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1-azabicyclo[4.2.2]
a b s t r a c t

We report the first total synthesis and reassignment of the relative stereochemistry of naturally occurring
16-hydroxy-16,22-dihydroapparicine. Our novel route proceeds by a cascade reaction to efficiently con-
struct a 1-azabicyclo[4.2.2]decane core, along with two stereocenters (C-15 and C-16). The C-16 quater-
nary carbon was constructed through stereospecific 1,2-addition using an indole nucleophile to an
aldehyde or a methylketone. The stereospecific synthesis of two diastereomers of the target product
has revealed the true relative stereochemistry of the natural compound.

� 2012 Elsevier Ltd. All rights reserved.
Plants of the genus Tabernaemontana have a widespread distri-
bution and are known to provide alkaloids of intriguing molecular
structure and novel biological activity. Apparicine (1) was the first
monoterpenoid indole alkaloid, initially isolated from Aspidosper-
ma dasycarpon more than 45 years ago.1 It is the main representa-
tive of a small group of 5-nor stemmadenine alkaloids of which
ll rights reserved.
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Ōmura), sunazuka@lisci.kitasato-u

N

NMe

HH

N

R

HH
O

M

apparicine(1)

decane

ervaticine (3) R3 =

conolidine (4) R3 =

Figure 1. Structure of some 5-n
there are 16 known species (including apparicine (1),1 16-hydro-
xy-16,22-dihydroapparicine (2),2 ervaticine (3),3 conolidine (4),4

and isobrafouedine (5)5) (Fig. 1).
The main structural and defining feature of these alkaloids is

the strained 1-azabicyclo[4.2.2]decane skeleton, including a single
carbon connection between the indole 3-position and aliphatic
+81 3 3444 8360 (S.Ō.).
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Scheme 1. Gramine as a versatile pseudo-aminal type compound.
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nitrogen moiety. The characteristic moiety of the single carbon-ali-
phatic nitrogen of the 5-nor stemmadenine alkaloids are like
gramine (Scheme 1). In gramine, the single carbon-aliphatic nitro-
gen bond is easily cleaved by retro-Mannich reaction to generate
the imine under acidic,6 basic,7 or thermic8 conditions. Therefore,
we anticipated that the aminomethyl moiety on 3-position of in-
dole was an indicator of reactivity similar to the aminal.

Recently, the total synthesis of simple 5-nor stemmadenine
alkaloids were reported by the Bennasar group9 and the Micalizio
group.10 Herein, we report the total assignment of the configura-
tion of 16-hydroxy-16,22-dihydroapparicine (2) identified through
the first stereospecific total synthesis of two diastereomers of 2.
16-Hydroxy-16,22-dihydroapparicine (2) was isolated from
Tabernaemontana dichotoma in 1984.2 Based on spectral analysis,
the relative stereochemistry of 2 was proposed to be a 15S⁄,16S⁄-
configuration. The total synthesis of 2, has not previously been
accomplished to help accurately determine the relative and abso-
lute stereochemistry.

Our synthesis pathway to the 1-azabicyclo[4.2.2]decane skele-
ton was guided by the hypothesis that pseudo-aminal type
alkaloids occur via a biogenetic intermediate. We envisaged the
in situ preparation of the iminium cation (6), which could be
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Scheme 2. Retrosynthetic a
constructed by a cascade reaction (Scheme 2). Given the reactivity
of phosphineimine, we designed a novel phosphineimine-medi-
ated cascade reaction, the sequence of which was; (1) Staudinger
reaction11 with triphenylphosphine and an azido group to generate
phosphineimine (8); (2) compound 8 was converted to aminophos-
phinium (7) by intramolecular N-allylation with an appropriate
electrophile; (3) aza-Wittig reaction of 7 with formaldehyde; (4)
intramolecular Mannich reaction. Consequently, nucleophilic at-
tack might be performed from the indole 3-position to iminium
cation (6) (see Scheme 2).

Our synthesis commenced with preparation of the azidoalde-
hyde (10) (Scheme 5). cis-Butenediol (12) was elaborated to the
a,b-unsaturated imide (�)-13 using the robust four-step proce-
dure described by Martinelli.12 Subsequently, remote asymmetric
Michael reaction of (�)-13 was attempted to convert the desired
b-substituted product (15). However, the desired Michael addi-
tion product (15) appeared in low yield, along with other diaste-
reomers and c-addition regioisomers of 14 under any extensive
conditions. Subsequently, DBU mediated isomerization of 15
afforded the sole E-olefin product (16) as a 1:1 mixture (of dia-
stereomer at C-3), in a 91% yield. The E-olefin product (16) was
reduced to alcohol in an 82% yield, without further reduction.13
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The alcohol was converted to tosylate (±)-17 via the process re-
ported by Tanabe and co-workers.14 Subsequently, a,b-unsatu-
rated thioester was transformed to the allyl alcohol (±)-18. The
Fukuyama reduction caused high chemoselectivity, causing the
thioester group to be converted to the conjugated aldehyde15

which was then converted to the desired allyl alcohol (±)-18 un-
der Luche condition12 in a 97% yield. Furthermore, azidation of
(±)-18, followed by protection of the hydroxy group, afforded
the allyl pivalate (±)-19 in excellent yield. In the next step, the
benzyl group was removed from (±)-19 under oxidative deprotec-
tion using DDQ, as reported by Ikemoto and Schreiber.16 The ob-
tained alcohol was oxidized to azidoaldehyde (±)-10 using
Dess–Martin periodinane17 in a 93% yield (Scheme 3).

With the azidoaldehyde (±)-10 in hand, 1,2-addition of the in-
dole nucleophile (20), protected by phenylsulfone,18 provided the
hydroxyindole (±)-21 (as a single diastereomer) in an 85% yield.
Dess–Martin oxidation17 of (±)-21 was performed to give the
ketoindole (±)-22, following removal of the phenylsulfone and
pivaloyl groups under basic solvolysis, which was converted to
the hydroxyketoindole (±)-23 in an 87% yield.

Subsequently, diastereoselective methylation of (±)-23 was
converted to dihydroxyindole (±)-24 as a single diastereomer in
excellent yield. The C-16 stereocenter of (±)-24 was not confirmed
at this point. Preparation of full carbon and nitrogen skeletons was
completed and introduction of a suitable leaving group on the pri-
mary alcohol to attempt the cascade reaction was all that was now
required. After many attempts to find a suitable leaving group, we
finally opted for a 3-nitropyridyl group,19 and prepared (±)-9 in a
93% yield under Ballesteros’s condition20 (Scheme 4).

In the final stage, we attempted a cascade reaction for construc-
tion of the 1-azabicyclo[4.2.2]decane skeleton, including the
pseudo-aminal type moiety. Thus, (±)-9 was treated with PPh3 at
60 �C. Subsequently, the reaction mixture was acidified using AcOH
for activation of the 3-nitropyridyl group. Finally, formaldehyde
and PPTS were added to the reaction mixture, and synthesis of
(±)-2 was completed in an 88% yield (Scheme 5).

However, the spectral data of synthetic (±)-2 did not agree with
that of natural 2.2 In particular, ROESY analysis of synthetic (±)-2,
showed a relationship between H-18 or H-19 and 16-Me. Thus
the relative stereochemistry of synthetic (±)-2 was determined to
be a 15S⁄,16S⁄-configuration, which was the configuration pro-
posed by Verpoorte’s group.2 As a result, the C-16 stereocenter out-
come reflected the Felkin–Anh transition state. Comparison of 1H
and 13C NMR indicated 16-Me and H-6a,b proton difference (as
shown in the Supplementary data). Furthermore, the 13C signals
of the piperidine ring were greatly shifted from those seen in nat-
urally occurring 2. Therefore, we expected that the 16-Me group in
natural 2 was on the opposite face of the trisubstituted exo-cycli-
colefin. Thus, the relative stereochemistry was anticipated to be
the 15S⁄,16R⁄-configuration. To confirm this, we turned our atten-
tion to completing the synthesis of 15S⁄,16R⁄-isomer 33 with
methylketone (27).

Construction of the stereocenter of 16R⁄ of C-16 position was
adapted to our 1,2-addition procedure through the Felkin–Anh
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transition state (Scheme 6). The methylketone was prepared from
the aldehyde (±)-10 by the addition of methyl anion, plus subse-
quent oxidation using Dess–Martin periodinane, in good yields. Ac-
cess to the isomer, 16R⁄-33 was obtained by applying an identical
reaction sequence with an improvement for 1,2-addition by the
use of SEM protected indole nucleophile,21 similar to that used
for the preparation of 16S⁄-2 from methylketone (±)-27. Actually,
1,2-addition of PhSO2-protected indole (20) to (±)-27 not only pro-
duced the 1,2-adduct product in a 20% yield, but also the deprotec-
tion of PhSO2 group could not proceed under any conditions
without decomposition of the substrate. Characterization data pro-
vided for synthetic (±)-(15S⁄,16R⁄)-33 were fully consistent with
the data for the natural compound reported by Verpoorte’s group.2

In addition, NOE relationship was observed between H-14a and H-
22 (i.e., 16-Me). As the result, the relative stereochemistry of C15
and C16 was determined to be the 15S⁄,16R⁄-configuration. Fur-
thermore, we also analyzed (±)-(15S⁄,16S⁄)-1, (±)-(15S⁄,16R⁄)-33
and natural product via HPLC. Both diastereomer 1 and 33 were
separated, and the natural product was identical to synthetic 33.

In conclusion, we have achieved the first total synthesis of
16-hydroxy-16,22-dihydroapparicine and determined the true rel-
ative stereochemistry of the naturally occurring compound (±)-
(15S⁄,16R⁄)-16-hydroxy-16,22-dihydroapparicine (33). Synthesis
involved a novel cascade reaction allowing efficient construction
of the 1-azabicyclo[4.2.2]decane, including a pseudo-aminal type
moiety, plus a Staudinger reaction, N-allylation, aza-Wittig reac-
tion and Mannich reaction. In addition, we developed a novel
method employing diastereoselective 1,2-addition of aldehyde or
methylketone using N-protected indole-nucleophiles. Further de-
tailed study of the cascade reaction mechanism and development
of asymmetric total synthesis is in progress, and the results of
these and related investigations will be reported in due course.
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