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The electron impact mass speetnun of 3-cyclohexen-1-01 has been studied, espeddy with regard to the re- 
Diels-Alder reaction. Six deuterium labelled analogues and two climethy1 substituted homologues were 
synthesized. Contrary to what we have observed with 2-eydohexen-1-01, the double bond migration which 
precedes the retro Diels-Alder reaction plays a minor role. 

INTRODUCTION 

In a previous study' we showed that 2-cyclohexen-1-01 
expels the elements of C2H4 via two competitive retro 
Diels-Alder (RDA) reactions. Besides the expected 
elimination of a C2H4 moiety containing the C-5 and 
C-6 atoms, another mechanism operates on a rear- 
ranged molecular ion, as is illustrated in Scheme 1 (ii). 
We also observed that substitution of the ring with 
methyl radicals affects the ratio of the two processes i 
and ii (Scheme l) ,  the elimination of the larger olefinic 
neutral fragment always being strongly favoured. By 
comparing the collision induced dissociation spectrum 
of 1 with the spectra of 2 and 3, we later confirmed2 
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that it is a 1,3 allylic hydrogen shift (ii, Scheme 1) 
which is responsible for the elimination of the olefin 
containing the C-4 and C-5 atoms and not a shift of 
the OH substituent (iii, Scheme 1). Our results have 
recently been confirmed by Terlouw et u Z . , ~  to whom 
we had sent two of our samples. However, there is a 
difference between their results and ours with regard 
to the kinetic energy release values (T0.5) which are 
associated with the loss of CH; from the metastable 
C4H60 ions at mlz 70. We found the same value of 
To.5 = 23.5 meV with 1 and 3 as precursors, compared 
with 38.5 meV when 2 is the precursor of the metasta- 
ble C6H60 ions. Terlouw and his co-workers did not 
find any difference with 1,2 and with hex-1-en-3-one 
as precursors, the latter being used to generate the 
same ionic structure as that of ion u in Scheme 1, 
instead of 3 which is the precursor we used. 

Since we did not observe the isomerization of 2- 
cyclohexen-1-01 to 3-cyclohexen-1-01 with the subse- 
quent loss of G H 4 0  (ivy Scheme l), we conciuded that 
it was the enhanced lability of the hydrogen atom 

?Author to whom correspondence should be addressed. 

H Scheme 1 

attached to C-1 which was responsible for the 1 , 3  
shift. The fact that reaction iv of Scheme 1 is not 
observed does not rule out the existence of the reverse 
transformation. Consecutive 1 , 3  allylic rearrangement 
reactions have been postulated in cyclohexene itself4 
in order to explain the partial randomization of the H 
atoms which precedes the RDA reaction, as well as in 
various methylcyclohexenes.5 Since such 1 , 3  shifts 
would transform at least part of the molecular ions of 
3-cyclohexene-1-01 into the isomeric 2-cyclohexen-l- 
01 molecular ions, we studied the electron impact mass 
spectra of 3-cyclohexen-1-01 (4) with the aid of the 
series of labelled compounds 4a-4f and the two di- 
methyl substituted compounds 5 and 6. We also inves- 6 6 H G  4 HC 

D 
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tigated the elimination of H 2 0  and CH,' from the 
molecular ion of 4. 

RESULTS AND DISCUSSION 

Figure 1 displays the 70eV and the 12eV mass 
spectra of the title compound. The 70eV spectra of 
the labelled compounds 4a-4f and those of the methyl 
substituted homologues 5 and 6 are listed in Table 1. 

The relro Diels-Alder reaction 

The RDA reaction yields the base peak in the 70eV 
spectrum of 4. High resolution shows that the peak is 
a singlet consisting of [C4&]+' ions only. Since the 
[C4H60]+' ions at m/z  70 represent only 7% of the 
base peak, it is obvious that the isomerization of 4 to 
the molecular ion of 2-cyclohexen-1-01 (hhh, Scheme 
2) is a minor process. It should be noted that 20% of 
the m/z 70 ions have C5HI0 as elemental composition, 
which indicates the elimination of CO from the 
molecular ion. The [C4&O]+. ion of 4 appears almost 
completely as [C4H,DO]+' in the high resolution 
spectra of 4a, 4b, 4c and 4f, and as [C4&D,0]+' in 
the high resolution spectrum of 4d. These mass shifts 
show that the few molecular ions which rearrange to 
2-cyclohexen- l-ol then decompose via reaction i of 
Scheme 2 only. 
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Figure 1. Electron impact spectra of 3-cyclohexen-1-ol (4): 
(a) 70eV; (b) 12eV. 
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The double bond migration to C-4 (hh, Scheme 2) is 
also a minor process. Taking into account the incom- 
plete labelling of 4f one can estimate from the high 
resolution spectrum that only about 10% of the 
m/z  54 ions are displaced to m/z 56. This is supported 
by the high resolution spectrum of 4e in which about 
10% of the m/z 54 ions are not displaced. 

The spectra of 5 and 6 show that the possibility of 
expelling a larger olefinic moiety does not promote 
isomerization, contrary to what is observed with 
methyl substituted 2-cyclohexen-1-01.' In compound 5, 
a double bond migration from C-3-C-4 to C-4-C-5 
analogous to reaction hh of Scheme 2 would result in 
the elimination of C4H80 instead of C,H40 when 
there is no migration. The relative abundance of the 
m/z 54 ion which would result from the elimination of 
C4H80 is less than 1'10, while the normal RDA reac- 
tion (h, Scheme 2) leads to the base peak at m/z 82. 
Compound 6 does not isomerize either; the m/z  82 
ion which results from a classical RDA reaction shows 
a relative abundance of 93% compared with only 3% 
for m/z 70, the [C4H60]" ion which would be formed 
after isomerization to 2-cyclohexen-1-01. Thus, 1,3 
allylic rearrangement reactions are unimportant with 
3-cyclohexen-1-01 and with its methyl substituted de- 
rivatives.5 and 6, contrary to what is observed with 2- 
cyclohexen- l-ol and its substituted homologues. Al- 
though double bond shifts have been observed with 
cyclohexene; methyl substituted cyclohexenes5 and 
tetralines: allylic activation of hydrogen atoms is not 
sufficient to initiate such rearrangement reactions in 3- 
cyclohexen-1-01. As we have already suggested,' the 
fact that 2-cyclohexen-1-01 rearranges so easily shows 
that the concomitant activation of the allylic hydrogen 
atom by the OH substituent attached to the same 
carbon atom plays a key role in promoting the 1 , 3  
shift. 

Elimination of H,O from the molecular ions 

The elimination of H 2 0  from the molecular ions of 4 
leads to the very abundant m/z 80 ions and to a 
metastable peak (m* 98 -+ 80, calc. 65.31, obs. 65.3). 
The behaviour of 4 with respect to this reaction is 
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Table 1. 70eV mas8 spectra of compounds 4 a 4 f  normalized to base peak=l00.0 

Compound 
4 d 4 b  oc 4 d 4 d  4t 5 6 

m/z 
39 29.0 33.8 20.8 15.9 14.1 20.8 - - 
40 6.3 7.8 19.5 17.7 16.8 24.0 - - 
41 6.4 12.5 8.9 7.0 11.1 11.2 - - 
42 8.6 9.4 13.5 11.0 10.0 12.8 - - 
43 10.2 8.6 15.4 9.5 12.5 52.0 - - 

9.4 23.7 9.1 24.4 28.0 - - 4 4 -  
45 31.7 18.8 2.9 18.7 5.2 19.2 - 4.6 
46 1.4 1.2 - 1.2 2.6 16.8 - 0.6 
47 - 
4 a -  
49 0.5 - 
50 2.2 2.8 1.9 1.1 1.3 2.0 - 5.1 
51 4.2 5.0 3.7 2.8 2.0 3.6 1.2 10.5 
52 2.5 3.7 3.4 3.2 2.0 4.0 - 6.0 
53 7.7 11.0 4.1 3.6 2.4 4.8 5.2 24.0 

55 7.1 20.4 100.0 99.6 16.8 100.0 36.7 88.7 

1.6 - 
0.5 - - 0.5 0.6 - - - 

- - - - - 
- - - - - 

54 100.0 100.0 11.8 9.3 15.4 16.0 1.4 9.5 

56 18.2 7.8 21.6 19.3 95.3 36.4 7.6 36.2 
57 0.5 2.5 7.9 5.6 19.1 10.8 3.1 100.0 
58 8.8 6.4 1.6 4.6 3.1 7.2 1.8 7.7 
59 0.5 0.6 2.1 2.8 2.5 3.6 - 1.2 
60 - 
61 - 
62 - 
63 0.7 0.9 0.6 0.5 0.5 - - 
6 4 -  - 0.5 0.5 0.5 - 0.5 - 
65 1.7 1.7 0.8 0.6 0.7 - 1.1 7.5 
66 1.6 1.5 1.7 9.4 1.3 1.3 0.9 3.6 
67 1.9 4.0 1.3 1.4 1.9 2.2 20.2 76.1 

- - 1.8 1.9 - - - 
- - - - - - - 

- 0.8 
1 .a 

I - - - - 

a 3.3 2.2 4.1 3.7 2.2 2.6 2.1 5.8 
6 9 -  4.8 2.9 2.7 4.4 5.2 19.6 17.2 

71 9.8 7.8 5.8 5.3 10.4 8.8 4.9 2.9 
72 0.7 0.6 - 7.8 4.6 6.0 6.5 - 
70 8.4 6.6 10.4 6.1 3.2 10.8 16.5 3.7 

73 - - - 0.7 - 3.6 13.0 2.2 
- 0.6 74 0.5 - 1.4 - 

75 - 
76 - 
n 4.0 1.8 1.6 0.6 - - 1.4 6.1 
78 1.9 3.3 3.4 2.3 2.0 2.6 - 1.3 

- - 
- - 8.1 0.6 - - - 

0.5 - - - - - - 

mlz 

79 
80 
81 
82 

84 
85 
86 
87 
88 
89 
90 
91 
92 
93 
94 
95 
96 
97 

99 
100 
101 
102 
103 
104 
105 
106 
1 07 
108 
109 
110 
111 
112 
113 
114 
1 24 
125 
126 

a3 

98 

1.' 4b oc 

17.0 4.8 4.3 

10.6 88.2 94.8 
0.6 7.8 8.1 

97.3 20.4 19.1 

- 2.2 1.2 
6.1 6.1 6.3 - - - 
- - - 

- - - 
1.2 0.6 0.6 
- 0.7 0.6 
2.4 2.2 2.0 
4.0 3.3 2.8 - - - 

5 6 

1.0 7.6 
0.6 1.1 
1.6 9.9 

100.0 93.0 
15.9 57.7 
1.2 9.5 

1.0 5.9 
1.7 81.8 

- - 
- - 
- - 
- -  
0.8 3.5 
- 0.6 
1.7 19.7 
- 1.6 
0.5 0.6 

0.9 1.5 
1.1 2.7 

- - 

0.7 - - - 
1.3 - - - 
- - 
- - 
- 0.5 - - - -  
0.9 3.8 
- 1.6 

36.0 13.4 
2.0 1.1 

- - 

- - 
- - - - 
- - 
3.7 - 

'Spectrum corrected to 100% deuteration. 

totally different from that of its isomer 2-cyclohexen- 
1-01. In the 12 eV spectrum of 4 (Fig. 1) mlz 80 
represents 66% of the total ion current compared with 
only 2.5% in the spectrum of 2-cyclohexen-1-01.' The 
mass shifts of m/z 80 which are observed in the 7 0  eV 
high resolution mass spectra of the labelled com- 
pounds are listed in Table 2. They unambiguously 

Table 2. Shifts of m/z80 in the 
70eV high resolution 
partial mass spectra of 
the labelled compounds 
4a-4f 

mlz 83 84 85 86 
Compound 

4a 100 
4b 25 75 
4c 100 

48 67 17 16 
4f 6 51 41 2 

4d 20 a 72 

~~~ ~ - 
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demonstrate that the water elimination is highly 
specific, involving the OH substituent and one of the 
hydrogen atoms attached to C-5. This 1 , 3  elimination 
is similar to what occurs in 2-tetral01.~ A 5-membered 
ring transition state can be envisaged to bring one of 
the allylic hydrogen atoms attached to C-5 into the 
vicinity of the OH group, as is illustrated with struc- 
ture b. The importance of the [M-H,O]+' ion is 
drastically reduced in the spectra of 5 and 6. 

b 

Loss of a methyl radical 

The loss of CH; from the molecular ion of 4 leads to 
mlz 83 and to a metastable peak at m*=70.3 
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Table 3. Shifts of mtz 83 in the 
70eV high resolution 
partisl mass spectra of 
the labelled compounds 
4&4f 

mlz 80 81 82 83 
Compound 

4a 97 3 
46 100 
4c 100 
4d 2 9 8  
46 2 9 8  
4f 6 9 4  

(98 + 83, calc. 70.30). This fragmentation is much 
more pronounced with 2-cyclohexen-1-01. An exami- 
nation of the mass shifts 0bserved.h the high resolu- 
tion 70eV mass spectra (Table 3) does not point to 
the existence of a single mechanism. However, since 
67% of the molecular ions of compound 4e and 51% 
of those of compound 4f expel CHD;, the main 
mechanism involves the elimination of the C-2 
methylene atoms, the third H atom originating from 
C-6 as is proposed in Scheme 3. If one takes into 
account the existence of a probable isotope effect 
during the elimination of CHD; from 4f, one can 
conclude that more than half but less than two-thirds 
of the molecular ions of 4 eliminate a methyl radical 
containing both C-2 hydrogen atoms and a C-6 hyd- 
rogen atom. The mass shifts in the high resolution 
spectra of 4b,4c and 4d also show that other minor 
mechanisms eliminate the H atoms attached to C-1 
and C-3, but not the one attached to C-4. 

m/z m 
Scheme 3 

EXPERIMENTAL 

Low resolution mass spectra were recorded on a Var- 
ian MAT CH-4 instrument. The temperature of the 
inlet system was kept at 100°C and that of the ion 
source at 150°C. High resolution data were obtained 
on a Varian MAT SM1-B mass spectrometer. The ion 
source temperature was 150°C and that of the inlet 
system 120°C. The isotopic content of the labelled 
compounds has been determined, except in the case of 
4a, from the isobutane chemical ionization mass 
spectra of their benzoate esters, which exhibit negligi- 
ble [M-H]+ ions. All the compounds except 4f were 
purified by vacuum distillation followed by preparative 
gas chromatography. 

3-Cydohexen-1-01 (4). 4-Tosyloxycyclohexanol was 
prepared from 1,4-cyclohexanediol and was then con- 
verted to 4 according to a procedure described by 
Owen and Robins.' 

3-Cydohexen-1-01-0-d (4a). The mass spectrum of this 
compound was recorded after simultaneous introduc- 
tion of 4 and D20 in the inlet system which had 
previously been equilibrated with D20. The isotopic 
composition was 54% dl and 46% do; the mass spec- 
trum was corrected to 100% dl. 

3-Cydohexen-14-l-d, . (4b). 1,4-Cyclohexanedione 
monoethylene acetal was prepared according to a pro- 
cedure described by Courtot.' It was reduced to 4- 
hydroxycyclohexanone ethylene acetal which was then 
converted to 4-tosyloxycyclohexanone ethylene acetal. 
This derivative was transformed into 3-cyclohexen-l- 
one ethylene acetal by the method of Owen and 
Robins.' Hydrolysis of this acetal in dilute acetic acid 
during 2 h at 25 "C yielded 3-cyclohexene-l-one which 
was reduced to 4b with LiAID, (98% d2, 2% dl). 

3-Cydohexen-1-01-4dl (4c). The method was similar to 
that described for the synthesis of 4b except that the 
first reduction was performed with LiAlD, and the 
second with LiAlH, (90"/0 dl, 10% do). 

3-Cydohexen-1-01-l,3-d2 (4). 2-Cyclohexen-l-ol-l,3- 
d2, which has been described in a previous publica- 
tion,' was transformed into 1,3-cyclohexanediol-1,3- 
d2 according to a method which has been used by 
Brown and Geoghegan" with l-hexene. The labelled 
diol was then converted into 3-tosyloxycyclohexanol- 
1,3-d2 which yielded 4d by a procedure described by 
Clarke and Owen" (98% d2, 2% dl). 

3-Cydohexen-l-ol-2,2-d2 (4e). 2-Cyclohexen-l-ol-2-dl 
whose synthesis has been described previously' was 
transformed into 1,3-cyclohexanediol-2,2-d2 by the 
method of Brown and Geoghegan," using NaBD,. 
This diol was then converted into its monotosylate 
which gave 4e by the method of Clarke and Owen" 

3-Cydohexen-1-01-2,6,6-d3 (40. 2-Cyclohexen- l-one 
(1 g) was exchanged once with 20 cm3 of CH30D 
containing 1 cm3 of D 2 0  and 10 mg of CH30Na at 
30°C for 30min in an ultrasonic bath. The labelled 
ketone was extracted and purified by chromatography 
on a silica gel column, using gradient elution by hex- 
ane containing increasing amounts of ethylacetate 
(from 0% to 25%). The purified ketone was then 
transformed into its 4-bromo derivative with N- 
bromosuccinimide in the presence of benzoylperox- 
ide12 and reduced to 4f with LiAlH4.13 The final 
compound was purified by column chromatography as 
described for the labelled ketone. The isotopic content 
was 73% d3, 17% d2 and 10% d4. A 360MHz 
nuclear magnetic resonance spectrum showed that 8% 
of the d2 compound is 3-cyclohexen-l-ol-2,6-d2 and 
9% the 6,6-d2 analogue, the tetradeuterated com- 
pound being the 2,4,6,6-d4 derivative. 

2,2-Dimethyl-3-cydohexen-l-ol (5). 2,2-Dimethyl-1,3- 
cyclohexanedione was prepared according to a method 
described by Majahani4 using 2-methyl-1,3- 
cyclohexanedione and methyl iodide and reduced to 
2,2-dimethyl-1,3-cyclohexanediol by the method of 

(67% d2, 33% d1). 
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Andersen and Ladner." The diol was then converted 
into its monotosylate to yield 5 by the procedure 
described by Clarke and Owen." 

5J-Dimethyl-3-cydobexen-191 (6)- 595-DimethYl-193- 
cyclohexanediol prepared according to Zelinsky and 
Uspensky16 was transformed into its monotosylate and 
then into 6 by the method of Clarke and Owen." 
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