December 1982 Communications 1061 gent") for the conversion of lactams into thiolactams in nearly quantitative yields. We now report that the interaction of this reagent with 1,4-alkanediones (2) under mild conditions provides a convenient method for the synthesis of the desired thiophenes (4). $$H_{3}CO \longrightarrow \begin{array}{c} S \\ P \\ S \\ \parallel \\ S \\ \parallel \\ \end{array} \longrightarrow \begin{array}{c} O \\ \parallel \\ R^{1} - C - CH_{2} - CH_{2} - C - R^{2} \end{array} \longrightarrow \begin{array}{c} O \\ \parallel \\ \parallel \\ C - CH_{2} - CH_{2} - C - R^{2} \end{array} \longrightarrow \begin{array}{c} I/\text{toluene}, \nabla \\ R^{1} \longrightarrow S \\ A \end{array} \longrightarrow \begin{array}{c} R^{1} \longrightarrow S \\ A \end{array}$$ ## An Improved Method for the Preparation of 2,5-Disubstituted Thiophenes* D. R. Shridhar**, M. Jogibhukta, P. Shanthan Rao, Vijay K. Handa Chemistry Division, IDPL Research Centre, Indian Drugs & Pharmaceuticals Limited, Hyderabad - 500037 (A. P.), India Some 2,5-disubstituted thiophenes were needed in substantial quantities as intermediates for syntheses of thiophene derivatives of medicinal interest. However, all reported methods¹⁻⁴ were found to be unsatisfactory for the preparation of these compounds on a large scale as they suffer from disadvantages such as operationally difficult reaction conditions, contamination of the desired product with difficultly separable isomers, and poor yields. Furthermore, even the classic synthesis⁵ of thiophenes by the action of phosphorus(V) sulfide on 1,4-dicarbonyl compounds has been reported⁶ to be generally unsatisfactory due to the formation of tarry products or unpredictable and often poor yields. We have previously reported⁷ the use of the cyclic trithiophosphonic anhydrosulfide 1 (2,4-bis[4-methoxyphenyl]-2,4-dithioxo- P^{V} , P^{V} -1,3,2,4-dithiadiphosphetane, "Lawesson rea- The reaction presumably involves the formation of the 1,4-dithioxo compounds 3 as intermediates which undergo spontaneous *in situ* cyclization to give the thiophenes 4. The structure of products 4 was confirmed by microanalyses, I.R., ¹H-N.M.R., and mass spectrometry. The mild reaction conditions (heating of the components in boiling toluene for 1-2 h), the easy work-up, the high yields, and the purity of the products make the present synthesis a convenient general method for the preparation of 2,5-disubstituted thiophenes. Melting points were determined in open glass capillaries on a Gallen-kamp melting point apparatus and are uncorrected. Microanalyses were performed using a Hosli microcombustion apparatus MK 101. Mass spectra were recorded on a Varian MAT CH 7A mass spectrometer. I.R. spectra were taken on a Perkin-Elmer 577 spectrophotometer and the ¹H-N.M.R. spectra were recorded on a Varian A-90 (EM-390) spectrometer. Table. 2,5-Disubstituted Thiophenes (4) from 1,4-Diketones (2)^a | 4 | \mathbf{R}^1 | \mathbb{R}^2 | Yield ^b
[%] | m.p. or b.p.
[°C] | Molecular
formula ^c or
Lit. m.p. or b.p. | M.S. (70 eV)
m/e (M +) | 1 H-N.M.R. (CDCl ₃ /TMS $_{int}$) δ [ppm] | |---|---|---|---------------------------|----------------------|---|---------------------------|---| | a | CH ₃ | CH ₃ | 87 ^d | b.p. 133° | b.p. 133-134°8 | 112 | 2.3 (s, 6H); 6.4 (s, 2H) | | b | C ₆ H ₅ | CH ₃ | 80 | m.p. 49-51° | m.p. 49–51°5 | 174 | 2.5 (s, 3 H); 6.7 (d, 1 H, $J = 3$ Hz); 7.05 (d, 1 H, $J = 3$ Hz); 7.2-7.7 (m, 5 H) | | c | 4-H ₃ C—C ₆ H ₄ — | CH ₃ | 86 | m.p. 44-45° | m.p. 44.5-45° ¹⁴ | 188 | 2.35 (s, 3 H); 2.5 (s, 3 H); 6.7 (d, 1 H, J=3 Hz); 7.05 (d, 1 H, J=3 Hz); 7.3 (AB q, 4 H, J=8 Hz) | | d | 4-H ₃ CO—C ₆ H ₄ — | CH ₃ | 90 | m.p. 96-97° | C ₁₂ H ₁₂ OS (204.2) | 204 | 2.5 (s, 3 H); 3.85 (s, 3 H); 6.7 (d, 1 H, J=3 Hz); 6.95 (d, 1 H, J=3 Hz); 7.2 (AB q, 4 H, J=8 Hz) | | e | 4-BrC ₆ H ₄ | CH ₃ | 98 | m.p. 127-128° | C ₁₁ H ₉ BrS (253.2) | 252, 254 | 2.50 (s, 3H); 6.76 (d, 1H, J=3 Hz); 7.1 (d, 1H, J=3 Hz); 7.43 (s, 4H) | | f | C ₆ H ₅ | C ₆ H ₅ | 80 | m.p. 153° | m.p. 152-153°9 | 236 | 7.1-7.7 (m, 12 H) | | g | 4-H ₃ CC ₆ H ₄ | 4-H ₃ CC ₆ H ₄ | 70 | m.p. 171° | m.p. 171°12 | 264 | 2.4 (s, 6 H); 7.27 (s, 2 H); 7.4 (AB q, 8 H, J=8 Hz) | | h | C ₆ H ₅ | 4-H ₃ CO—C ₆ H ₄ — | 62 | m.p. 163-164° | m.p. 164-165.5°15 | 266 | 3.8 (s, 3 H); 6.8-7.8 (m, 11 H) | ^a Compounds 2 were prepared according to Ref.⁸⁻¹³. b Yield of pure isolated product based on 2. ^c The microanalyses of the new compounds were in satisfactory agreement with the calculated values: C, ± 0.30 ; H, ± 0.30 . d A mixture of reagent 1 (36 mmol) and the diketone 2a (30 mmol) is heated at 140 °C for 1 h in the absence of solvent and the resultant product 4a is directly distilled from the reaction mixture. ## 2,5-Disubstituted Thiophenes (4); General Procedure: A stirred mixture of Lawesson reagent (1; 36 mmol) and the diketone 2 (30 mmol) is heated under reflux in toluene (150 ml). The progress of the reaction is monitored by T.L.C. (silica gel, hexane/benzene). After all the diketone has been consumed, the mixture is cooled to room temperature and filtered through a 25×5 cm column filled with silica gel using hexane/ether (1/1) as eluent. The solvent is evaporated to give the pure product 4. Received: May 20, 1982 - * Communication No. 44 from IDPL Research Centre, Hyderabad, India - ** Address for correspondence. - ¹ W. Kues, C. Paal, Ber. Dtsch. Chem. Ges. 19, 3141 (1886). - ² E. Baumann, E. Fromm, Ber. Dtsch. Chem. Ges. 28, 890 (1895). - ³ O. Hinsberg, Ber. Dtsch. Chem. Ges. 43, 901 (1910). - ⁴ M. T. Bogert, P. P. Herrera, J. Am. Chem. Soc. 45, 238 (1923). - ⁵ C. Paal, Ber. Disch. Chem. Ges. 18, 367 (1885). - ⁶ E. Campaigne, W. O. Foye, J. Org. Chem. 17, 1405 (1952). - D. R. Shridhar, C. V. Reddy Sastry, L. C. Vishwakarma, G. K. A. S. - Narayan, Org. Prep. Proced. Int. 12, 203 (1980). C. Paal, Ber. Disch. Chem. Ges. 18, 2251 (1885). - ⁹ S. Kapf, C. Paal, Ber. Dtsch. Chem. Ges. 21, 3053 (1888). - ¹⁰ J. H. Helberger, Justus Liebigs Ann. Chem. **522**, 269 (1936). - ¹¹ W. Heffe, F. Kröhnke, Chem. Ber. 89, 825 (1956). - ¹² A. F. Holleman, Recl. Trav. Chim. Pays-Bas 6, 74 (1887). - ¹³ R. Rips, C. Derappe, N. P. Buu-Hoi, J. Org. Chem. 25, 390 (1960). - ¹⁴ M. C. Rebstock, C. D. Stratton, J. Am. Chem. Soc. 77, 3082 (1955). - ¹⁵ H. Gotthardt, C. M. Weisshuhn, B. Christl, *Chem. Ber.* 111, 3037 (1978). 0039-7881/82/1232-1062 \$ 03.00 © 1982 Georg Thieme Verlag · Stuttgart · New York