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A potential route to the topoisomerase | inhibitor hypoxyxylerone is demonstrated by a highly convergent synthesis of the penta(O-methyl)
derivative. The key step in the approach is an anionic homo-Fries rearrangement, little used to date in natural product synthesis and employed
here for the first time with a dinaphthalenic substrate, to access the pentacyclic system of hypoxyxylerone.

DNA topoisomerases play a fundamental role in the replica- potential route to the novel in vitro topoisomerase | inhibitor
tion, transcription, and recombination of DNAThese hypoxyxylerone ) is disclosed that should allow access not
ubiquitous enzymes, which create single- or double-strand only to the natural product but also to derivatives with greater
breaks (topoisomerases | and II, respectively), are the cellularbioavailability (Figure 1§,

targets of important antibiotic and anticancer dréigs.

Over the past 10 years, the number of topoisomerase ||HEEEEEEE—_——

inhibitors has grown considerably and now includes some

60 structurally diverse compounds obtained from a variety HO OH
of sources. Very few of these substances, however, dem- HO o @
onstrate in vivo antitumor activity; except for camptothecin @G C @

and related compoundsnly certain indolocarbazoles have X

to date provided encouraging resufitsn this paper, a OH O OH
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Hypoxylon,was later found to be an in vitro inhibitor of
topoisomerase 4.1t lacks in vivo solubility, however, and
thus the preparation of more soluble derivatives, in addition
to the novel pentacyclic compound itself, seemed a worth-
while pursuit. Scheme 1 summarizes retrosynthetically our
envisioned approach to hypoxyxylerone.

Scheme 1. Retrosynthesis of Hypoxyxylerone
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The key reaction in our planned approach was an anionic

homo-Fries rearrangement to convert estento the di-
naphthyl ketone3, which might then be transformed into
xanthone2 by debenzylation and cyclization. It was hoped

that this xanthone could then be reduced to access hy-

poxyxylerone and derivatives. The anionic homo-Fries
rearrangemerttike the anionic Fries rearrangeméritad

been used in synthesis, but had never been applied to
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naphthyl-naphthyl partners, nor even phenyl-naphthyl ones.
It appeared, though, to be ideally suited for use in this
approach since a hydroxymethyl group was present in the
final product.

A salient advantage of the homo-Fries rearrangement (and
the Fries) is that it offers convergency. For the preparation
of the homo-Fries substrate the similarly complex and
similarly substituted naphthalene unisnd6 were neces-
sary (Figure 2). While structures closely related to each had
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Figure 2. Naphthalene precursors.

previously been preparélthe syntheses suffer from low
yields and/or poor reproducibility, and thus a number of
modifications have been introduced.

For the synthesis of the naphthalene Uwimethyl 3,5-
dimethoxyphenylacetat&), easily obtained on a large scale
as described by Gaudry and co-work&rsyas used as the
starting material (Scheme 2). Hydrolysis Bffollowed by
exposure of the resulting acid to oxalyl chloride, provided
acid chloride8. Conversion of this substance into naphthalene
10 could be accomplished in 67% yield by successive
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a(a) K,COs, MeOH-H,0, 20°C, 16 h. (b) (COCH, DMF (cat.),
toluene, 0— 20 °C, 2 h. (c) (MeQC),CHNa, THF, 60°C, 16 h.
(d) MeSQH, 20°C, 4 h. (€) TBDMSCI, imidazole, DMF, 26C,
14 h. (f) DMS, KCQs, acetone, reflux, 16 h. (g) KF, HBr (cat.),
DMF, 20°C, 45 min. (h) BnBr, KCO;, DMF, 20°C, 4 h. (i) 10%
KOH, EtOH, reflux, 18 h.
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treatment with sodium dimethyl malonate and methane- resultant acid.5with potassium acetate in acetic anhydride,
sulfonic acid. The reported procedure (magnesium dimethyl according to the procedure outlined by Rizzacasa and
malonate, phosphoric acigphosphorus pentoxide) proceeded collaborators? than through the Giles approach that involved
in only 36% yield'? This naphthalene was found to be highly Stobbe condensation with dimethyl succinate and cyclization
susceptible to oxidation, and therefore it was best usedwith sodium acetate in acetic anhydride (51% versus 30%
directly. Selectivetert-butyldimethylsilylation of the more  overall yield). Compound6 so obtained was next converted,
accessible hydroxyl ir10, followed by methylation of the  as described by Lown and co-workéfsyith methanol and
one remaining, delivered the fully protected naphthatthe  potassium carbonate in acetone into naphtfovhich was

in 63% yield. After silyl— benzyl protecting group exchange methylated (rather than isopropylatédand then reduced
to afford 12, saponification led to the desired addThe to provide alcoholl8 in excellent yield.

overall yield of5 from ester7 was 21% for the nine steps
(84%/step).

The second unit, naphthaler@ was synthesized by
substantially modifying the procedure described by Giles and
collaborator§* (Scheme 3). It was found that esfies could

The acetate 018, obtained conventionally, was dibromi-
nated to provide the highly substituted naphthaldr®e
Mono-debromination ofl9 was effected by exposure to
trifluoroacetic acid and 1,2,4-trimethoxybenzene (TMB) in
refluxing dichlorometharté to give a difficult to separate
mixture of the desired produéttogether with TMB and
5-bromo-TMB. Fortunately, purification of the mono bro-

Scheme 3 mide could be easily accomplished after saponification to
OMe naphthol6. This esterification partner of acil was thus
COH a obtained in nine steps from aldehyti®with an overall yield
+ prhy=__ — of 29% (87%/step).
MeO CHO COMe 82%

13 14 The anionic homo-Fries substrate, estecould readily
OMe OMe OAc be formed by Mitsunobu coupling of the naphthalene units

/@\/ECOZH b 5 and 6 (Scheme 4). The key acyl transfer proceeded
MeO ZScoMe 83%  Meo ‘ ‘ CO,Me
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a(a) Benzene, 20C, 12 d. (b) AgO, AcOK, reflux, 15 min. (c) OMe OMe O OMe OMe
MeOH—acetone, KCO;, 35 °C, 3 h. (d) DMS, KCO;, acetone, 20
reflux, 16 h. (e) LiAlH,, THF, 20°C, 1 h. (f) AgO, pyr., 50°C,
1.5 h. (g) Be, AcOH, 20°C, 20 min. (h) CECO,H, 1,2,4-TMB,
CHCl,, reflux, 12 h. (i) 1% KOH, MeOH, 20C, 30 min.
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OMe OMe O

reaction with ylide 14* followed by cyclization of the OMe
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Scheme 58

a(a) LiCl, DMF, 110°C, 13 h. (b) BH-Me,S, CHCl,, reflux,
48 h. (c) TMSOTf, CHClI,, 2,6-lutidine, 0°C, 2.5 h. (d) Pd(OAg)
MeCN, reflux, 12 h.

of this first reported naphthonaphthone preparation through

an anionic homo-Fries reaction was particularly satisfying.
Conversion of20 into xanthone2 was effected without

purification of intermediates by methylation (49, CHgl)

(15) Doulut, S.; Dubuc, I.; Rodriguez, M.; Vecchini, F.; Fulcrand, H.;
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of the free hydroxyl group, followed by hydrogenolysis of
the benzyl group in the presence of Pearlman’s catalyst and
cyclization in methanolic KOH. Xanthon@ could be
obtained pure by simple trituration in 91% overall yield. It
is worth pointing out that this B-ring Oattack on the pro
D-ring is essential in order to achieve the desired regio-
chemical outcome in the cyclization; pro D-ring” @ttack

on the B-ring results in the formation of the regioisomeric
xanthone.

Because exposure of the xanthol derived fr@mto
solvolytic conditions failed to generate the dienone ether
motif of hypoxyxlerone, a reductieroxidation strategy was
pursued (Scheme 5). Thus, the B-ring methoxyl in xanthone
2 was selectively demethylated (possible because of carbonyl
adjacency) with lithium chloride in DM and the carbonyl
was reduced with excess borane in dichloromethane. Silyla-
tion of the free OH in22 set the stage for Saeguskio
dehydrosilylatioA? with palladium(ll) acetate, which gave
pentaQ-methy) hypoxyxylerone23in 50% overall yield?*

This highly convergent first approach to hypoxyxylerone
and congeners, which features a novel naphthyl-naphthyl
anionic homo-Fries reaction, is reasonably short and ef-
ficient: 18 linear steps with an overall yield of 5% (85%/
step). Further developments will be publish in due course.
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