDRON LETTERS

Synthetic studies on the dienophile unit of methyl isosartortuoate. Part 2: SmI₂-mediated 14-membered carbocyclization

Zhangyong Hong and Xingxiang Xu*

Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 354 Fenglin Road, Shanghai 200032, China Received 26 September 2002; revised 7 November 2002; accepted 15 November 2002

Abstract—The dienophile unit of methyl isosartortuoate has been synthesized. The 14-membered carbocycle was constructed by a SmI₂-mediated intramolecular Reformatsky reaction. The introduction of the oxo group at the γ -position of the α , β -unsaturated ester was achieved by rearrangement of an β , γ -epoxy ester. © 2002 Elsevier Science Ltd. All rights reserved.

In our previous letter,¹ we outlined our synthetic strategy and described the synthesis of the acyclic precursor **2** of the dienophile unit **1** of methyl isosartortuoate (Fig. 1). Herein we would like to report the construction of the 14-membered carbocycle and the elaboration of the dienophile **1**.

A number of methods have been developed for macrocarbocyclization,² among which the SmI₂-promoted intramolecular Reformatsky reaction reported by Inanaga in 1991³ is particularly attractive. It was thought that the distinct properties of samarium such as its large ionic radius, flexible coordination, and high oxophilicity would play an important role in facilitating the cyclisation. Thus, we chose to investigate its efficiency in the carbocyclization of the acyclic precursor **2**. α -Bromoester- ω -aldehyde **4** was initially prepared as outlined in Scheme 1.

Scheme 1. Reagents and conditions: (a) LDA, THF, TMSCl, Et₃N, -78° C; then NBS, rt, 90%; (b) Amberlyst 15, acetone, H₂O, 90%; (c) SmI₂, THF, 0°C, 1 mmol/2 h; (d) MsCl, Et₃N, CH₂Cl₂, rt; (e) DBU, toluene, reflux, 10 h, 60% for three steps.

Treatment of ester **2** with LDA/TMSCl/Et₃N followed by bromination with NBS gave the α -bromoester **3** in 90% yield. Hydrolysis of the acetal group⁴ afforded the

Figure 1.

0040-4039/03/\$ - see front matter @ 2002 Elsevier Science Ltd. All rights reserved. PII: S0040-4039(02)02603-5

Keywords: methyl isosartortuoate; dienophile unit; β , γ -epoxy ester rearrangement; SmI₂-mediated; carbocyclization.

^{*} Corresponding author. Fax: +86-21-64166128; e-mail: xuxx@ pub.sioc.ac.cn

required α -bromoester- ω -aldehyde 4. In the presence of an excess of SmI₂, the cyclization of 4 proceeded smoothly at 0°C to yield a multi-product isomeric mixture, which was mesylated and treated with DBU to give three chromatographically separable products (~1:2:1) in 60% overall yield. The two less polar products were characterized as the α , β -unsaturated esters 6a and 6b⁵ possessing a *cis*-cycloalkene differing in configuration at the C-9 protected hydroxyl group. The structure of the more polar component, 7a, was determined to be a rearranged product of 6a (see also Scheme 3).

After the successful macrocyclization, we focused our attention on the introduction of the oxo-substitutent at the γ -position of the α,β -unsaturated ester 6. Direct allylic oxidation using CrO₃⁶ or SeO₂,⁷ or allylic bromination⁸ of compound 6 proved to be unsuccessful. As an alternative, the rearrangement under basic conditions of an β,γ -epoxy ester offered a different approach.9 Compound 7a was thus treated with MCPBA at rt to yield the β , γ -epoxy ester **8** in 70% yield (Scheme 2). Under basic conditions, compound 8 smoothly rearranged to the γ -hydroxy- α , β -unsaturated ester 9. An improved result was obtained when the CH₃OH/CH₃ONa system was applied and 9 was obtained in 70% yield. The oxo group at the γ -position of the α,β -unsaturated ester had now been successfully introduced.

Based on the above results, and to take advantage of the isomers **6**, it was important to isomerize the double bond of the α,β -unsaturated esters **6** to give the corresponding β,γ -isomers. In general, this transformation can be achieved by treating α,β -unsaturated esters with bases. When epimers **6a** and **6b** were treated with DBU in toluene at reflux (Scheme 3), epimer **6a** afforded the desired β,γ -unsaturated ester **7a** in a ratio of 2.5:3 (**7a:6a**). However this isomerization failed for **6b**.¹⁰ This phenomenon reflects a subtle relationship between reaction properties and the conformations of large rings. For this reason, the C-9 configuration was determined in the acyclic precursor (the details have been presented in the previous letter¹), as *S* in **6a** and **7a**.

With respect to **6b**, the corresponding acyclic precursor **11b** was selected for inversion of the configuration (Scheme 3). Although Mitsunobu conditions or direct $S_N 2$ substitution of the mesylate derivative¹¹ of **11b**

Scheme 2. Reagents and conditions: (a) mCPBA, CH_2Cl_2 , 25°C, 70%; (b) CH_3OH , CH_3ONa , 70%; (c) TBSCl, DMAP, CH_2Cl_2 , Et_3N , rt, 90%.

failed to realize this conversion, it was converted into the useful compound 11a by repeated oxidation and reduction cycles.¹²

The final task was to form the dienophile structural unit. Obviously, it was necessary to remove or change the benzyl groups. Hydrogenation of compound 10 which possesses a bulky TBS group gave the corresponding saturated product. However, to our delight, hydrogenation of 8 with Pd(OH)₂/MeOH/EtOAc at rt afforded the desired compound 12 (Scheme 4). Experiments showed that 12 was unstable due to the presence of the epoxide and free hydroxy groups, and was also unable to undergo the basic rearrangement. Hence, the two free hydroxy groups needed to be reprotected. After several protecting groups had been exhausted, the ethoxyethyl ether (EE) and the trimethylsilyl (TMS) groups proved to be the protecting groups of choice, and compounds 13a and 13b were obtained in 75% and 70% yield respectively. The EE-protected compound 13a could be smoothly rearranged to 14a with CH₃ONa/CH₃OH and was further oxidized with Dess-Martin periodinane¹³ to give ketone 16a. But deprotection of 14a or 16a under acidic conditions gave a complicated mixture. For the TMS-protected compound 13b, since the TMS group was labile to the original rearrangement conditions (CH₃OH/CH₃ONa), milder basic conditions were examined. Fortunately, the rearrangement could be realized by treating 13b with DBU in refluxing toluene and the desired compound 14b was obtained in 90% yield. Deprotection of 14b with $NH_4F/MeOH^{14}$ gave the triol 15 quantitatively. To our disappointment, 15 could not be oxidized directly to the corresponding trione. However, after Dess-Martin periodinane oxidation of 14b, we obtained the desired compound 16b¹⁵ which is the bis-TMS-protected form of dienophile unit 1.

In summary, a SmI_2 -promoted 14-membered carbocyclization has been accomplished and the bis-TMS-protected compound **16b** has been synthesized, which is a dienophile for a total synthesis of methyl isosartortuoate. The synthesis of the natural product is still on going in this laboratory.

Scheme 4. Reagents and conditions: (a) $Pd(OH)_2$, CH_3OH , EtOAc, H_2 , 70%; (b) for 13a, ethyl vinyl ether, PPTS, CH_2Cl_2 , rt, 30 min, 75%; for 13b, TMSCl, Et₃N, DMAP, CH_2Cl_2 ;, rt, 1 h, 70%; (c) for 14a, CH_3ONa , CH_3OH , rt, 4 h, 70%; for 14b, DBU, toluene, reflux, 10 h, 90%; (d) NH_4F , CH_3OH , 25°C, 9 h, quantitatively; (e) Dess–Martin periodinane, Py, CH_2Cl_2 , 80%.

Acknowledgements

This work was supported by the Chinese Academy of Sciences and the National Natural Science Foundation of China.

References

- Hong, Z.-Y; Chen, X.-C.; Xu, X.-X. Tetrahedron Lett. 2003, 44, 485.
- 2. Tius, M. A. Chem. Rev. 1988, 88, 719.
- (a) Inanaga, J.; Yokoyama, Y.; Handa, Y.; Yamaguchi, M. *Tetrahedron Lett.* **1991**, *32*, 6371; (b) This cyclization method has been applied in the total synthesis of taxol. See: Mukaiyama, T.; Shiina, I.; Iwadare, H.; Saitoh, M.; Nishimura, T.; Ohkawa, N.; Sakoh, H.; Nishimura, K.; Tani, Y.; Hasegawa, M.; Yamada, K.; Saitoh, K. *Chem. Eur. J.* **1999**, *5*, 121.
- 4. Coppola, G. M. Synthesis 1984, 12, 1021.
- Physical and spectroscopic data. For 5a: [α]_D²⁰=-1.6 (c 1.25, CHCl₃); EI-MS (m/z, %) 535 (M⁺+1, 0.2), 427 (2.4),

ESI-MS (m/z, %) 535.5 (M+H⁺, 60.0); ¹H NMR (300 Hz, CDCl₃): δ 7.30 (m, 10H, ArH), 6.90 (m, 1H, vinyl H), 4.64 (m, 1H, CH₂Ph), 4.34 (m, 3H, CH₂Ph), 3.67 (s, 3H, OCH₃), 3.60 (m, 2H, OCH), 2.77 (m, 1H, allylic H), 2.25 (m, 1H, allylic H), 2.10 (m, 2H), 1.90 (m, 2H), 1.70 (m, 2H), 1.40–1.10 (m, 10H), 0.88 (m, 12H, 4 CH₃).

- 6. Mehta, G.; Reoldy, D. S. Synlett 1997, 612.
- Bestmann, H. J.; Schober, R. Angew. Chem., Int. Ed. Engl. 1985, 24, 791.
- Beccalli, E. M.; Majon, L.; Marchesini, A. J. Org. Chem. 1981, 46, 222.
- (a) Larcheveque, M. Synthesis 1983, 297; (b) Cory, R. M.; Ritchie, B. M.; Shrier, A. M. Tetrahedron Lett. 1990, 31, 6789.
- Other deconjugation methods such as LDA/TMSCl/HCl or photo rearrangement were tried, but did not isomerize the double bond of 6. See: (a) Danishefsky, S. J.; Armistead, D. M.; Wincott, F. E.; Selnick, H. G.; Hungate, R. J. Am. Chem. Soc. 1987, 109, 8117; (b) Hanessian, S.; Dube, D.; Hodges, P. J. J. Am. Chem. Soc. 1987, 109, 7063; (c) Mortezaei, R.; Awandi, D.; Henin, F.; Muzart, J.; Pete, J. P. J. Am. Chem. Soc. 1988, 110, 4824.
- (a) Corey, E. J.; Nicolaou, K. C.; Shibasaki, M.; Machida, Y. *Tetrahedron Lett.* **1975**, *37*, 3183; (b) Yankee, E. W.; Cooper, E. L. J. Am. Chem. Soc. **1974**, *96*, 5876.
- 12. Selective reduction of the ketone with NaBH₄-CeCl₃, LiAlH(OR)₃, DIBALH, or other reagents failed to improve the ratio of **11a**.
- (a) Dess, D. B.; Martin, J. C. J. Am. Chem. Soc. 1991, 113, 7277; (b) Ireland, R. E.; Liu, L. J. Org. Chem. 1993, 58, 2899.
- 14. Robins, M. J.; Zhang, W. Tetrahedron Lett. 1992, 33, 1177.
- 15. Physical and spectroscopic data for 16b: IR (film) 2958, 1726, 1691, 1437, 1251, 1078, 840 cm⁻¹; ESI-MS (*m/z*, %) 513.5 (M+H⁺, 5.0), 535.5 (M+Na⁺, 22.0); ¹H NMR (300 MHz, CDCl₃): δ 7.03 (s, 1H, vinyl H), 4.08 (m, 1H), 3.78 (s, 3H, OCH₃), 3.67 (m, 1H), 3.27 (m, 1H), 2.66 (m, 1H), 2.50 (m, 2H), 2.24 (m, 1H), 1.71 (m, 2H), 1.55 (m, 1H), 1.21–1.39 (m, 7H), 1.18 (m, 1H), 1.00 (d, 3H, *J*=6.9 Hz, CH₃), 0.87 (d, 3H, *J*=6.9 Hz, CH₃), 0.82 (d, 3H, *J*=6.9 Hz, CH₃), 0.76 (d, 3H, *J*=7.2 Hz, CH₃), 0.12 (s, 9H, 3 CH₃), 0.09 (s, 9H, 3 CH₃); HRMS (EI) calcd for C₂₇H₅₂O₅Si₂: 512.3354; found: 512.3343.