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Graphene has attracted more attention as advanced electrodes for supercapacitors due to its unique
geometry structure and outstanding physicochemical property. But its low specific capacitance, espe-
cially low volumetric capacitance, has greatly restricted the practical application of graphene electrode
materials. Herein, we synthesized nitrogen-containing graphene networks by using 2, 3-diaminopyridine
(O-DAP) as functional agent in a facile hydrothermal route. During the hydrothermal process, not only
the pyrrolic-N, but also the pyrazine-N is produced in the graphene lattice at the edge/defect site of
graphene because of the double —NH, in DAP reactant. Owing to the high nitrogen content (17.5 at%),
special nitrogen configuration, and high density (1.66 gcm™3), the N-containing graphene networks
present high gravimetric capacitances up to 353 Fg~! and high volumetric capacitances over 586 F cm—>
in 1M H,SO4 electrolyte. More remarkably, the N-containing graphene electrodes exhibit exceptional
rate capability with a capacitance retention of 80.6% at a high current density of 20Ag~! and good
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cycling stability of 91.5% retention after 5000 cycles in a symmetrical two-electrode configuration.

© 2019 Elsevier Ltd. All rights reserved.

1. Introduction

Graphene is an attractive electrode material for supercapacitors
due to its high theoretical specific capacitance (550 Fg~!), superior
electrical conductivity (107 Sm™!), and good mechanical stability
[1]. However, most pure graphene-based materials deliver small
specific capacitances (below 200Fg~!) because of irreversible
agglomeration during the fabrication process [2]. Creating “porous
graphene” has been recognized as a promising strategy to improve
the mass specific capacity of graphene electrode materials [3]. The
porosity of graphene could either come from the holes or pores in
the graphene mesh surface [4—7], or from the three-dimensional
network structure of graphene lamellae, such as aerosols [8—10],
hydrogels and foams [11—13]. Unfortunately, the density of those
porous graphene is generally less than 0.5 g cm™—> [14] (some even
lower than 0.1 gcm™3 [9,12]), leading to a low volumetric capacity.
Since supercapacitors are usually employed in a limited space, such
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as mobile electronics and electric vehicles, the volumetric capacity
is a more important metric than gravimetric ones for practical
application of supercapacitors.

Recently, numerous experimental studies [15—23] have shown
that functionalizing and/or doping graphene with nitrogen can not
only modulate local electronic structures and improve the electrical
conductivity, but also facilitate the access of electrode surface area
to the electrolyte ions. Taking advantage of abundant functional-
ities on graphene oxide (GO) surface, N-containing graphene can be
easily synthesized in large scale by hydrothermal or solvothermal
treatment of GO with nitrogen containing precursors. Various ni-
trogen containing molecules, such as non-aromatic diamine/tri-
amine [15], phenylenediamine [16,17], hydroxylamine [18],
formamide [2], ammonium bicarbonate [19], urea [20,21], hexa-
methylenetetramine [22], amitrole [23] et al., have been utilized as
the nitrogen source for N-containing graphene. Despite its
improved gravimetric performance, N-containing graphenes, in
most cases, remains have low volumetric performance because of
their porous structure as a result of well-spaced graphene frame-
work or activation. Depressing the porosity of N-containing gra-
phenes is expected to assure high density and high volumetric
capacitance, but the rate performance would be limited due to the
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long ion diffusion path. Hence, it is still a big challenge to obtain
graphene-based electrode materials with both high volumetric
capacity and good rate capability.

It has been found that nitrogen characteristic configuration,
such as pyrrolic-N, pyridinic-N, and quaternary-N, has significant
influence on the electrochemical performance of N-containing
graphene [20]. For examples, pyridinic-N and pyrrolic-N have been
proven to improve the charge mobility and increase the capacitance
through its reversible redox reaction especially in aqueous elec-
trolytes, whereas quaternary-N could increase the electrical con-
ductivity of graphene. Moreover, the nitrogen content and
functional sites also play an important role in their performance,
especially in terms of improving the rate capability [24]. In this
work, N-containing graphene network (up to 17.5 at%) was suc-
cessfully fabricated by employing 2, 3-diaminopyridine (O-DAP) as
functional agent. The chemical interaction between monomers and
GO and nitrogen configurations in graphene on the charge trans-
port properties were experimentally studied. The specific surface of
N-containing graphene was significantly reduced due to an accel-
erated restacking phenomenon with functionalizing process [25].
Even with a reduced specific surface area (43 m?g~!), the N-con-
taining graphene presents a considerably improved electro-
chemical performances with a high specific capacitance (up to
353Fg~! and 586Fcm~2at 0.1Ag~! in 1MH,S04 electrolyte
measured in three-electrode system, 263Fglat 05Ag™!
measured in two-electrode system), exceptional rate capability
(212Fg lat 20Ag™! in two-electrode system), and good cycling
stability (91.5% retention after 5000 cycles).

2. Experimental section
2.1. Synthesis of N-containing graphene networks

GO was prepared through a modified Hummers process with
natural graphite powder (average particle size of 20 um) [26]. The
N-containing graphene was synthesized as follows. First, a homo-
geneous GO solution was prepared by dispersing 160 mg GO and
0.2 mL ammonia solution in 40 mL deionized water after ultra-
sonication in a water bath at 100 W for 3 h. Then, 3.67 mmol O-DAP
were dissolved completely in 40 mL deionized water by stirring.
Next, the precursor O-DAP solution was mixed with the GO
dispersion under ultrasonication in a water bath at 100 W for 2 h
and transferred to autoclaves to perform a one-step hydrothermal
process at 165 °C for 12 h. Then, the hydrothermal products were
washed with diluted ethanol and water sufficiently to remove re-
sidual precursor and freeze-dried. The obtained products were
denoted as O-DAP-NG. In order to figure out the influence of ni-
trogen configuration on the electrochemical performance, 1,2-
diamino cyclohexane (O-DACH) was also used as functional agent
at the same procedure and denoted as O-DACH-NG. For compari-
son, the reduced GO was prepared under the same hydrothermal
procedure without adding nitrogen precursor and denoted as RG.

2.2. Characterizations

The morphology characteristics of samples were observed by
scanning electron microscope (SEM, JSM-6700F, Japan) and trans-
mission electron microscopy (TEM, JEM3010, Japan), respectively.
The surface area and pore structure of samples were analyzed on
aN, adsorption/desorption apparatus (Micromeritics ASAP Tristar
3020, USA) after degassing at 300 °C for 3 h. Raman spectra were
obtained on a spectrophotometer (LABRAM-010, France) using a
wave length of 633 nm. Fourier transform infrared spectroscopy
(FT-IR) spectra were recorded by a TENSOR27 spectrometer. X-ray
photoelectron  spectroscopy  measurements (XPS) were

characterized using an ESCALAB 250Xi spectrometer (USA). The
electrical conductivity was measured by a four-probe method (RTS-
8 Four-Point probe meter, China).

2.3. Electrochemical measurements

The working electrode was fabricated by loading a mixture of
active material (80 wt%), acetylene black (10 wt%) and polytetra-
fluoroethylene (10 wt%) on a stainless-steel mesh (as current col-
lector, 1 cm x 1 cm). Then, the electrodes were dried at 80 °C under
vacuum overnight. The mass loading of the active material on the
current collector was measured to be 2mgcm~2. The electro-
chemical performance was evaluated on a CHI660E electrochemical
workstation (China) at 25°C, including galvanostatic charging/
discharging (GCD), cyclic voltammetry (CV), and electrochemical
impedance spectroscopy (EIS). In a three-electrode configuration,
platinum sheet and Ag/AgCl electrode were used as the counter and
the reference electrode, respectively. GCD and CV tests were
recorded between —0.2 and 0.8 V (vs. Ag/AgCl) in 1 mol L~ H,S04
aqueous electrolyte. EIS was carried out at an open circuit potential
of a 5.0 mV amplitude in a frequency range of 0.01 Hz—100 kHz. In
the symmetrical two-electrode configuration, two N-containing
graphene electrodes with the same mass were used as electrodes
and separated by a glassy fibrous separator. CV and GCD tests of the
two-electrode system were recorded between 0 and 1V.

The specific gravimetric capacitance (Cg, F g~ 1) in the three-
electrode system was calculated by equation (1) [27]:
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where C (F g1) is the specific capacitance, I (A) is the discharge
current, ¢ (s) is the discharge time, [ Vdt is the integral current area,
V (V) is the potential with initial and final values of V; and Vj,
respectively, and m (g) is the mass of active materials loaded in
working electrode.

The density of electrode materials was determined by pressed
200 mg sample into a thick molds with a 10 mm diameter under
10 MPa for 2 min [28]. The press density was calculated by equation
(2):

p = M/(TT*1**T) (2)

where M (g) is weight of sample, r (cm) is the diameter of the mold
and T (cm) is the thickness.

The volumetric capacitance (Cy, Fcm~>) was calculated from the
following equation [28]:

G=pGC (3)

where p is the density of electrode materials (g cm ).

Specific capacitances of a single electrode derived from galva-
nostatic tests in the two-electrode system can be calculated from
equation (4) [29,30]:

4]

Cm = (dU/dtym

(4)

where Cp, (F g71) is the specific capacitance, I (A) is the constant
current, m (g) is the total mass of active materials loaded in the two
working electrodes, U (V) is the voltage.

Specific gravimetric and volumetric energy density (Ey,, Wh
kg~ ! and E,, Wh L™1), as well as power density (Pm, W kg~! and P,,
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W L) of the symmetric supercapacitors were obtained from
equations (5)—(8) [28—30]:

I JU(t)dt
En==67m ()
Em
Pm = E (6)
Ey = pEm (7)
P =2 (®)

where I (A) is the applied current, m (g) is the total mass of elec-
trodes, [ Udt is the area under the GCD curve, At(s) is the discharge
time.

3. Results and discussions
3.1. Structural and morphological characterization of samples

The possible formation mechanism of the hydrothermal reac-
tion of GO and O-DAP is shown in Fig. 1. GO sheets have their basal
planes decorated mostly with hydroxyl and epoxide groups, in
addition to carboxyl, hydroxyl and carbonyl groups located pre-
sumably at the edges. Therefore, GO reacted with DAP in the hy-
drothermal process can lead to the incorporation of pyridinic
nitrogen moieties into graphene sheets. Imine (-C=N-) group was
assembled by the reaction of 2,3-diaminopyridine with mono-
ketone (C=0), while the reaction of 2,3-diaminopyridine with o-
diketone (O=C—C=0) can produce more stable pyrazine ring [31].
In the meanwhile, DAP reacted with carboxyl (COOH) to form
amide and imidazole ring [16]. DACH reacted with GO in the hy-
drothermal process is similar to DAP with GO.

The morphologies and microstructures of N-containing gra-
phene networks and reduced graphene oxide (RG) were observed
by scanning electron microscopy (SEM) and transmission electron
microscopy (TEM). It can be discerned that the RG displays a typical
three-dimensional crumpled sheet-linked morphology (Fig. 2a and
b) [8]. O-DAP-NG and O-DACH-NG possess a similar morphology
but has much larger sheet size (Fig. 2c and e) than that of RG. This
might be due to the accelerated coalescing behavior ascribe to the
deoxygenation during hydrothermal reduction of GO with O-DAP
and O-DACH molecules [32,33]. The O-DAP-NG displays a flexible
graphene-like nanosheets with abundant wrinkles from the high
magnification SEM observation in Fig. 2d. Severe basal plane-to-

process

(6] COOH COOH

hydrothermal

basal plane aggregation of the nanosheets was observed in the O-
DACH-NG (Fig. 2f). These results indicate that the overlapping and
coalescing of the reduced graphene sheets may be accelerated due
to nitrogen functionalization [33]. Meanwhile, by comparing the
TEM images of O-DAP-NG and O-DACH-NG (Fig. 2g and h), it can be
seen that the sheets of O-DAP-NG is thinner and more stretchable
than that of O-DACH-NG.

In order to investigate the effect of nitrogen functionalization on
the specific surface area and pore structure of samples, N,
adsorption/desorption measurements were performed and pre-
sented in Fig. 3. As shown in Fig. 3a, RG displays a typical Type-1V
isotherm with a large hysteresis loop (H4) in the middle pressure
range (P/Pg = 0.45—0.95), suggesting the mesoporous characteris-
tics. The porosity parameters of the samples are listed in Table 1.
The BET specific surface area of RG was calculated to be 282 m? g™,
whereas the O-DAP-NG and O-DACH-NG show a much lower spe-
cific surface area, which is 43m?g~! and 9m?g !, respectively.
Possible reasons for the diminished surface area are the high
density of nitrogen functional moieties blocking the pores and the
accelerated restacking and coalescing phenomenon of reduced
graphene sheets induced by nitrogen functionalization [25,34]. The
pore size distribution (determined by the density functional theory,
DFT) is presented in Fig. 3b. The RG sample possesses a mesopore
size within the range of 2—10 nm. However, the O-DAP-NG and O-
DACH NG only have a weak and broad meso-to macroporous size
distribution in the range from 20 to 100 nm.

FT-IR spectroscopy were performed to explore the chemical
changes of the starting GO during the hydrothermal reaction, as
shown in Fig. 4a. The characteristic peaks of GO at 1054, 1120, and
1730cm ! can be assigned to the stretching vibration of alkoxyl
(C-0), epoxy (C—0—C) and carbonyl (C=0) groups, respectively
[35]. A broad adsorption band appeared at 3000—3500cm™' is
related to the hydroxyl (—OH) groups on the GO structure. In the FT-
IR spectra of RG, residual oxygen functional groups were observed
such as the symmetrical stretching vibration of C—0—C at
1120 cm™ !, C=0 stretching at 1722 cm~!, —OH group at 3423 cm ™,
suggesting partial reduction of GO under hydrothermal condition.
For O-DAP-NG, the signal intensity of oxygen groups was remark-
ably decreased as most of them were removed during the hydro-
thermal process [36]. New peaks at 772cm~), 1192cm~' and
1566 cm™! were observed. The peak at 772 cm™! is attributed to
N—H in plane bending vibrations. The strong peak at 1566 cm ™' can
be attributed to the C=C/C=N stretching vibration mode of benzoid
rings in pyridine and pyrazine [16,37]. And the peak at 1192 cm ™!
also can be assigned to the characteristic peak of pyrazine [16,38].
The results indicate that pyrazine structures formed in hydrother-
mal process, as well as the pyridinic-N can be efficiently incorpo-
rated at the edge of graphene through them. It can be seen that the

Fig. 1. The possible formation mechanism of the hydrothermal process between GO and DAP
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200 nm

Fig. 2. SEM images of (a—b) RG, (c—d) O-DAP-NG, (e—f) O-DACH-NG and TEM images of (g) O-DAP-NG, (h) O-DACH-NG.
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Fig. 3. N, absorption-desorption isotherms (a) and the corresponding DFT pore size distribution (b) of RG, O-DAP-NG and O-DACH NG. (A colour version of this figure can be viewed

online.)

Table 1

Pore characteristics of RG and N-containing graphene networks.
Samples RG O-DAP-NG O-DACH-NG
Sger (m” g™ 1) 282 43 9
Pore volume (cm® g 1) 0.29 0.12 0.036
Average pore width (nm) 4.1 11.0 15.7
p(gcm3) 1.29 1.66 1.87

spectrum of O-DACH-NG also shows C—N bonds (1189 cm~!) and
C=N bonds (1572 cm™~ 1), implying the successful incorporation of
nitrogen into the reduced graphene oxide. Fig. 4b compares the
Raman spectrum of GO, RG, O-DAP-NG and O-DACH-NG. The
Raman spectrum of GO shows a broad G band at 1594 cm ' and aD
band at 1359 cm™!, which correspond to the D (related to the
disordered crystal structure) and G (associated with graphitic
structure) bands, respectively. This D band is ascribed to the sp>
amorphous carbons originated by oxidation. The Raman spectrum
of RG also displays the existence of D and G bands at 1345 and
1589 cm~!, but with an increased D/G intensity ratio (1.30)
compared to that in GO (0.86). This change suggests a greater
number of sp? domains with smaller size created in RG upon
reduction of the exfoliated GO [39]. Two major peaks at around

1325cm~! (D) and 1584 cm™~! (G) were observed for O-DACH-NG
and O-DAP-NG. The intensity ratio of D band to G band (Ip/I¢) tends
to increase in the order of RG, O-DACH-NG and O-DAP-NG, which is
1.30, 1.34 and 1.51, respectively. The highest Ip/I; ratio of O-DAP-NG
reveals more defects generating from nitrogen incorporation dur-
ing hydrothermal process than in O-DACH-NG [6]. In addition, a
small peak emerged at 1501 cm~! in O-DAP-NG further confirms
the formation of pyrazine structure by reaction between the two
amino groups on 2,3-DAP and two neighborhood oxygen functional
groups at the edge of graphene [16].

XPS were performed to further elucidate the chemical states and
surface composition of the N-containing graphene (Fig. 5, Table 2).
The survey spectrum (Fig. 5a) exhibits the presence of carbon (C),
nitrogen (N) and oxygen (O) elements in O-DAP-NG and O-DACH-
NG, whereas RG only has C and O elements. The oxygen content of
RG is 13.7%, which is much lower than that of graphene oxide,
suggesting a successful removal of oxygen functional groups. The
content of nitrogen in O-DAP-NG is up to 17.5 at%, which is much
higher than that of 0O-DACH-NG (6.9 at%), and also higher than most
other N-containing carbon materials (see Table 3). Furthermore, the
high-resolution N 1s spectrum of O-DAP-NG and O-DACH-NG
(Fig. 5b and c) can be deconvoluted into four peaks locating at
398.8eV,399.4 eV, 400.4 eV and 401.5 eV, which can be assigned to
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Fig. 4. FT-IR spectra (a), Raman spectra (b) of GO, RG, O-DAP-NG and O-DACH NG. (A colour version of this figure can be viewed online.)
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viewed online.)

Table 2
The percentage mass content of elements, relative nitrogen content of samples determined by high-resolution XPS survey and the electronic conductivity.
Sample C(at O (at N (at N distribution (%) Electronic conductivity (S
9 9 -1
%) %) *) Pyridinic-N Amine-N Pyrrolic-N Quaternary-N cm™)
(398.7£0.1eV) (399.4£0.1eV) (400.4 +0.1eV) (401.5+0.1eV)
RG 863 13.7 0.0 - - - - 55
0-DAP-NG 772 54 17.5 446 214 26.8 71 7.3
0-DACH- 864 6.7 6.9 31.5 389 26.5 3.1 6.8

NG
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Table 3

Comparison of volumetric capacitance and rate capability of different carbon materials.

Carbon sample Sger (M2 g~ 1) N content (at%) Cv* (Fem™3) Cs(Fg™) Rate (Fg™ ') Electrolyte Ref.
N-doped graphene 532 7.7 387 (1)* 234 (10)* 6 M KOH [20]
N-doped porous carbon 1569 6.5 377 (0.2) 232 (20) 1 M H,S04 [45]
N-doping carbon 1004 8.7 180 (1) 140 (20) 6 M KOH [53]
N-doped graphene 29 53 214 (0.1) * 96 (5) * 1 M H,S04 [31]
3D N-doped graphene 627 9.2 408 (1)* 255 (10)* 1 MH,S04 [49]
N-doped mesoporous carbon sphere 439 53 231 (1)* 200 (20)* 6 M KOH [43]
N-doped holey graphene 605 34 439 (0.1) 375(0.1) * 196 (100)* 6 M KOH [28]
N-doped graphene 197 7.7 438 (0.5) 334 (0.5)* 226.0 (20)* 6 M KOH [54]
N-doped mesoporous carbons 489 5.3 200 (0.1) 190 (0.1) 152 (20) 1MH,S0,4 [55]
N-doped graphene 485 4.4 390 (0.5) 255 (1)* 225(20) * 6 M KOH [2]
N-doped graphene film — 13.9 711 (0.5) 458 (0.5) 443 (20) 1 MH,S04 [50]
N-enriched porous carbon/graphene 915 0.3 365 (0.05) 339 (0.05) 195 (20) 6 M KOH [47]
Graphene hydrogel 39 1.2 294 (0.5) 151 (0.5) 120 (10) 6 M KOH [48]
N-containing graphene 43 17.5 586 (0.1) 261 (1) 212 (20) 1 MH,S04 This work

C,: the volumetric specific capacitance.

Cs: the gravimetric specific capacitance.

*: the specific capacitance in three-electrode systems.

The value in the brackets means the current density (A g™1).

pyridinic-N/pyrazine-N/imines [40], amines, pyrrolic-N, and qua-
ternary nitrogen, respectively. Notably, the pyridinic-N content
reaches 7.8 at% in O-DAP-NG and constitutes 44.6% of the total ni-
trogen content, while the pyridinic-N content in O-DACH-NG re-
mains at relatively low levels (2.2 at%). Besides improving the
wettability of electrode, the incorporation of pyridinic-N/pyrazine-
N and pyrrolic-N could offer additional capacitance through the
Faradaic redox reactions, especially in acidic aqueous electrolytes
[41]. Furthermore, the presence of graphitic-N could improve the
conductivity of the N-containing graphene [33], which can be
confirmed by the measurements of intrinsic electronic conductiv-
ity, as shown in Table 2.

3.2. Electrochemical characterization of samples

Electrochemical performances of N-containing graphene and RG
for supercapacitors were first estimated using a three-electrode
system in 1 M H;SO4 aqueous solution. Fig. 6a compares the CV
curves of the electrodes at a scan rate of 5mV s~ .. The RG electrode
shows a nearly rectangular CV shape, indicative of a typical electric
double-layer capacitive (EDLC) behavior. Obviously, much larger
capacitive response with distinct redox peaks can be seen for the O-
DAP-NG and O-DACH-NG electrodes, indicating the presence of a
strong pseudocapacitive behavior in addition to EDLC. These redox
reactions probably based on the protonation of pyridinic-N and
pyrrolic-N atoms in acidic medium [42]. Furthermore, the O-DAP-
NG electrode exhibits a stronger capacitive response than O-DACH-
NG, indicating that the high nitrogen content and suitable nitrogen
configuration have greatly positive effect on enhancing the specific
capacitance of graphene materials. The charge/discharge curves of
electrode (Fig. 6b) were also recorded. The RG exhibits nearly linear
in shape, again indicative of the ideal EDLC behavior. In contrast,
the O-DAP-NG and O-DACH-NG electrodes show distorted trian-
gular shape, further demonstrating the combination effect of
pseudocapacitance and EDLC. The O-DAP-NG electrodes exhibit the
longest charge-discharge time, in accordance with the CV results.
The specific capacitance of O-DAP-NG, O-DACH-NG and RG calcu-
lated from the GCD curves is 353 Fg~', 244Fg ' and 176 Fg 'ata
current density of 0.1 Ag~!, respectively. Taking the very small
specific surface area of the N-containing graphene into consider-
ation, the capacitance should mainly come from pseudocapaci-
tance. More importantly, the volumetric specific capacitance of O-
DAP-NG is as high as 586 Fcm > (353 Fg~ !, 1.66 g cm—>) at a current
density of 0.1 Ag~!, which is superior to most N-containing carbon

materials at the same current density (See Table 3). EIS was carried
out to gain a deep understanding of the capacitive property of N-
containing graphene electrodes, as shown in Fig. 6¢c. The resulting
Nyquist plots can be well fitted by the equivalent circuit model
(inset). The x-intercept of the semicircle in the high frequency re-
gion corresponds to the bulk solution resistance (Rs) [43]. The Rs of
all three electrodes are similar (0.85 Q). The diameter of the semi-
circle represents the charge-transfer resistance (Rt) [43]. The Rt
values for the O-DAP-NG, O-DACH-NG and RG electrodes are 0.85,
1.63 and 1.96 Q, respectively. The smallest diameter of O-DAP-NG
electrode indicates fast charge transfer between the electrode
material and electrolyte, which may be ascribed to the enriched N
atoms and proper nitrogen configuration. Moreover, the more
vertical line of the O-DAP-NG electrode in the low frequency region
suggests better capacitive behavior and smaller diffusion resis-
tance, which is desirable for high-rate capability. In addition, the
stability of newly generated nitrogen-containing bonds in O-DAP-
NG and O-DACH-NG were also investigated by a long-term cyclic
voltammetry (CV) measurements at a fixed scan rate (10mVs~ ') in
a three-electrode configuration, as shown in Fig. 6d and e,
respectively. CV curves of the first and 500 th cycles are almost
identical in shape of the two electrodes, indicating a high revers-
ibility of the pseudocapacitive interactions and excellent electro-
chemical stability of nitrogen containing graphene electrode.

In order to better illustrate the potential applications of the N-
containing graphene, we assembled a symmetrical supercapacitor
based on the N-containing graphene and tested in 1M H3S04
electrolyte. Fig. 7a compares the CV curves of the electrodes at a
scan rate of 5mV s~ ! in the symmetrical system. There are obvious
redox humps in both anodic and cathodic curves of O-DAP-NG and
O-DACH-NG electrodes, further demonstrating the pseudocapaci-
tance is originated from the Faradaic redox reactions of pyridinic-N
and pyrrolic-N atoms involving protons [44]. As shown in Fig. 7b,
the CV curves of as-assembled O-DACH-NG supercapacitor exhibit
evident distortion when the scan rate increased, indicative of large
polarization for O-DACH-NG. In comparison, CV curves of O-DAP-
NG (Fig. 7c) show a rectangle-like shape even at a high scan rate up
to 200 mV s, suggesting the low internal resistance and high rate
delivery with rapid charging-discharging characteristic. Typical
GCD curves of the O-DAP-NG at different current densities from 1 to
20Ag ! are illustrated in Fig. 7d. It can be seen that all the GCD
curves in the two-electrode system are not strictly symmetrical, but
slightly distorted due to the nitrogen incorporation. However, the
IR drop is almost negligible even at the high current density of
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20Ag! (insert of Fig. 7d), further confirming the low internal
resistance of the O-DAP-NG supercapacitor material. Fig. 7e dis-
plays the calculated specific capacitances from GCD curves of the
three devices at different current densities from 0.1 to 20A g~
Both O-DAP-NG and O-DACH-NG have higher specific capacitance
than RG even though they have much lower specific surface area
and pore volume. Notably, the maximum gravimetric capacitances
of O-DAP-NG is 263Fg~! higher than that of O-DACH-NG

(217 Fg~!) and RG (117 Fg™1). This value is lower than the capaci-
tance (353Fg~') of three-electrode system due to electrode po-
larization [45]. Significantly, the volumetric capacitance and
gravimetric capacitances (Fig. 7f) still retain 352Fcm~> and
212Fglat the current density of 20A g™, respectively, much
higher than those of nitrogen-doped graphene and porous carbons,
meaning excellent rate capability (see Table 3). The exceptional rate
capability of O-DAP-NG could be explained by the increased
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Fig. 8. The schematic illustration of the effect of DAP functionalization on the electrochemical performances of graphene based materials. (A colour version of this figure can be

viewed online.)

electrical conductivity [45] and strong affinity for H" in the elec-
trolyte [33] by abundant pyridinic-N/pyrazine-N at the edges and
defect sites of graphitic domains. Ragone plots in Fig. 7g again
display the highest energy density of O-DAP-NG, which delivers an
energy density of 9.1 and 73 Whkg ! at a power density of 0.12
and 4.8 kW kg~ ! at 0.5 and 20 A g~ !, respectively, demonstrating an
ultrafast ion/electron exchange/transport. More importantly, volu-
metric Ragone plot of O-DAP-NG symmetric supercapacitor shows
a maximum volumetric energy density of 151 WhL™! with the
corresponding power density of 02kWL™' and retains
122WhL 'at 79kWLL It is noteworthy that such high volu-
metric capacitive performance of N-containing graphene out-
performs to the behaviors of other previously reported N-
containing carbon-based electrodes for supercapacitors in aqueous
electrolytes, such as heteroatom-doped porous carbon-tube
(1215WhL 'at 0.7 kW L) [46], N-enriched porous carbon/gra-
phene composites (6.7 WhL™!at 5.0 kWL™1) [47], functionalized
graphene hydrogel [48] (11.2Wh L' at 0.125 kW L~1) etc. The cycle
stability was performed at a current density of 2Ag~! (Fig. 7h). In
addition to the high volumetric capacitance and excellent rate
capability, O-DAP-NG based symmetric supercapacitor demon-
strates good cycling stability. Approximately 91.5% of its initial
capacitance is retained after 5000 cycles, which is comparable to
many pseudocapacitive electrodes [20,49,50] and some commer-
cial activated carbons [51,52].

Fig. 8 is provided to illustrate the effect of nitrogen incorpora-
tion on the electrochemical performances of O-DAP-NG electrode.
Under hydrothermal conditions, DAP molecules tend to function-
alize at the edge of graphene through the formation of the pyrazine
structure or imidazole structure, as confirmed by Raman and XPS
results, rather than intercalate into the interlayer of the graphene
sheets as molecular spacers. On the other hand, the epoxy and
hydroxyl groups on the basal planes can be significantly removed
during hydrothermal reduction at DAP-induced basic pH. The
overlapping and coalescing of graphene sheets are accelerated due
to the promoted —m attractive interactions and result in a very low
specific area and pore volume. Benefiting from the N-enriched
(pyridinic, pyrazine or imidazole-N) edge/defects sites, the
agglomerated graphene sheets have a strong affinity for H™ and

high electrochemical activity in the acidic electrolyte, which is
beneficial for the penetration of electrolyte and fast ion transport.
Due to the massive electroactive sites, strong affinity for electrolyte
ions, together with high packing density, the as-prepared N-con-
taining graphene electrodes exhibit an ultrahigh volumetric
capacitance, superior rate capability, and outstanding cycle
stability.

4. Conclusion

The nitrogen-containing graphene framework was successfully
synthesized through a simple one-step hydrothermal reaction by
employing DAP as functional agent. Specific pyridinic-N configu-
ration can be effectively incorporated into graphitic network at
edge/defect sites through newly formed pyrazine linkages. Because
of its high nitrogen content, specific nitrogen configuration,
appropriate functional sites and high density, the O-DAP-NG ma-
terials display a high specific capacitance up to 353 Fg~! and an
ultrahigh volumetric capacitance up to 586 Fcm>at a current
density of 0.1 Ag™!. More importantly, the two-electrode sym-
metric supercapacitor made of O-DAP-NG displays a high volu-
metric energy density of 12.2 Wh L™! at 7.9 kW L™, exceptional rate
capability (212Fg~!at a current density of 20Ag~1), and good
cycling stability, indicative of their potential application for high-
performance supercapacitors.
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