1977

Transition-metal Nitrosyl Compounds. Part 12.1 Bis- and Tris-(tertiary phosphine)nitrosylnickel(II) Hexafluorophosphate Complexes

By Sumit Bhaduri, Brian F. G. Johnson,* and Trevor W. Matheson, The University Chemical Laboratory, Lensfield Road, Cambridge CB2 1EW

The nickel nitrosyl cations $[Ni(NO)L_n]^+$ (L = PPh₃, n = 2 or 3; L = PMePh₂, n = 3) have been prepared from the reaction of $[Ni(CO)_2L_2]$ with NOPF₆ in C₆H₆-MeOH or from the reaction of $[NiCl_2L_2]$ with Na[NO₂] and L in the presence of CO. Some reactions of $[Ni(NO)(PPh_3)_3]^+$ with the nucleophiles $[OMe]^-$, X⁻ (X = Cl, Br, or I), [S₂CNR₂]-, Ph₂P[CH₂]₂PPh₂, and PMePh₂ have been examined. A ³¹P n.m.r. study reveals that the complex $[Ni(NO)(PPh_3)_3][PF_6]$ probably exists in two isomeric forms, one of symmetry C_{3v} and the other of C_{2v} .

It has been suggested that the complexes [Rh(NO)-(PPh₃)₃] and [Ir(NO)(PPh₃)₃], which are known to function as hydrogenation catalysts, undergo phosphine dissociation. Evidence for such dissociation has been provided from osmometric molecular-weight determination for which values of 300 (calc.: 920) and 800 (1009) were found for $[Rh(NO)(PPh_3)_3]$ and $[Ir(NO)(PPh_3)_3]$ respectively.² The suggestion has also been made that the catalytic activity of these species may be associated with their ability to undergo an intramolecular redox process of the type $M^{n+}(NO^+) \Longrightarrow M^{(n+2)+}(NO^-).^3$ This process would involve a simultaneous change in the M-N-O bond angle from ca. 180 to 120° and a change in the geometry of the complexes from C_{3v} to C_{2v} . A relatively recent study of [Co(NO)(PPh₃)₃] and [Rh(NO)-(PPh₃)₃] revealed that phosphine exchange probably occurs via a dissociative process.⁴

We report the preparation of the complex cation [Ni(NO)(PPh₃)₃]⁺, which is isoelectronic with [Co(NO)-(PPh₃)₃], and also the co-ordinatively unsaturated species $[Ni(NO)(PPh_3)_2]^+$. The cation $[Ni(NO)(PPh_3)_3]^+$ undergoes phosphine exchange but the mechanism of this exchange is complex and appears to embrace both the mechanisms outlined above.

RESULTS AND DISCUSSION

Preparation of the Complexes $[Ni(NO)L_n][PF_6]$.—(i) From the reaction of $[Ni(CO)_2L_2]$ with $NOPF_6.5$ On treatment of $[Ni(CO)_2L_2]$ with $NOPF_6$ in benzenemethanol at ca. 20 °C, carbon monoxide was evolved and the colourless solution became blue. Addition of diethyl ether to this blue solution resulted in precipitation of a blue solid. After crystallisation from CH₂Cl₂-EtOH- C_6H_{12} the salts [Ni(NO)L₃][PF₆] [L = PPh₃ (la) or PMePh₂ (1b)] were obtained as dark blue needles. Although moderate yields of the salts were obtained by this method, yields were considerably increased when the reaction was carried out in the presence of a large excess of phosphine. When the reaction of $[Ni(CO)_2(PPh_3)_2]$ and $NOPF_6$ took place in benzene a second product, [Ni(CO)(NO)(PPh₃)₂][PF₆], was also formed. This redbrown salt is unstable and readily evolves CO to produce

• Throughout this paper: 1 atm = 101 325 Pa.

¹ Part 11, J. A. Segal and B. F. G. Johnson, J.C.S. Dalton, 1975, 1990.
 ² W. Shrohmeier and R. Endres, Z. Naturforsch., 1972, B27,

1415. ³ J. P. Collman, N. W. Hoffman, and D. E. Morris, J. Amer.

Chem. Soc., 1969, 91, 5659.

 $[Ni(NO)(PPh_3)_2][PF_6]$ (2), the co-ordinatively unsaturated salt. This carbonyl complex is very unstable and has been characterised on the basis of its i.r. spectrum which has $\nu(CO)$ at 2 080 and $\nu(NO)$ at 1 735 cm⁻¹.

These observations lead to the mechanism in equations (1)—(4). We have shown that the carbonyl nitrosyl

$$[Ni(CO)_{2}L_{2}] + NOPF_{6} \longrightarrow \\ [Ni(CO)(NO)L_{2}][PF_{6}] + CO \quad (1)$$

[Ni(CO)(NO)L_{2}][PF_{6}] \longrightarrow

$$[Ni(NO)L_2][PF_6] + CO \quad (2)$$

$$[Ni(CO)_{2}L_{2}] \rightleftharpoons [Ni(CO)_{2}L] + L \qquad (3)$$

$$[Ni(NO)L_2][PF_6] + L \rightleftharpoons [Ni(NO)L_3][PF_6] \quad (4)$$

complex readily evolves CO to produce the co-ordinatively unsaturated species $[Ni(NO)(PPh_3)_2]^+$ [equation (2)]. This has been shown to react rapidly with free PPh₃ to produce $[Ni(NO)(PPh_3)_3]^+$ [step (4)]. Phosphine exchange of co-ordinatively saturated carbonylphosphine complexes usually proceeds by a dissociative path [step (3)].⁶ Finally, by monitoring the reaction conditions carefully both [Ni(NO)(PPh₃)₃][PF₆] and [Ni(NO)-(PPh₃)₂][PF₆] may be isolated from the reaction. Attempts to recrystallise $[Ni(NO)(PPh_3)_3][PF_6]$ from benzene-methanol led to the formation of a mixture of $[Ni(NO)(PPh_3)_3][PF_6]$ and $[Ni(NO)(PPh_3)_2][PF_6]$. Recrystallisation must be carried out in the presence of free PPh₃.

(ii) From the reaction of $[NiCl_2L_2]$ with $Na[NO_2]$ and L in the presence of CO. It is now established that the reduction of M-NO2 or M-NO3 compounds by CO provides a convenient route to many NO systems.⁷ The complex [NiCl₂(PMePh₂)₂] reacted with Na[NO₂], Na[PF₆], and PMePh₂ in the presence of CO at ca. 56 °C and 1 atm* to produce $[Ni(NO)(PMePh_2)_3][PF_6]$ in good yield. This reaction probably occurs as in equations (5)—(8). Nitronickel(II) complexes are known to react with CO to produce nitrosylnickel(0) complexes [step (6)].8 This reaction probably proceeds first by addition of CO to produce the five-co-ordinate species [Ni(CO)Cl(NO2)-(PMePh₂)] followed by an intramolecular oxygen transfer

- 1970, 1500.
 - ⁸ G. Booth and J. Chatt, J. Chem. Soc., 1962, 2099.

K. G. Caulton, Inorg. Chem., 1974, 12, 1774.
 B. F. G. Johnson, S. Bhaduri, and N. G. Connelly, J. Organo-⁶ C. A. Tolman, J. Amer. Chem. Soc., 1970, 92, 2956.
 ⁷ K. R. Grundy, K. R. Laing, and W. R. Roper, Chem. Comm.,

to form the nitrosyl complex and CO_2 . The complex $[NiCl(NO)(PMePh_2)_2]$ reacts with $Na[PF_6]$ to produce $[Ni(NO)(PMePh_2)_2][PF_6]$ and NaCl [related to step (7)], and finally the co-ordinatively unsaturated complex

$$[\text{NiCl}_2(\text{PMePh}_2)_2] + \text{Na}[\text{NO}_2] \longrightarrow \\ [\text{NiCl}(\text{NO}_2)(\text{PMePh}_2)_2] + \text{NaCl} \quad (5)$$

$$[\text{NiCl(NO}_2)(\text{PMePh}_2)_2] + \text{CO} \longrightarrow \\ [\text{NiCl(NO)}(\text{PMePh}_2)_2] + \text{CO}_2 \quad (6)$$

$$[\text{NiCl(NO)}(\text{PMePh}_2)_2] + \text{Na}[\text{PF}_6] \longrightarrow \\ [\text{Ni(NO)}(\text{PMePh}_2)_2][\text{PF}_6] + \text{NaCl} \quad (7)$$

$$[Ni(NO)(PMePh_2)_2][PF_6] + PMePh_2 \longrightarrow [Ni(NO)(PMePh_2)_3][PF_6]$$
(8)

 $[Ni(NO)(PMePh_2)_2][PF_6]$ is reasonably expected to combine with PMePh₂ to produce the required product [step (8)].

In contrast, under identical conditions, the reaction with $[NiCl_2(PPh_3)_2]$ produced $[NiCl(NO)(PPh_3)_2]$ as the sole product. This may be a result of the ease with which complex (1a) undergoes PPh_3 dissociation [equations (9) and (10)]. Treatment of $[NiBr(NO)(PPh_3)_2]$ with

 $[Ni(NO)(PPh_3)_3]^+ \rightleftharpoons [Ni(NO)(PPh_3)_2]^+ + PPh_3 \quad (9)$

$$[Ni(NO)(PPh_3)_2]^+ + X^- \rightleftharpoons [Ni(NO)(PPh_3)_2X] \quad (10)$$

 $Ag[PF_6]$, however, readily gave $[Ni(NO)(PPh_3)_2][PF_6]$.

Characterisation and Reactivity of Complexes (1a) and (1b).—The two salts were readily characterised on the basis of their i.r. spectra, analytical data, and conductivity values in nitrobenzene. Both exhibited a strong NO stretching vibration in their i.r. spectra in the 1 750-1 800 cm⁻¹ region which, allowing for the fact that the complexes have a 1 + charge, probably indicates that the NO ligand is present formally as $[NO]^+$ and that the complexes are best formulated as pseudo-tetrahedral (C_{3v}) derivatives of Ni⁰ possessing a similar geometry to their cobalt counterparts. In keeping with this view, $\nu(NO)$ for $[Co(NO)(PPh_3)_3]$ occurs ca. 50 cm⁻¹ lower than for $[Ni(NO)(PPh_3)_3]$. The values of $\nu(NO)$ for (1a) (1 783 cm⁻¹) and (1b) (1 780 cm⁻¹) are remarkably similar, particularly in view of the fact that (1a) easily loses a phosphine ligand whereas (1b) apparently does not. For the bis(triphenylphosphine) salt $[Ni(NO)(PPh_3)_2][PF_6]$, the NO stretching vibration appears at 1 755 cm⁻¹.

The ³¹P n.m.r. spectrum of (1a) in CDCl₃ at 30 °C showed a resonance at *ca.* -38.9 p.p.m. (relative to free PPh₃). No resonance was detectable at the chemical shift of free PPh₃. The ³¹P n.m.r. spectrum of a freshly crystallised sample of (1a) in CD₂Cl₂ at 30 °C consisted of two resonances at -42.4 and -38.9 p.p.m. Addition of free PPh₃ to the solution at 30 °C caused the signal at -42.4 p.p.m. to disappear. The addition of excess of PPh₃ (up to 8 mol dm⁻³) did not cause the spectrum to change further, apart from the emergence of a sharp signal due to free PPh₃. The i.r. spectrum of the same sample in CH₂Cl₂ showed a weak absorption at 1 755

[•] L. H. Pignolet and W. Dew. Horrocks, jun., J. Amer. Chem. Soc., 1968, **90**, 922.

cm⁻¹. This weak band disappeared when an excess of PPh₃ was added to the solution. The ³¹P resonance at -42.4 p.p.m. and i.r. band at 1755 cm⁻¹ are reasonably assigned to the co-ordinatively unsaturated species [Ni(NO)(PPh₃)₂][PF₆]. The ³¹P n.m.r. spectrum of solutions of (1a) in CD₂Cl₂ showed an unexpected feature at low temperatures. As reported above, at *ca.* 30 °C the spectrum of this solution exhibits one signal at -38.9 p.p.m.; as the solution was cooled to -85 °C two new signals of relative intensity 2 : 1 appeared at -69.5 and -46.7 p.p.m.

These ³¹P spectra indicate that the three triphenylphosphine ligands are equivalent, consistent with the proposed C_{3v} geometry for salt (1a). No evidence for dissociated phosphine was found from the ³¹P n.m.r. spectra, although the co-ordinatively unsaturated species is readily isolable (see above). The observation that the mixture of salts (1a) and (2) exhibit independent resonances in the ³¹P n.m.r. spectrum at 30 °C indicates that the dissociation (9) is slow on the n.m.r. time scale. At -85 °C a new isomer or complex was detectable. Since there is no evidence for the elimination of NOPF₆ (see below), and the new signals had intensity values in the ratio ca. 2:1, it is reasonable to assume that the new species is the square planar (C_{2v}) form of (1a). At -85 °C exchange of phosphine was detectable since the signals due to the proposed square-planar form of (1a) broadened on the addition of free phosphine. Substitution reactions of nitrosyl complexes often occur by an associative mechanism. Such reactions occur if an intramolecular redox process is energetically accessible, *i.e.* for the interconversion $M^{n+}(NO^+) \longrightarrow M^{(n+2)+}(NO^-)$ which corresponds to a change in the M-N-O bond angle from ca. 180 to 120°. Co-ordinatively unsaturated complexes $[NiX_2L_2]$ all exchange phosphine by an associative path and in some cases five-co-ordinate [MX₂L₃] complexes may be isolated.9,10 Here a mechanism involving two isomeric forms of [Ni(NO)(PPh₃)₃]⁺ must be involved: one of C_{3v} geometry which is co-ordinatively saturated and undergoes slow PPh3 dissociation, and one of C_{2v} geometry which is co-ordinatively unsaturated and undergoes fast phosphine exchange via an $S_N 2$ mechanism.

$$[\operatorname{Ni}^{0}(\operatorname{NO}^{+})(\operatorname{PPh}_{3})_{3}]^{+} \xrightarrow{\operatorname{slow}} [\operatorname{Ni}(\operatorname{NO})(\operatorname{PPh}_{3})_{2}]^{+} + \operatorname{PPh}_{3}$$

$$(C_{3v}) \xrightarrow{(b)} (b)$$

$$\operatorname{PPh}_{3} + [\operatorname{Ni}^{\mathrm{II}}(\operatorname{NO}^{-})(\operatorname{PPh}_{3})_{3}]^{+} \xrightarrow{\operatorname{fast}} [\operatorname{Ni}^{\mathrm{II}}(\operatorname{NO}^{-})(\operatorname{PPh}_{3})_{4}]^{+}$$

The chemistry of $[Ni(NO)(PPh_3)_3]^+$ contrasts with that of $[Co(NO)(PPh_3)_3]$ and $[Rh(NO)(PPh_3)_3]$. For the complexes of Co and Rh, no evidence for phosphine dissociation to produce $[M(NO)(PPh_3)_2]$ as an isolable species has been reported, although both undergo phosphine exchange by what appears to be a dissociative process and it has been suggested that $[Rh(NO)(PPh_3)_2]$

¹⁰ E. C. Alyea and D. W. Meek, J. Amer. Chem. Soc., 1969, 91, 5761.

is the intermediate species rather than the solvent (S) adduct $[Rh(NO)(PPh_3)_2(S)].^4$

The existence of two isomeric forms of (1a) is not unreasonable. Isolable isomeric nitrosyl complexes of $[CoCl_2(NO)(PPh_3)_2]$, which differ in the bonding mode of the NO ligand, have been described.¹¹ An activation energy for the process $C_{3v} \longrightarrow C_{2v}$ is difficult to estimate but, for example, the complexes $[NiX_2L_2]$ form both tetrahedral (C_{3v}) and planar (C_{2v}) forms. At present we are attempting the preparation of other $[NiXL_3]^+$ complexes. In an attempt to provide additional evidence for the C_{2v} isomer at low temperatures the i.r. spectrum of (1a) in CH_2Cl_2 was examined over the range -50 to 20 °C. No substantial change was observed and no new bands in the 1 500-1 800 cm⁻¹ region appeared. The fact that we do not see an NO vibration which may be associated with the second isomeric species does not rule out the isomerisation step. Bands due to [NO]⁻ are often broad and weak and if the isomer was present in only small concentrations (ca. 5% at -85 °C from ³¹P n.m.r. studies) detection would be difficult.

It has been argued that the tendency of [Co(NO)-(PPh₃)₃] to undergo phosphine dissociation is brought about by the bulkiness of the triphenylphosphine. This seems to be the case with [Ni(NO)(PPh₃)₃]⁺ since the strongly electron-withdrawing [NO]⁺ ligand might be expected to increase the acidity of the metal centre and the complex $[Ni(NO)(PMePh_2)_2][PF_6]$ containing the less bulky PMePh₂ ligand cannot be isolated. The complex $[Ni(NO)(PMePh_2)_3][PF_6]$ (1b) does not appear to undergo PMePh₂ dissociation under similar conditions. The i.r. spectrum showed no evidence of an NO band at ca. 1 755 cm^{-1} and, in contrast to the complex (1a), (1b) may be obtained in an analytically pure state after recrystallisation from CH₂Cl₂-EtOH-C₆H₁₂.

On reaction of (1a) with PMe₂Ph phosphine exchange occurred to produce [Ni(NO)(PMe₂Ph)₃][PF₆]. The reaction may be conveniently monitored at 30 °C by ¹H n.m.r. studies. In none of the experiments reported here was evidence for the loss of [NO]+ observed (from i.r. spectrum in the 2 200-2 300 cm⁻¹ region). Dis-

$$[Ni(NO)L_n]^+ \rightleftharpoons [NiL_n] + [NO]^+ \qquad (11)$$

sociation of [NO]⁺ from the cationic complex [Ir(NO)₂-(PPh₃)₂]⁺ has been noted during the reactions with AsPh₃.12

Some Reactions of [Ni(NO)(PPh₃)₃][PF₆].--Complex (1a) underwent phosphine ligand-exchange reactions with PMePh₂ and Ph₂P[CH₂]₂PPh₂ (dppe) to yield [Ni(NO)- $(PMePh_2)_n(PPh_3)_{3-n}[PF_6]$ (n = 1-3) and $[Ni(NO)(PPh_3)-$ (dppe) [PF₆] respectively. Reaction with X⁻ (X = Cl, Br, or I) yielded the known complexes [NiX(NO)-(PPh₃)₂]. In these reactions attack occurs, as expected, on the metal. The reaction of [OMe]⁻ also produced the mononitrosyl species [Ni(NO)(OMe)(PPh₃)₂]. Attack does not occur on the co-ordinated [NO]⁺ group and these

reactions probably occur via the prior dissociation of PPh₃.

Addition of $Na[S_2CNR_2]$ (R = Me or Et) in methanol to [Ni(NO)(PPh₃)₃][PF₆] produced the neutral complexes [Ni(NO)(PPh₃)(S₂CNR₂)], although in the case of Na- $[S_2CNMe_2]$ the major product was $[Ni(S_2CNMe_2)_2]$. These dithiocarbamato-complexes showed a single strong NO band in the i.r. spectrum and are best formulated as pseudo-tetrahedral derivatives of the $[Ni(NO)]^+$ unit. The ¹H n.m.r. spectrum of [Ni(NO)(PPh₃)(S₂CNEt₂)] showed a sharp methyl triplet which broadened on cooling to -55 °C. We were unable to obtain a temperature-limiting spectrum and so it is therefore difficult to decide whether or not this signal broadening is due to some exchange phenomenon. Broadening could occur by a number of processes and this behaviour was not investigated further.

EXPERIMENTAL

The complexes $[Ni(CO)_2L_2]$ (L = PPh₃ or PMePh₂) were prepared by the reaction of 2 mol of L with [Ni(CO)] in diethyl ether; ¹³ [NiCl₂ L_2] was prepared by the methods of Venanzi.14

Reactions.--[Ni(CO)₂(PPh₃)₂] with NOPF₆ in benzene and methanol. The compound $NOPF_6$ (0.34, 2 mmol) was added to a solution of [Ni(CO)₂(PPh₃)₂] (0.68 g, 1 mmol) in benzene (30 cm^3) and methanol (10 cm^3) at room temperature. The colourless solution became deep blue with evolution of CO, was stirred vigorously for 3.5 h, and then taken to dryness and washed with benzene and diethyl ether. The residue was dissolved in dichloromethane and diethyl ether was added to precipitate a mixture of $[Ni(NO)(PPh_3)_3][PF_6]$ and $[Ni(NO)(PPh_3)_2][PF_6]$. Fractional crystallisation was effected from dichloromethane-ethanol-hexane at -20 °C and deep blue crystals of $[Ni(NO)(PPh_3)_3][PF_6]$ (1a) (0.38 g, 40%) were obtained. Reaction of $[Ni(CO)_2(PMePh_2)_2]$ with NOPF, in benzene-methanol was carried out in a similar fashion, except no fractional crystallisation was necessary. [Ni(CO)₂(PPh₃)₂] with NOPF₆ in benzene. The compound $NOPF_{6}$ (0.34 g, 2 mmol) was added to a solution of $[Ni(CO)_{2} (PPh_3)_2$] (0.68 g, 1 mmol) in benzene (40 cm³) at room temperature and stirred vigorously for 3 h. Red-brown $[Ni(CO)(NO)(PPh_3)_2][PF_6]$ together with a small amount of (1a) came out of solution and was separated by filtration and washed with diethyl ether.

 $[Ni(CO)(NO)(PPh_3)_2][PF_6]$ with (a) CHCl₃ and (b) PPh₃. (a) The complex $[Ni(CO)(NO)(PPh_3)_2][PF_6]$ (0.1 g, 0.1 mmol) was dissolved in chloroform (15 cm^3) and the solution was stirred at room temperature for 4 h. The solution was taken to dryness and the crude [Ni(NO)(PPh3)2]Cl thus obtained was recrystallised from diethyl ether to give royal blue crystals, yield 0.05 g (77%).

(b) Triphenylphosphine (0.1 g, 0.4 mmol) was added to a solution of [Ni(CO)(NO)(PPh₃)₂][PF₆] (0.1 g, 0.1 mmol) in dichloromethane (5 cm³). The solution was stirred at 20 °C for 1 h and the evolved gas was identified as CO on the basis of its i.r. spectrum. Diethyl ether was added to the solution to give deep blue crystals of (1a) (0.08 g, 78%).

 $[NiCl_2(PMePh_2)_2]$ with $Na[NO_2]$, $PMePh_2$, and CO. Sodium nitrite (0.1 g, 1.5 mmol), Na[PF₆] (0.3 g, 2 mmol),

- ¹² B. F. G. Johnson and S. Bhaduri, unpublished work.
- J. D. Rose and F. S. Statham, J. Chem. Soc., 1950, 69.
 J. Venanzi, J. Inorg. Nuclear Chem., 1960, 14, 307.

¹¹ C. P. Brock, J. P. Collman, G. Dolcetti, P. H. Farnham, J. A. Ibers, J. E. Lester, and C. A. Reed, Inorg. Chem., 1973, 12, 1304

and PMePh₂ (0.4 g, 2 mmol) were added to a refluxing solution of $[NiCl_2(PMePh_2)_2]$ (0.8 g, 1.5 mmol) in acetone (40 cm³) and water (5 cm³). Carbon monoxide was passed through the solution for 3 h and after filtration the solution was taken to dryness *in vacuo*. The crude $[Ni(NO)-(PMePh_2)_3][PF_6]$ (1b) thus obtained was recrystallised from dichloromethane-hexane to give deep purple *crystals*, yield 0.6 g (50%).

 $[NiCl_2(PPh_3)_2]$ with $Na[NO_2]$, $Na[PF_6]$, PPh_3 , and CO. Sodium nitrite (0.1 g, 1.5 mmol), $Na[PF_6]$ (0.3 g, 2 mmol), and PPh₃ (0.4 g, 2 mmol) were added to a refluxing solution of $[NiCl_2(PPh_3)_2]$ (0.8 g, 1.2 mmol) in acetone (40 cm³) and water (5 cm³). Carbon monoxide was passed through the solution for 3 h and after filtration the solution was taken to dryness. The crude $[NiCl(NO)(PPh_3)_2]$ thus obtained was recrystallised from diethyl ether to give royal blue crystals, yield 0.5 g (75%).

Reactions of (1a).—With $PMePh_2$. Methyldiphenylphosphine (0.1 g, 0.5 mmol) was added to a solution of (1a) (0.1 g, 0.1 mmol) in dichloromethane. The colour of the solution turned from deep blue to deep purple within 2 min, and after taking the solution to dryness (1b) (0.07 g, 84%) was recrystallised from dichloromethane-hexane. Reaction of (1a) with dppe was carried out similarly.

With CHCl₃. The complex (0.1 g, 0.1 mmol) was dissolved in chloroform (15 cm^3) and the solution was heated under reflux for 6 h. The solution was then taken to dryness and royal blue crystals of [NiCl(NO)(PPh₃)₂] (0.06 g, 92%) were obtained by recrystallisation from diethyl ether.

With [NEt₄]I. Tetraethylammonium iodide (0.2 g, 1.7 mmol) was added to a refluxing solution of (1a) (0.4 g, 0.4 mmol) in tetrahydrofuran (thf). After 2 h the solution was filtered, taken to dryness, and the crude [NiI(NO)(PPh₃)₂] thus formed was recrystallised from diethyl ether to give royal blue crystals, yield 0.25 g (75%). Reactions of (1a) with [NEt₄]Br and [NEt₄]Cl were carried out similarly.

Reaction of $[NiBr(NO)(PPh_3)_2]$ with Ag $[PF_6]$ and PMePh₂. —Silver(1) hexafluorophosphate (0.02 g, 0.1 mmol) was added to a solution of $[NiBr(NO)(PPh_3)_2]$ (0.1 g, 0.15 mmol) in thf (10 cm³). The solution was stirred for 10 min at room temperature and then filtered. Methyldiphenylphosphine (0.1 g, 0.5 mmol) was added to the filtrate and the solution was taken to dryness. The (1b) thus obtained was recrystallised from dichloromethane-hexane to give deep purple crystals, yield 0.07 g (60%).

With Na(OMe). Sodium methoxide (0.01 g, 0.2 mmol) was added to a solution of (1a) (0.1 g, 0.1 mmol) in methanol (20 cm³). The solution was stirred for 24 h at 20 °C and then taken to dryness. The complex $[Ni(NO)(OMe)(PPh_3)_2]$ thus obtained was recrystallised from diethyl ether to give deep blue crystals, yield 0.06 g (90%).

With $Na[S_2CNEt_2]$. Sodium diethyldithiocarbamate (0.1 g, 0.6 mmol) was added to a solution of (1a) (0.25 g, 0.2 mmol) in methanol (20 cm³). The solution was stirred for 30 min at room temperature and the precipitate of $[Ni(NO)(PPh_3)(S_2CNEt_2)]$ was separated by filtration. Recrystallisation was effected from diethyl ether to give blue-black crystals, yield 0.1 g (95%).

Reaction of (1a) with Na[S₂CNMe₂] was carried out similarly. The ether-soluble fraction of the precipitate was identified as $[Ni(NO)(PPh_3)(S_2CNMe_2)]$ on the basis of its i.r. spectrum. The rest of the precipitate was washed with diethyl ether and dichloromethane to give pure greenyellow $[Ni(S_2CNMe_2)_2]$.

With Na(pd). Sodium pentane-2,4-dionate (0.015 g, 1 mmol) was added to a solution of (1a) (0.9 g, 1 mmol) in methanol (20 cm³). The solution was stirred for 30 min and then filtered. The filtrate was taken to a minimum volume to give a deep blue oil whose i.r. spectrum showed the presence of $[Ni(NO)(pd)(PPh_3)]$.

Infrared spectra were recorded on a Perkin-Elmer 257 grating instrument. Phosphorus-31 n.m.r. spectra were obtained in 12-mm (outside diameter) tubes, using the Fourier-transform technique at 40.5 M Hz, on a Varian XL 100 spectrometer. All the spectra employed white-noise proton decoupling. Microanalysis were by Mr. D. Flory of this laboratory. Conductivities were measured with a Philips conductivity bridge. These data are recorded in Tables 1 and 2.

TABLE 1

Infrared data (cm⁻¹) for the mononitrosyl complexes of nickel

$Complex \\ [Ni(NO)(PPh_3)_3][PF_6] \\ [Ni(NO)(PMePh_2)_3][PF_6] \\ [Ni(NO)(PPh_3)_3][PF_6] \\ [Ni(NO)(PPh_3)_2][PF_6] \\ [Ni(CO)(NO)(PPh_3)_2] \\ [NiCl(NO)(PPh_3)_2] \\ [NiBr(NO)(PPh_3)_2] \\ [NiIr(NO)(PPh_3)_2] \\ [Ni(NO)(PPh_3)(S_2CNEt_2)] $	v(NO) 1 790 1 785 1 785 1 780 1 800 1 755 1 795 1 730 1 730 1 730 1 730 1 730 1 735 1 735 1 735	ν(CO) 2 080	Medium Nujol CH ₂ Cl ₂ Nujol CH ₂ Cl ₂ CH ₂ Cl ₂ Nujol Nujol Nujol Nujol Nujol Nujol CH ₂ Cl ₂ CH ₂ Cl ₂
[Ni(NO)(pd)(PPh ₃)] ^b [Ni(NO)(OMe)(PPh ₃) ₂] [Ni(NO)(PPh ₃)(S ₂ CNMe ₂)] "	1 735 1 735 1 710 1 735		CH ₂ Cl ₂ Nujol Nujol

" ν (CN) at 1 511 cm⁻¹ in CH₂Cl₂. ν (pd) at 1 580 cm⁻¹.

TABLE 2

Microanalytical data (%) for the mononitrosyl complexes of nickel

	Found			Calc.		
Complex	ĆĊ	н	N	C	н	N
[Ni(NO)(PPh ₃) ₃][PF ₆] ^a	63.2	4.1	1.3	63.5	4.4	1.4
Ni(NO)(PMePh ₂) ₃][PF ₆] ^b	56.3	4.7	1.5	56.1	4.7	1.7
[Ni(NO)(PPh _a)(dppe)][PF ₆]	59.1	4.7	1.4	59.1	4.4	1.5
[NiČl(NO)(PPh ₃) ₂]	66.8	4.8	2.0	66.6	4.7	2.2
[NiBr(NO)(PPh ₃) ₂]	62.4	4.5	2.0	62.4	4.4	2.0
$[NiI(NO)(PPh_3)_2]$	58.4	4.0	1.7	58.4	4.1	1.9
$[Ni(NO)(OMe)(PPh_3)_2]$	68.6	5.1	2.1	68.9	5.2	2.2
$[Ni(NO)(PPh_3)(S_2CNEt_2)]$	55.3	4.9	5.6	55.3	5.0	5.7
$[Ni(S_2CNMe_2)_2]$	24.3	4.2	9.4	24.1	4.1	9.4

^a Λ (in 10⁻³ mol dm⁻³ nitrobenzene solution) = 19.2 S cm² mol⁻¹. ^b Λ = 19.6 S cm² mol⁻¹. ^c Λ = 19.8 S cm² mol⁻¹.

[6/1443 Received, 22nd July, 1976]